Для чего используют радиотелескопы кратко

Обновлено: 05.07.2024


Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и др. излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.

Содержание

Устройство

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства — радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и обработки. [3]

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель — устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора [4] . На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

Принцип работы

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

\theta_<min></p>
<p>= \frac<\lambda>
,

где — длина волны, — диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала (см. критерий Релея). Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику — чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

 \Delta P = \frac<P></p>
>
,

где — мощность собственных шумов радиотелескопа, — эффективная площадь (собирающая поверхность) антенны, — полоса частот и — время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.

Радиоинтерферометры

\lambda /d

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.

Первые радиотелескопы

Начало — Карл Янский



История радиотелескопов берёт своё начало в 1931 году, с экспериментов Карла Янского на полигоне фирмы Bell Telephone Labs. Для исследования направления прихода грозовых помех он построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени [5] .



Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. — период полного оборота антенны.

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США [5] .

Второе рождение — Гроут Ребер


В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении [5] .

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты [9] [10] .



Совершенствуя свою аппаратуру [12] , Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода на волне 1,87 м [11] . На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, Большого Пса и Кормы. Карты Ребера достаточно хороши даже по сравнению с современными картами, метровых длин волн. [5]

После Второй мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии, который привёл к освоению миллиметровых и субмиллиметровых длин волн, позволяющих достичь значительно больших разрешений.

Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей) [13] :

Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и является наиболее простыми и привычными в использовании. Антенны с заполненой апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с незаполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.

Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, калязинский радиотелескоп.

Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета [14] , индийский телескоп в Ути [15] .


Антенны с плоскими отражателями

Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый радиотелескоп Аресибо. Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.

Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.

Антенны с незаполненной апертурой

Наиболее важными для целей астрономии являются две характеристики радиотелескопов: разрешающая способность и чувствительность. При этом чувствительность пропорциональна площади антенны, а разрешение — максимальному размеру. Таким образом, самые распространенные круглые антенны дают наихудшее разрешение при той же эффективной площади. Поэтому в радиоастрономии появились телескопы с малой



Крупные массивы типа VLA часто относят к последовательному синтезу. Однако, ввиду большого количества антенн, практически все базы уже представлены, и дополнительных перестановок обычно не требуется.

Радиотелескопы – это просто огромные чувствительные широкополосные приемники, в которых используются некоторые из самых передовых беспроводных технологий. Вы, наверное, слышали о радиотелескопах, но все ли вы знаете о том, как они работают, и о некоторых используемых в них экстремальных радиотехнологиях?

Что нужно знать о радиотелескопах

Большинству телескопы известны как оптические инструменты для наблюдения за далекими объектами. По сути, радиотелескоп – это то же самое. Но вместо того, чтобы искать свет, он ищет радиоволны. Сегодня мы с помощью оптического телескопа можем визуально увидеть то, что кажется бесконечным числом звезд, планет и галактик. Но это не все. Множество других вещей в космосе мы увидеть просто не можем. Причина этого заключается в том, что пыль и пылевые облака в космосе блокируют значительное количество света во вселенной. Но радиоволны проникают прямо сквозь облака и пыль, а также через земную атмосферу.

Оказывается, почти все в космосе излучает электромагнитные волны. Как вы помните, электромагнитный спектр начинается от постоянного тока, проходит через радиоволновый диапазон, затем переходит в инфракрасную область, за которой следует видимый свет. По мере увеличения частоты и снижения длины волны, начинаются ультрафиолетовые волны, за которыми следуют рентгеновские лучи, гамма-лучи и так далее. Радиоволны можно считать очень низкочастотным светом. Или считать свет сверхвысокочастотными радиоволнами.

Что нужно знать о радиотелескопах

Инфракрасные волны приходят от тепла. Любой объект, который излучает тепло при любой температуре выше абсолютного нуля (–273 °C), излучает радиоволны. Звезды, планеты, ионизированные газы и галактики – все излучают радиоволны. Сигналы очень слабы, так как они достигают нас через огромные расстояния. Даже при скорости света 300,000,000 метров в секунду, для того, чтобы далекие космические сигналы достигли нас, нужны годы. Но если мы сможем построить достаточно чувствительный приемник, мы сможем собрать их, изучить и попытаться понять, что же происходило в космосе в прошлом.

Приемник на основе передовых технологий

Хороший чувствительный приемник начинается с большой антенны. Чтобы преобразовывать эти крошечные сигналы из космоса в поток электронов, который мы можем зарегистрировать и обработать, антенны радиотелескопа должны быть большими, с высоким усилением и узкой диаграммой направленности. Большинство радиотелескопов имеют огромное параболическое зеркало. Поперечник самых больших из них – сто или больше футов.

Размер зеркала, или апертура, определяет коэффициент усиления антенны и ее минимальную полезную частоту. Большие зеркала имеют механические системы для вращения их по азимуту и углу наклона. Большая парабола собирает поступающие волны в сконцентрированный пучок в фокусе, где антенна преобразует слабый сигнал в напряжение, которое можно усилить.

Кстати, единица измерения силы сигнала в радиоастрономии называется янский (Ян), в честь Карла Янского (Karl Jansky), который был первым ученым, обнаружившим радиоволны из космоса. Один янский составляет 10–26 Вт на квадратный метр на герц. Согласитесь, не очень-то мощный сигнал.

Самые современные беспроводные приемники начинаются с малошумящего усилителя (МШУ). Шум является главным врагом слабых радиосигналов, поскольку при слишком высоком уровне он может их полностью маскировать. Несмотря на свое название, МШУ также добавляет шум приемнику. По большей части этот шум является тепловым, вызванным нагревом, который возбуждает атомы и электроны, создающие случайный сигнал. Возможно, вы знаете, что напряжение теплового шума рассчитывается как

T – температура в градусах Кельвина (K), или в градусах Цельсия + 273;
B – ширина в Гц полосы частот, в которой проводятся измерения;
R – активное сопротивление компонента, создающего шум;
k – постоянная Больцмана, или 1.38×10 –23 .

В приемнике радиотелескопа МШУ охлаждается криогенными методами до температуры, близкой к абсолютному нулю (4 K). Внешний интерфейс приемника (МШУ, смеситель и облучатель) помещен в герметичный корпус и охлаждается жидким гелием. Вот это по настоящему малошумящий усилитель!

В усилителях также используются специальные компоненты, такие как транзисторы и интегральные схемы, сделанные из материалов, которые лучше всего работают на частотах дециметрового, сантиметрового и миллиметрового диапазонов. Среди них гетероструктурные полевые и биполярные транзисторы, а также транзисторы с высокой подвижностью электронов (HEMT), изготовленные из арсенида галлия (GaAs) и фосфида индия (InP).

После предварительного усиления сигналов перед детектированием диодом Шоттки их частота понижается в смесителе до более низкой, обычно лежащей в диапазоне от 1 до 10 ГГц. После детектирования сигналы оцифровываются и сохраняются, а затем преобразуются в цветные визуальные изображения, помогающие объяснить их природу. Поскольку удаленные космические сигналы относительно постоянны, их можно наблюдать непрерывно и усреднять для улучшения отношения сигнал/шум.

Радиотелескоп с очень большой антенной системой (VLA) в Нью-Мексико. (Изображение с Wikipedia).
Радиотелескоп с очень большой антенной системой (VLA) в Нью-Мексико.
(Изображение с Wikipedia).

Вполне предсказуемо, что на верхних частотах миллиметрового диапазона получить большой коэффициент усиления трудно. Одно из решений заключалось в исключении усилителя и подаче сигнала антенны непосредственно в смеситель, который смещает сигнал в более низкочастотную область, где проще добиться более низкого шумового усиления. Но с этим связана проблема создания малошумящих смесителей. В настоящее время она была решена с помощью специального устройства, известного как смеситель со структурой сверхпроводник-изолятор-сверхпроводник (СИС), нелинейность которого обусловлена квантовым туннелированием между двумя сверхпроводниками.

Раньше в большинстве радиотелескопов использовалась одна огромная параболическая антенна. Она может охватывать широкие диапазоны частот и усилений и обладать узкой диаграммой направленности. В более старых оригинальных разработках приемник располагался в фокальной точке параболы, чтобы получить усиление до того, как добавят шум другие части системы. Сегодня более распространенным является размещение в фокальной точке отражателя, который направляет сигнал в центр тарелки, где можно более надежно установить тяжелый приемный блок с его криогенными компонентами.

Растущая тенденция состоит в том, чтобы делать несколько меньших (менее 25 м) параболических антенн и располагать их в подвижном массиве, чей совокупный выходной сигнал будет таким же, если не мощнее, чем у одной большой параболы. Примером может служить очень большая антенная система (Very Large Array – VLA) в Нью-Мексико. В ней используются 27 парабол диаметром 25 метров каждая. Одним из применений таких составных конструкций является одновременное подключение к приемнику двух или более антенн для реализации интерферометрии – совокупности методов наложения сигналов для улучшения разрешения.

Значительная часть систем радиотелескопа приходится на вычислительную систему. Все полученные сигналы оцифровываются, сохраняются и подвергаются широкому спектру методов глубокой обработки. Вычислительная мощность системы впечатляет, поскольку центральный процессор, ПЛИС или другое устройство должны выполнять преобразования Фурье и другой анализ больших чисел с плавающей точкой. Сообщалось об использовании систем с производительностью до 750 миллиардов операций с плавающей точкой в секунду.

Частоты, представляющие интерес

Из космоса приходят радиосигналы с частотами от нескольких мегагерц до 1 ТГц. Большинство из них находится в диапазоне сотен мегагерц или единиц гигагерц. Некоторые сигналы поступают от источников тепла, но другие излучаются на одной частоте. Первыми были обнаружены сигналы в диапазоне 160 МГц. Основная часть сигналов была найдена на частоте 178 МГц. Мощный нетепловой сигнал исходит от водорода – вселенная заполнена водородом, который излучает очень узкий сигнал на частоте 1420 МГц (21 см). Астрономы выполнили широкомасштабное исследование неба на частоте 5 ГГц. Доступ к некоторым частотам, например, 10.7 ГГц и 15.4 ГГц, ограничен Федеральной комиссией по связи (FCC) и Национальной администрацией по связи и информации США (NTIA). Молекулы аммиака были обнаружены на частоте 22 ГГц. Окись углерода (СО) нашли на частоте 115 ГГц.

Источники космических сигналов могут иметь много частот. Это значит, что хорошие приемники радиотелескопов должны поддерживать широкий диапазон перестраиваемых частот. Для приема сигналов миллиметровых волн разрабатываются новые, более свершенные системы. Технология развивается, приближаясь к частоте 1 ТГц.

Правда о применениях радиотелескопов

Ученые используют радиотелескопы для изучения вселенной с ее огромным количеством звезд (солнц), планет, лун, галактик и странных источников, таких как пульсары, квазары и черные дыры. Астрономы способны измерять частоту сигнала, которая может изменяться, если источник движется по направлению к приемнику или от него. Используя принцип Допплера, они могут делать потрясающие измерения скоростей и расстояний.

Благодаря своей универсальности, большие радиотелескопы, помимо космического картографирования, использовались также и в других проектах. Одним из приложений является слежение за удаленными космическими аппаратами. Они могут использоваться в качестве резервного средства практически в любом виде деятельности, связанной с космосом: исследовании Луны, изучении Марса, связи с шаттлами и космическими станциями, а также для слежения за спутниками. И, конечно же, для поиска внеземного разума.

Гигантский радиотелескоп в Аресибо, Пуэрто-Рико. (Изображение с Wikipedia).
Гигантский радиотелескоп в Аресибо, Пуэрто-Рико. (Изображение с Wikipedia).

Новые приемники с СИС-смесителями, МШУ на HEMT транзисторах и криогенным охлаждением способны принимать сигналы с частотой, достигающей 950 ГГц, делая радиотелескопы воплощением прорывных технологий. Вероятно, и военные используют некоторые новейшие технологии, о которых мы не знаем. Как бы мы использовали эту технологию, если бы ее можно было перенести в коммерческий сектор? Есть идеи? Как насчет базовой станции сотовой связи с криогенным охлаждением. Подумайте об этом. А с другой стороны, может быть, и не стоит.

Карл Янский

Опытные радисты знают: когда в радиоприёмнике иногда раздаются шум и треск, не стоит сразу винить аппаратуру: вполне возможно, что это подаёт голос. Солнце!

Молодой исследователь сконструировал специальную антенну, способную принимать короткие волны. Вооружившись этой антенной, он стал изучать источники радиопомех и их направление. Каково же было его удивление, когда прибор упрямо стал указывать на. солнечный диск! Причем эти шипящие помехи повторялись каждые 24 часа. Это указывало на то, что источник помех может быть связан с Солнцем (24 часа, как мы помним, длятся солнечные сутки на Земле). Но проанализировав полученные данные более тщательно, Карл Янский увидел, что обнаруженный им радиосигнал повторялся на каждые 24 часа, а каждые 23 часа 56 минут - это уже длительность звёздных суток, а не солнечных, то есть период вращения Земли относительно дальних звезд, а не Солнца. Сверившись с астрономическими картами, Карл Янский обнаружил, что источником излучения была область в центре нашей галактики Млечный Путь, в созвездии Стрельца.

Карл Янский опубликовал статью, в которой рассказал о своем открытии, однако ему не поверили. Но факты - упрямая вещь. Радиоголоса были обнаружены и у других звёзд, у планет и прочих небесных объектов. Так было положено начало новой науке - радиоастрономии. Она позволила узнать о Вселенной много такого, о чем люди раньше и не подозревали.

Антенна Карла Янского


Круговая "антенна-карусель" Карла Янского - первый радиотелескоп

Чаще всего это гигантская металлическая чаша диаметром в несколько десятков, а то и сотен метров.

Например, крупный радиотелескоп Аресибо расположен в кратере потухшего вулкана на Больших Антильских островах. Склоны кратера выровняли и прикрыли металлическими щитами. Получилась огромная чаша-зеркало, с помощью которой и улавливаются радиоголоса звёзд.

Радиотелескоп Аресибо


Обсерватория Аресибо (Пуэрто-Рико).
Радиотелескоп Аресибо, построенный в 1963 году,
по размерам уступает только китайскому телескопу FAST, запущенному в 2016 году.
Диаметр зеркала радиотелескопа Аресибо - почти 305 метров

Один из крупнейших радиотелескопов мира РАТАН-600 находится в нашей стране, в районе станицы Зеленчукской в Ставропольском крае.

Даже построив такую махину, астрономы на этом не успокоились. В 1980 году совместными усилиями специалистов стран Восточный и Западной Европы, а также Китая и Южной Африки был создан радиотелескоп, антенна которого оказалась диаметром. в половину земного шара! Самое удивительное, что никаких новых установок при этом не строили.

Вся хитрость в оригинальном подходе, который использовали учёные. Представьте себе, скажем, у нас в Крыму и где-то в Швеции два радиотелескопа направлены на один и тот же небесный объект. На обоих телескопах принятые сигналы записываются и передаются на компьютер. Затем радиоастрономы сравнивают записи, оценивают информацию с помощью электронных вычислительных машин. В итоге получается, что два телескопа работают как один — в общей упряжке.

Причём таким образом не только два, но и большее количество телескопов могут действовать сообща. Антенна такого всепланетарного радиотелескопа получается гигантской, простираясь на тысячи километров. Такие сети радиотелескопов называют РСДБ-сетями (расшифровывается как радиоинтерферометрия со сверхдлинными базами). Метод РСДБ придумали американцы в 1970-х годах. В наше время существует три крупных сети: "КВАЗАР" в России, EVN в Европе (в ней тоже участвуют российские радиотелескопы), и VLBA в США.

В будущем учёные замахиваются создать радиотелескоп размерами во всю Солнечную систему. Каким образом? Точно таким же. Один из радиотелескопов они хотят разместить на борту автоматической межпланетной станции и отравить её куда-нибудь на окраину Солнечной системы, допустим, к орбите Сатурна или Плутона. Другие радиотелескопы включатся на Земле. А когда полученные сведения обработают с помощью сверхмощных компьютеров, получится, будто работал сверхгигантский радиотелескоп.

В свою очередь, накопленные знания нужны специалистам, чтобы лучше понять устройство мира. Например, мы до сих пор плохо знаем, как именно шло образование нашей Солнечной системы. Геологические процессы на планетах, химические реакции в их недрах сильно изменили облик небесных тел, и теперь нелегко представить, какими они были первоначально. Так что было бы важно отследить образование какой-либо другой планетной системы. Тогда по аналогии мы могли бы получить наглядное представление и о том, как образовывалась наша.

Удалось радиоастрономам отыскать и следы Большого взрыва. Радиоастрономы зафиксировали в глубинах Вселенной фоновое или реликтовое радиоизлучение, которое представляет собой не что иное, как эхо Большого взрыва. Представляете, сколько миллиардов лет прошло, а радиоэхо до сих пор разгуливает по просторам Вселенной. И учёным удалось услышать его.

Благодаря РСДБ-сетям, астрономы получили возможность изучать такие загадочные космические объекты, как пульсары, нейтронные звёзды, чёрные дыры.


Конструкции радиоастрономии ( от 0,1 мм до 1000 м ). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель — устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора [3] . На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтированиях, обеспечивающих повороты по ΔР , которая регистрируется, определяется соотношением:

ΔP = P /(S √Δft)

где Р — мощность собственных шумов радиотелескопа, S — эффективная площадь (собирающая поверхность) антенны, Δf — полоса частот, которые принимаются, t — время накопления сигнала.

Для повышения чувствительности радиотелескопа увеличивают их собирающую поверхность и применяют малошумящие приемные устройства на основе мазеров, параметрических усилителей и т. д. Разрешение q радиотелескопа (радианы):

где I — длина волны, D — линейный размер 100 м на сантиметровый волнах) имеют разрешение около 1 Первые радиотелескопы

Предпосылки

Ещё в конце 19 века учёные предполагали, что частотой, также должны излучаться небесными телами, в частности Солнцем. В 1890 г. США и в 1894 г. Англии независимо друг от друга предложили поставить опыты по обнаружению Солнца. Но, тогда эти опыты не могли удаться, ввиду отсутствия [4] .

Начало — Карл Янский


Точная копия радиотелескопа Карла Янского в натуральную величину. Национальная радиоастрономическая обсерватория (NRAO), Грин Бэнк, Западная Вирджиния, США

История радиотелескопов берёт своё начало с экспериментов Карла Янского, проведённых в 1931 г. В то время Янский работал радиоинжинером на полигоне фирмы Bell Telephone Labs. Ему было поручено исследование направления прихода грозовых помех. Для этого Карл Янский построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м ( 20.5 МГц ). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени [5] .


Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. — период полного оборота антенны.

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США, и радиоастрономия зачахла [5] .

Второе рождение — Гроут Ребер

Меридианный радиотелескоп Гроута Ребера

В 1937 году Гроут Ребер , радиоинженер из Уэтона (США, диаметром 9,5 м . Эта меридианную монтировку, т.е. была управляема лишь по прямому восхождению достигалось за счёт вращения Земли . 12° по уровню половинной мощности, в то время как у 30° по уровню половинной мощности в наиболее узком [5] .

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты [9] [10] .


Радиокарта небосвода, полученная Гроутом Ребером в 1944 г. [11]

Широкий радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля ( [14] :

Читайте также: