Что является теоретической базой селекции кратко

Обновлено: 07.07.2024

С Селекция – это наука о методах создания новых и улучшения существующих пород животных, сортов растений и штаммов микроорганизмов. Селекция опирается на достижения генетики, молекулярной биологии, биохимии и других наук.

Методы и направления селекции

Теоретической основой селекции является генетика. Породой, сортом, штаммом называют популяцию организмов, искусственно созданную человеком и характеризующуюся определенными наследственными особенностями. Все особи внутри сорта, породы, штаммы имеют сходную наследственную организацию, внешние признаки и однотипную реакцию на влияние факторов внешней среды. Например, молочные породы крупного рогатого скота отличаются величиной удоя, процентом жирности и содержанием белка в молоке.

Основными задачами современной селекции являются:

Особенно важно получение сортов растений, устойчивых к заболеваниям и поддающихся механизированной уборке, например короткостебельных неполегающих сортов злаков.

Для успешной селекционной работы необходимо:

  • исходное сортовое и видовое разнообразие растений и животных;
  • изучениероли мутации в проявлении и развитии исследуемых признаков;
  • исследованиезакономерностей наследования при гибридизации;
  • применение различных форм искусственного отбора.

Успех селекционной работы во многом зависит от генетического разнообразия исходной группы растений и животных. Генофонд существующих пород животных и сортов растений ограничен по сравнению с генофондом исходного дикого вида. С целью изучения многообразия и географического распространения культурных растений Н.И. Вавилов провел многочисленные экспедиции в разные уголки земного шара. В результате работы этих экспедиций был собран огромный семенной материал, используемый в селекционной работе, и выделены центры происхождения культурных растений. Их семь:

  1. южноазиатский – родина риса, сахарного тростника, цитрусовых;
  2. восточноазиатский – родина сои, проса, гречихи, многих плодовых и овощных культур;
  3. юго-западноазиатский – родина пшеницы, гороха, чечевицы, винограда;
  4. средиземноморский – родина маслин, капусты, свеклы;
  5. абиссинский – родина твердых пшениц, ячменя, кофейного дерева;
  6. центральноамериканский – родина кукурузы, какао, перца, фасоли, длинноволокнистого хлопка;
  7. южноамериканский – родина картофеля, табака, ананаса, подсолнечника.

Открытые Н. И. Вавиловым закономерности географического распределения сельскохозяйственных растений и расселения их из первичных центров облегчают работу селекционеров, позволяют быстрее подбирать необходимый для опытов исходный материал и в определенной мере предвидеть результаты. Исходный материал имеет первостепенное значение для успешной селекции. Им могут быть дикие формы, искусственно полученные мутантные формы, особи с комбинативной изменчивостью, сорта и породы‚ полученные в других климатических условиях.

Селекция растений

Основными методами селекции растений являются гибридизация и искусственный отбор.

В начале селекционной работы ставится конкретная задача, для выполнения которой подбирают соответствующие родительские формы. При невозможности найти нужный исходный материал получают индуцированные мутации, среди которых иногда удается найти и полезные, используемые в дальнейшей селекционной работе.

Гибридизация – это получение гибридов от скрещивания генетически разнородных организмов. В селекции применяют близкородственное скрещивание (инбридинг) и скрещивание неродственных организмов (аутбридинг).

Близкородственная гибридизация у растений основана на искусственном опылении своей пыльцой обычно перекрестноопыляемых растений. Самоопыление ведет к повышению гомозиготности и закреплению наследственных свойств. Потомство, полученное от одного гомозиготного растения путем самоопыления, называется чистой линией. У особей чистых линий часто снижаются жизнеспособность и урожайность.

Если скрестить разные чистые линии между собой (межлинейная гибридизация)‚ то наблюдается явление гетерозиса – повышенная жизнеспособность и плодовитость в первом поколении гибридов, которая постепенно снижается. Гетерозис объясняется переходом большинства генов в гетерозиготное состояние. Межлинейная гибридизация позволяет повысить урожайность семян кукурузы на 20 — 30%. Явление гетерозиса у растений можно закрепить при вегетативном размножении (клубнями, черенками, луковицами и т.д.).

После получения гибридов производится искусственный отбор. Отбор заключается в сохранении для размножения растений с желаемой комбинацией признаков. При массовом отборе выделяют группу особей с нужными признаками и получают потомство. При повторных посевах отбор приходится повторять, так как особи могут в дальнейшем давать расщепление. Индивидуальный отбор проводят путем выращивания потомков одной особи. При таком отборе результат достигается быстрее, но потомков получается значительно меньше. Индивидуальный отбор чаще проводят среди самоопыляющихся растений и получают чистые линии, которые дают ценный исходный материал для дальнейшей селекции.

Искусственный отбор на основе наследственной изменчивости служит основным способом получения новых сортов растений. Однако, одновременно на сорт действует и естественный отбор, повышая приспособленность растений к конкретным условиям среды. Вновь созданный сорт всегда является результатом деятельности человека и окружающей среды.

В последние годы селекционеры получают целые растения (плодовые кустарники, земляника) путем стимулирования деления клеток тканей растений в культуре. В этом случае образуются клоны растений с одинаковым генотипом.

Выведение новых высокоурожайных сортов растений позволяет резко интенсифицировать сельскохозяйственное производство и обеспечить население продовольствием. Творческое использование всех методов селекционной работы приводит к большим успехам. Озимая пшеница Безостая 1, созданная академиком П.П. Лукьяненко, имеет высокую урожайность и отличные мукомольные качества. Урожайность новых сортов пшениц (Аврора, Кавказ) достигают 100 ц/га. Академиком Н.В. Цициным получен ценный гибрид пшеницы и ржи – тритикале, который сочетает качества пшеницы (высокие мукомольные качества) и ржи (способность расти на бедных почвах). Коллектив селекционеров, возглавляемый академиком В.С. Пустовойтом, добился увеличения содержания масла в семенах подсолнечника на 20%. За последние годы благодаря созданию новых полиплоидных сортов (А.Н. Лутков, В.П. Зосимович) резко повысилась сахаристость и урожайность сахарной свеклы.

Селекция животных

Основные подходы к селекции животных не отличаются от принципов селекции растений. Новые породы животных получают на основе наследственной изменчивости путем искусственного отбора. Однако селекция животных имеет и некоторые особенности, вытекающие из природы организма животного:

  • животные, имеющие хозяйственное значение, размножаются только половым способом;
  • половая зрелость у них наступает относительно поздно;
  • самки приносят немногочисленное потомство, что затрудняет и замедляет процесс селекции.

При селекционной работе с животными важное значение имеет учет экстерьерных признаков. Экстерьер – это совокупность наружных форм животных, их телосложение и соотношение частей тела. Разные породы животных неодинаково реагируют на изменения внешних условий. Так, у мясных пород крупного рогатого скота улучшение питания прежде всего сказывается на увеличении массы тела, а у молочных – на повышении удоев. Началом селекционной работы является подбор родительских пар исходя из поставленной задачи. В подборе производителей важно учитывать их родословные, в которых должны быть отмечены экстерьерные особенности и продуктивность, в течение ряда поколений.

Скрещивание при работе с животными является основным способом получения разнообразия исходного материала. Как и при селекции растений, применяют два типа скрещивания: неродственное (аутбридинг) и родственное (инбридинг).

Аутбридинг – скрещивание между особями одной или разных пород – при строгом отборе приводит к поддержанию свойств или улучшению их в ряду поколений гибридов.

Инбридинг – скрещивание особей одного поколения или родителей и потомков – применяется для перевода большинства генов в гомозиготное состояние. Происходит закрепление хозяйственно ценных признаков, однако при этом часто наблюдается ослабление животных, уменьшение их устойчивости к воздействию факторов среды. Чтобы этого избежать, проводят строгий отбор особей. При селекционной работе инбридинг обычно является лишь одним из этапов улучшения пореды. За ним следует скрещивание разных линий, что переводит большинство генов в гетерозиготное состояние, при котором проявляется гетерозис (бройлерные цыплята).

В селекции домашних животных для определения наследственных свойств самцов по признакам, которые у них не проявляются, например по количеству молока и жирномолочности у быков или яйценоскости у петухов, используется метод определения качества производителей по потомству. От производителя получают немногочисленное потомство и сравнивают его продуктивность со средней продуктивностью породы. Если продуктивность дочерей выше, чем матерей, то это говорит о большой ценности производителя и его используют для дальнейшего улучшения породы. От хорошего самца можно получить большое потомство с помощью искусственного осеменения. В последнее время эмбрионы ценных пород крупного рогатого скота получают в пробирке или проводят клонирование, а затем полученные эмбрионы вводят в матку беспородных животных для дальнейшего развития. Эти методы позволяют значительно ускорить селекционную работу.

Ценные породы домашних животных получены академиком М.Ф. Ивановым, например белая украинская свинья и асканийский рамбулье. Высокой молочной продуктивностью характеризуется костромская порода крупного рогатого скота.

Наряду с внутривидовой гибридизацией в животноводстве применяется и отдаленная гибридизация. С глубокой древности человек использует мула (гибрид кобылы с ослом). В Казахстане в результате гибридизации тонкорунных овец с диким горным бараном архаром выведена новая порода тонкорунных овец – архаромеринос. Ведутся работы по гибридизации яка с крупным рогатым скотом.

Селекция микроорганизмов

Микроорганизмы способны производить жизненно важные продукты, но природные штаммы их в основном низкопродуктивны. Поэтому в микробиологической промышленности применяют селекционные методы: индуцированный‚ мутагенез и искусственный отбор. Для получения мутаций используют ионизирующие излучения и химические мутагены. Применение мутагенных факторов и целенаправленного отбора позволило повысить продуктивность штаммов в сотни и тысячи раз.

Микроорганизмы отличаются характерными особенностями, важными для производства и селекции:

  • содержат значительно меньше генов, чем клетки высокоорганизованных видов;
  • имеют простую регуляцию генной активности;
  • очень быстро размножаются;
  • их гаплоидный геном позволяет проявляться фенотипически любой мутации уже в первом ппоколении.

Использование человеком живых организмов и биологических процессов для промышленного получения продуктов называется биотехнологией. Биотехнологические процессы используются человеком с древних времен: молочнокислые бактерии – для получения молочнокислых продуктов, различные штаммы дрожжей – в виноделии, пивоварении, хлебопечении.

Особенно интенсивно начала развиваться микробиологическая промышленность с семидесятых годов ХХ века. В качестве питательной среды для бактерий начали использоваться непищевые продукты: жидкие парафины нефти, синтетические спирты, отходы деревообрабатывающей промышленности и др. Получаемые таким путем белково-витаминные препараты позволяют решить проблему нехватки кормового белка и повысить продуктивность животноводства. Кроме того, микробиологическая промышленность производит ферменты, антибиотики, гормоны, аминокислоты и другие лечебные препараты, необходимые человеку.

Для создания новых штаммов микроорганизмов в последнее время применяют генную инженерию конструирование новых генетических структур по заранее намеченному плану. Генная инженерия развивается на базе молекулярной биологии, генетики, биохимии и микробиологии. Генная инженерия включает четыре основных этапа:

  1. получение нужного гена (выделение природного или искусственный его синтез);
  2. включение этого гена в молекулу ДНК-переносчик – получение рекомбинантной молекулы ДНК;
  3. введение рекомбинантной ДНК в клетку, где она встраивается в генетический аппарат;
  4. отбор трансформированных клеток.

На основе генной инженерии в настоящее время уже освоено промышленное производство белка инсулина (гормона поджелудочной железы для лечения диабета) и интерферонов – белков, подавляющих размножение вирусов.

Генная инженерия позволяет конструировать и эукариотические клетки с новой генетической программой. В последнее время получают гибриды соматических клеток разных видов и даже животных и растений. Получены гибриды лимфоцитов с опухолевыми клетками (гибридомы), способные к длительному синтезу антител определенного типа. Созданы растения, способные усваивать атмосферный азот, что в будущем не только обогатит растительную пищу белками, но сделает ненужным применение азотных удобрений.

Биотехнология – одно из ведущих направлений современной биологии. В ближайшем будущем методы генной инженерии позволят человечеству избавиться от ряда наследственных болезней.

1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.

1. Дайте определения понятий.
Селекция – наука о выведении новых и совершенствовании уже существующих старых сортов растений, пород животных и штаммов микроорганизмов с необходимыми человеку свойствами.
Сорт – популяция растений, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
Порода – популяция животных, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
Штамм – популяция микроорганизмов, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.

2. Каковы основные задачи селекции как науки?
• Повышение продуктивности сортов растений, пород животных и штаммов микроорганизмов;
• Изучение разнообразия сортов растений, пород животных и штаммов микроорганизмов;
• Анализ закономерностей наследственной изменчивости при гибридизации и мутационном процессе;
• Исследование роли среды в развитии признаков и свойств организмов;
• Разработка систем искусственного отбора, способствующих усилению и закреплению полезных для человека признаков у организмов с разными типами размножения;
• Создание устойчивых к заболеваниям и климатическим условиям сортов и пород;
• Получение сортов, пород и штаммов, пригодных для механизированного промышленного выращивания и разведения.

3. Что является теоретической базой селекции?
Теоретической базой селекции является генетика. Она также использует достижения теории эволюции, молекулярной биологии, биохимии и других биологических наук.

4. Заполните таблицу.

Методы селекции

3-6-41

3-6-42

5. Какое значение имеет селекция в хозяйственной деятельности человека?
Селекция позволяет повышать продуктивность сортов растений, пород животных и штаммов микроорганизмов; разрабатывать системы искусственного отбора, способствующие усилению и закреплению полезных для человека признаков у различных организмов; создавать устойчивые к заболеваниям и климатическим условиям сорта и породы; получать сорта, породы и штаммы, пригодные для механизированного промышленного выращивания и разведения.

Учение Н. И. Вавилова о центрах многообразия и происхождения культурных растений

1. Дайте определения понятий.
Центр многообразия и происхождения – территория (географическая область), в пределах которой формировался вид или другая систематическая категория сельскохозяйственных культур и откуда они распространились.
Гомологический ряд – сходный ряд наследственной изменчивости у генетически близких видов и родов.

2. Сформулируйте закон гомологических рядов наследственной изменчивости.
Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуется определенным циклом изменчивости, проходящий через все роды и виды, составляющие семейство.

3. Заполните таблицу.

Центры происхождения и многообразия культурных растений

3-6-43

Биотехнология, ее достижения и перспективы развития

1. Дайте определения понятий.
Биотехнология – дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.
Клеточная инженерия – это создание клеток нового типа на основе их гибридизации, реконструкции и культивирования. В узком смысле слова под этим термином понимают гибридизацию протопластов или животных клеток, в широком – различные манипуляции с ними, направленные на решение научных и практических задач.
Генная инженерия – совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма, осуществления манипуляций с генами и введения их в другие организмы.

2. Какова роль биотехнологии в практической деятельности человека?
Процессы биотехнологии используются в хлебопечении, виноделии, пивоварении, приготовлении кисломолочных продуктов; микробиологические процессы – для получения ацетона, бутанола, антибиотиков, витаминов, кормового белка; биотехнология также включает в себя использование живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, возможность создания живых организмов с необходимыми свойствами.

3. Каковы перспективы развития биотехнологии?
Дальнейшее развитие биотехнологии поможет решить ряд важнейших задач:
• Решить проблему нехватки продовольствия.
• Повысить урожайность культурных растений, создавать более устойчивые к неблагоприятным воздействиям сорта, а также находить новые способы защиты растений.
• Создавать новые биологические удобрения, биогумус.
• Находить альтернативные источники животного белка.
• Размножать растения вегетативно при помощи метода культуры тканей.
• Создавать новые лекарства и БАДы.
• Проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований.
• Получать экологически чистые виды топлива путем переработки отходов промышленного и сельскохозяйственного производства.
• Перерабатывать полезные ископаемые новыми способами.
• Использовать методы биотехнологии в большинстве отраслей деятельности во благо человечества.

4. В чем вы видите возможные негативные последствия неконтролируемых исследований в области биотехнологии?
Трансгенные продукты могут принести вред здоровью, вызывать злокачественные опухоли клонирование человека негуманно и противоречит мировоззрениям многих наций. Новейшие разработки биотехнологии могут привести к неконтролируемым последствиям: созданию новых вирусов и микроорганизмов, чрезвычайно опасных для человека, а также к контролируемым: созданию биологического оружия.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

по биологии

ученицы 9 класса

ГБОУ ООШ пос. Аверьяновский

Бисиналиевой Асель

Руководитель: Величкина А.А.

Генетика-теоретическая основа селекции

Генетика является теоретической основой селекции. Так как именно знание законов генетики позволяет целенаправленно управлять появление мутаций, предсказывать результаты скрещивания, правильно проводить отбор гибридов. Современный период развития селекции начинается с формирования новой науки-генетики. Генетика-это наука, изучающая наследственность и изменчивость живых организмов(растения, животные, микроорганизмы, люди). Наследственность-это свойство всех живых организмов передавать определенные особенности из поколения в поколение. Изменчивость-это свойство всех живых организмов в процессе своей жизнедеятельности приобретать новые признаки. Изменчивость обусловлена мутациями и различными их комбинациями. Комбинация генов при их взаимодействии может привести к появлению новых признаков или к новому их сочетанию. Селекция-это наука о методах создания новых сортов растений, пород животных или их усовершенствовании . Селекция-это наиболее эффективное средство обеспечения устойчивых урожаев и высокой продуктивности сельскохозяйственных растений и животных. Потому что в случае селекции применяется искусственный отбор, благодаря которому в последующих видах возможно закрепить нужный признак. Все современные методы селекции основаны на принципах генетики.

К особенности селекции животных относят:

1) Для селекции животных характерно только половое размножение;

2) В основном, очень редкая смена поколений;

3) Количество особей в потомстве невелико;

4) Затруднительно выведение чистых линий, так как животные не способны к самооплодотворении.

Основоположником генетики является чешский учёный Грегор Иоганн Мендель(1822-1884). Открытые им закономерности наследования моногенных признаков стали первыми шагами к открытию современной генетики. Мендель поставил серию опытов на горохе, тем самым доказав и установив механизм наследования признаков у живых организмов, которые отличаются по одному признаку. В опытах с огородным горохом учёный показал, что признаки родительских растений при скрещивании не уничтожаются и не смешиваются. Они предаются либо в форме, характерной одному из родителей. Или промежуточной, которая может проявиться вновь в последующих поколениях. Его опыты также доказали, что гены-это материальные носители наследственности. И они различны для каждого. В селекционной работе используют следующие методы гибридизации: инбридинг(близкородственное скрещивание), аутбридинг(межпородное или межсортовое скрещивание) и отдалённую гибридизацию(скрещивание организмов, относящихся к разным видам и родам).

К задачи современной селекции относят:

1) повышение продуктивности организмов;

2) улучшение качества продукции (вкуса ,внешнего вида, химического состава);

3) улучшение хозяйственно-важных физиологических свойств (устойчивости к болезням и вредителям, отзывчивости на удобрения или корм).

Основы научных методов селекции в нашей стране заложил Н.И.Вавилов.

Основные методы селекционной работы это -гибридизация и отбор. Вавилов установил, что у родственных растений возникают мутационные изменения. Он также установил семь центров происхождения культурных растений и их диких сородичей

южно-азиатский или тропический-рис, сахарный тростник, цитрусовые, огурец, баклажан


Учение Н. И. Вавилова о центрах происхождения и многообразия культурных растений

Селекция — наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И.Вавилов особо выделял значение:

Изучения сортового, видового и родового разнообразия интересующей нас культуры;

Влияния среды на развитие интересующих селекционера признаков;

Изучения наследственной изменчивости;

Знаний закономерностей наследования признаков при гибридизации;

Особенностей селекционного процесса для само- или перекрестноопылителей;

Стратегии искусственного отбора.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала, с этой целью Н.И.Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара. К 1940 году во Всесоюзном институте растениеводства насчитывалось 300 тыс. образцов. Но с позиций лысенковщины, занявшей в то время руководящие позиции в биологической науке России и считавшей, что определяющую роль в создании новых форм играет окружающая среда, эта коллекция была не нужна. Работы по пополнению коллекции были прекращены. В настоящее время коллекция пополняется и является основой для работ по селекции любой культуры.

Н.И.Вавилов установил центры происхождения культурных растений, где находится наибольшее видовое и сортовое многообразие культурных растений.

Центры происхождения культурных растений (по Н.И.Вавилову).

1. Южноазиатский тропический

Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии

Центральный и Восточный Китай, Япония, Корея, Тайвань

Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия

Страны по берегам Средиземного моря

Абиссинское нагорье Африки

Западное побережье Южной Америки

Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)

Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)

Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)

Капуста, сахарная свекла, маслины, клевер (11% культурных растений)

Твердая пшеница, ячмень, кофейное дерево, бананы, сорго

Кукуруза, какао, тыква, табак, хлопчатник

Наиболее богатыми по количеству культур являются древние центры цивилизации, именно там наиболее ранняя культура земледелия, более длительное время проводится искусственный отбор и селекция растений.

Основные методы селекции растений

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

1. Массовый отбор применяют при селекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.


Рис. 339. В центре гетерозисная кукуруза, слева и справа чистые линии родительских форм.

3. Инбридинг используют при самоопылении перекрестноопыляемых растений, например, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса — жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии — на протяжении ряда лет, производят принудительное самоопыление — срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Затем скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии — тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

Р ААbbCCdd x aaBBccDD F1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности.

Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

Рис. 340. Растения диплоидной (2n = 16) и тетраплоидной (2n = 32) гречихи.

4. Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

5. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена . Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются аутополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становится тетраплоидными (рис. 340).

6. Отдаленная гибридизация — скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными.

Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоидами.


Рис. 341. Восстановление плодовитости капустно-редечного гибрида.

7. Использование соматических мутаций применимо для селекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

8. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Основные методы селекции животных

Создание пород домашних животных началось вслед за их приручением и одомашниванием, которое началось 10-12 тыс. лет назад. Содержание в неволе снижает действие стабилизирующей формы естественного отбора. Различные формы искусственного отбора (сначала бессознательный, а затем методический) приводят к созданию всего многообразия пород домашних животных.

В селекции животных, по сравнению с селекцией растений, есть ряд особенностей. Во-первых, для животных характерно в основном половое размножение, поэтому любая порода является сложной гетерозиготной системой. Оценка качеств самцов, которые внешне у них не проявляются (яйценоскость, жирномолочность), оцениваются по потомству и родословной. Во-вторых, у них часто поздняя половозрелость, смена поколений происходит через несколько лет. В-третьих, потомство немногочисленное.

Основными методами селекции животных являются гибридизация и отбор. Различают те же методы скрещивания — близкородственное скрещивание, инбридинг, и неродственное — аутбридинг. Инбридинг, как и у растений, приводит к депрессии. Отбор у животных проводится по экстерьеру (определенным параметрам внешнего строения), т.к. именно он является критерием породы.

1. Внутрипородное разведение направлено на сохранение и улучшение породы. Практически выражается в отборе лучших производителей, выбраковке особей, не отвечающих требованиям породы. В племенных хозяйствах ведутся племенные книги, отражающие родословную, экстерьер и продуктивность животных за много поколений.

2. Межпородное скрещивание используют для создания новой породы. При этом часто проводят близкородственное скрещивание, родителей скрещивают с потомством, братьев с сестрами, это помогает получить большее число особей, обладающих нужными свойствами. Инбридинг сопровождается жестким постоянным отбором, обычно получают несколько линий, затем производят скрещивание разных линий.

Хорошим примером может служить выведенная академиком М.Ф.Ивановым порода свиней — украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами-производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг, были получены чистые линии, при скрещивании которых получены родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, по выносливости — от украинских свиней.

3. Использование эффекта гетерозиса. Часто при межпородном скрещивании в первом поколении проявляется эффект гетерозиса, гетерозисные животные отличаются скороспелостью и повышенной мясной продуктивностью. Например, при скрещивании двух мясных пород кур получают гетерозисных бройлерных кур, при скрещивании беркширской и дюрокджерсейской пород свиней получают скороспелых свиней с большой массой и хорошим качеством мяса и сала.

4. Испытание по потомству проводят для подбора самцов, у которых не проявляются некоторые качества (молочность и жирномолочность быков, яйценоскость петухов). Для этого производителей-самцов скрещивают с несколькими самками, оценивают продуктивность и другие качества дочерей, сравнивая их с материнскими и со среднепородными.

5. Искусственное осеменение используют для получения потомства от лучших самцов производителей, тем более что половые клетки можно хранить при температуре жидкого азота любое время.

6. С помощью гормональной суперовуляции и трансплантации у выдающихся коров можно забирать десятки эмбрионов в год, а затем имплантировать их в других коров, эмбрионы так же хранятся при температуре жидкого азота. Это дает возможность увеличить в несколько раз число потомков от выдающихся производителей.

7. Отдаленная гибридизация, межвидовое скрещивание, известно с древних времен. Чаще всего межвидовые гибриды стерильны, у них нарушается мейоз, что приводит к нарушению гаметогенеза. С глубокой древности человек использует гибрид кобылицы с ослом — мула, который отличается выносливостью и долгожительством. Но иногда гаметогенез у отдаленных гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары, могут пастись высоко в горах, а, как мериносы, дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного крупного рогатого скота с яками и зебу. При скрещивании белуги и стерляди получен плодовитый гибрид — бестер, хорька и норки — хонорик, продуктивен гибрид между карпом и карасем.

Селекция микроорганизмов. Биотехнология

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и всех других организмов (1 мутация на 1 млн. особей по каждому гену), но очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия



Рис. 342. Образование рекомбинантных плазмид.

Второй путь — синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК.

Методы хромосомной инженерии.

Очень перспективен метод гаплоидов, основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 — 3 года вместо 6 — 8 летнего инбридинга. Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом.

Методы клеточной инженерии.

Выращивание клеточных культур. Метод связан с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.

Клонирование. Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Создание химерных животных. Возможно слияние эмбрионов на ранних стадиях, таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.

Читайте также: