Что такое теплоотдача кратко

Обновлено: 02.07.2024

теплоотдача ж. 1) Отдача тепла (1*1) нагретым телом в окружающую среду. 2) Выделение тепла (1*1) животным организмом в процессе его жизнедеятельности (в физиологии).

теплоотдача
ж. физ.
heat irradiation, heat emission

теплоотдача сущ., кол-во синонимов: 1 • теплообмен (4) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: теплообмен

теплообмен между поверхностью тв. тела и соприкасающейся с ней средой — теплоносителем (жидкостью, газом). Т. осуществляется конвекцией, теплопроводностью, лучистым теплообменом. Различают Т. при свободном и вынужденном движении теплоносителя, а также при изменении его агрегатного состояния.Интенсивность Т. характеризуется коэфф. Т.— количеством теплоты, переданным в ед. времени через ед. поверхности при разности темп-р между поверхностью и средой-теплоносителем в 1 К. Т. можно рассматривать как часть более общего процесса теплопередачи.

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

-теплообмен между поверхностью твёрдого тела и соприкасающейся с ней средой - теплоносителем (жидкостью, газом). Т. осуществляется конвекцией, теплопроводностью, лучистым теплообменом. Различают Т. при свободном и вынужденном движении теплоносителя, а также при изменении его агрегатного состояния. Интенсивность Т. характеризуется коэф. Т.- кол-вом теплоты, переданным в единицу времени через единицу поверхности при разности темп-р между поверхностью и средой-теплоносителем в 1 К. Т. можно рассматривать как часть более общего процесса теплопередачи.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

конвективный теплообмен между движущейся средой и поверхностью её раздела с другой средой - твёрдым телом, жидкостью или газом

(Болгарский язык; Български) — топлоотдаване

(Чешский язык; Čeština) — přestup tepla

(Немецкий язык; Deutsch) — Wärmeabgabe

(Венгерский язык; Magyar) — hőátadás

(Монгольский язык) — дулаан өгөлт

(Польский язык; Polska) — oddawanie ciepła

(Румынский язык; Român) — cedare de căldură

(Сербско-хорватский язык; Српски језик; Hrvatski jezik) — prelaz toplote

(Испанский язык; Español) — intercambio de calor por convección Е thermal [heat] convection

(Французский язык; Français) — transmission de la chaleur (par convection)

теплоотдача (тепловосприятие) - перенос теплоты с поверхности конструкции в окружающую среду за счет конвективного и лучистого теплообмена. (Смотри: МГСН 2.01-99. Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению.)

Элементарные способы передачи теплоты. (Виды процессов теплообмена)

Различают три элементарных способа передачи теплоты:

1. Теплопроводность (кондукция);

3. Тепловое излучение (радиационный теплообмен).

Теплопроводность (кондукция) – способ передачи теплоты за счет взаимодействия микрочастиц тела (атомов, молекул, ионов в электролитах и электронов в металлах) в переменном поле температур.

Теплопроводность имеет место в твердых, жидких и газообразных телах. В твердых телах теплопроводность является единственным способом передачи теплоты. В вакууме теплопроводность отсутствует.

Конвекция – способ передачи теплоты за счет перемещения макрообъемов среды из области с одной температурой в область с другой температурой. При этом текучая среда (флюид) с более высокой температурой перемещается в область более низких температур, а холодный флюид – в область с высокой температурой. В вакууме конвекция теплоты невозможна.

Тепловое излучение (радиационный теплообмен) – способ передачи теплоты за счет распространения электромагнитных волн в определенном диапазоне частот.

Замечания:

- все тела выше 0 К обладают собственным тепловым излучением, то есть энергию излучают все тела;

- для передачи теплоты излучением не требуется тело-посредник, т.е. лучистая энергия может передаваться и в вакууме.

В природе и в технических устройствах, как правило, все три способа передачи теплоты происходят одновременно. Такой теплообмен называется сложным теплообменом.

Например, конвекция теплоты всегда протекает совместно с теплопроводностью, так как макрообъемы текучей среды состоят из микрообъемов, и есть неравномерное по пространству температурное поле. Передача теплоты совместно теплопроводностью и конвекцией называется конвективным теплообменом.

Совместная передача теплоты излучением и теплопроводностью называется радиационно-кондуктивным теплообменом.

Совместная передача теплоты излучением и конвекцией называется радиационно-конвективным теплообменом.

В природе и технике наиболее часто встречаются следующие два варианта сложного теплообмена:

- теплоотдача – процесс теплообмена между непроницаемой твёрдой стенкой и окружающей текучей средой;

- теплопередача – передача теплоты от одной текучей среды к другой текучей среде через непроницаемую твёрдую стенку.

Теплоотдача. График температурного поля при теплоотдаче показан на рис. 3. Температура текучей среды изменяется в очень узкой области, которая называется тепловым пограничным слоем.

Рис. 1.3. Схема процесса теплоотдачи: Tw – температура стенки; Tf – температура текучей среды; δq – толщина теплового пограничного слоя.

Заметим, что в зависимости от соотношения температур стенки Tw и флюида Tf тепловой поток Q может нагревать стенку при условии или охлаждать ее, если .

Процесс теплоотдачи может быть осуществлен сочетанием следующих элементарных процессов теплообмена:

- конвективная теплоотдача (конвекция + теплопроводность = конвективный теплообмен) – имеет место при омывании твердых поверхностей различной формы текучей средой ( лученепрозрачной капельной жидкостью);

- лучистая или радиационная теплоотдача (тепловое излучение) – имеет место при радиационном теплообмене в вакууме или между стенкой и излучающим и поглощающим неподвижным газом;

- радиационно-конвективная теплоотдача (тепловое излучение + конвективный теплообмен) – наиболее часто встречающийся в практике расчетов случай сложного теплообмена;

- конвективная теплоотдача при фазовых превращениях теплоносителя (конвекция + теплопроводность + возможно излучение) – теплоотдача при конденсации и кипении, протекающая с выделением или поглощением теплоты фазового перехода.

Расчет теплоотдачи заключается в определении теплового потока, которым обмениваются стенка и текучая среда. В инженерных расчетах теплоотдачи используется, так называемый закон теплоотдачи – закон Ньютона (1701 г.):

где Q – тепловой поток, Вт; – коэффициент теплоотдачи, Вт/(м 2 ·К); Tf и Tw – температура текучей среды и стенки; F – площадь поверхности теплообмена.

Теплопередача. В курсе ТМО изучают расчет теплопередачи через стенки плоской, цилиндрической, сферической и произвольной формы. В нашем кратком курсе ограничимся расчетом теплопередачи через плоскую и цилиндрическую стенки. График температурного поля при теплопередаче через плоскую стенку показан на рис. 4.




Рис. 1.4. Схема процесса теплопередачи: Tf,1 и Tf,2 – температура горячего и холодного флюида (текучей среды); Tw,1 и Tw,1 – температура поверхностей плоской стенки; δ – толщина плоской стенки.

Итак, теплопередача включает в себя следующие процессы:

а) теплоотдачу от горячей текучей среды (горячего теплоносителя) к стенке;

б) теплопроводность внутри стенки;

в) теплоотдачу от стенки к холодной текучей среде (холодному теплоносителю).

Тепловой поток при теплопередаче, передаваемый от горячего флюида с температурой Tf,1 к холодному флюиду с температурой Tf,2 , рассчитывается по формуле (для плоской стенки):

где – коэффициент теплопередачи через плоскую стенку, Вт/(м 2 ·К); Rt – термическое сопротивление теплопроводности плоской стенки, (м 2 ·К)/Вт..

В заключение первого раздела курса можно сделать вывод о том, что для решения основной задачи расчета теплообмена – определения температурных полей и тепловых потоков при теплоотдаче и теплопередаче – необходимо уметь рассчитывать три элементарных способа передачи тепловой энергии.

Элементарные способы передачи теплоты. (Виды процессов теплообмена)

Различают три элементарных способа передачи теплоты:

1. Теплопроводность (кондукция);

3. Тепловое излучение (радиационный теплообмен).

Теплопроводность (кондукция) – способ передачи теплоты за счет взаимодействия микрочастиц тела (атомов, молекул, ионов в электролитах и электронов в металлах) в переменном поле температур.

Теплопроводность имеет место в твердых, жидких и газообразных телах. В твердых телах теплопроводность является единственным способом передачи теплоты. В вакууме теплопроводность отсутствует.

Конвекция – способ передачи теплоты за счет перемещения макрообъемов среды из области с одной температурой в область с другой температурой. При этом текучая среда (флюид) с более высокой температурой перемещается в область более низких температур, а холодный флюид – в область с высокой температурой. В вакууме конвекция теплоты невозможна.

Тепловое излучение (радиационный теплообмен) – способ передачи теплоты за счет распространения электромагнитных волн в определенном диапазоне частот.

Замечания:

- все тела выше 0 К обладают собственным тепловым излучением, то есть энергию излучают все тела;

- для передачи теплоты излучением не требуется тело-посредник, т.е. лучистая энергия может передаваться и в вакууме.

В природе и в технических устройствах, как правило, все три способа передачи теплоты происходят одновременно. Такой теплообмен называется сложным теплообменом.

Например, конвекция теплоты всегда протекает совместно с теплопроводностью, так как макрообъемы текучей среды состоят из микрообъемов, и есть неравномерное по пространству температурное поле. Передача теплоты совместно теплопроводностью и конвекцией называется конвективным теплообменом.

Совместная передача теплоты излучением и теплопроводностью называется радиационно-кондуктивным теплообменом.

Совместная передача теплоты излучением и конвекцией называется радиационно-конвективным теплообменом.

В природе и технике наиболее часто встречаются следующие два варианта сложного теплообмена:

- теплоотдача – процесс теплообмена между непроницаемой твёрдой стенкой и окружающей текучей средой;

- теплопередача – передача теплоты от одной текучей среды к другой текучей среде через непроницаемую твёрдую стенку.

Теплоотдача. График температурного поля при теплоотдаче показан на рис. 3. Температура текучей среды изменяется в очень узкой области, которая называется тепловым пограничным слоем.

Рис. 1.3. Схема процесса теплоотдачи: Tw – температура стенки; Tf – температура текучей среды; δq – толщина теплового пограничного слоя.

Заметим, что в зависимости от соотношения температур стенки Tw и флюида Tf тепловой поток Q может нагревать стенку при условии или охлаждать ее, если .

Процесс теплоотдачи может быть осуществлен сочетанием следующих элементарных процессов теплообмена:

- конвективная теплоотдача (конвекция + теплопроводность = конвективный теплообмен) – имеет место при омывании твердых поверхностей различной формы текучей средой ( лученепрозрачной капельной жидкостью);

- лучистая или радиационная теплоотдача (тепловое излучение) – имеет место при радиационном теплообмене в вакууме или между стенкой и излучающим и поглощающим неподвижным газом;

- радиационно-конвективная теплоотдача (тепловое излучение + конвективный теплообмен) – наиболее часто встречающийся в практике расчетов случай сложного теплообмена;

- конвективная теплоотдача при фазовых превращениях теплоносителя (конвекция + теплопроводность + возможно излучение) – теплоотдача при конденсации и кипении, протекающая с выделением или поглощением теплоты фазового перехода.

Расчет теплоотдачи заключается в определении теплового потока, которым обмениваются стенка и текучая среда. В инженерных расчетах теплоотдачи используется, так называемый закон теплоотдачи – закон Ньютона (1701 г.):

где Q – тепловой поток, Вт; – коэффициент теплоотдачи, Вт/(м 2 ·К); Tf и Tw – температура текучей среды и стенки; F – площадь поверхности теплообмена.

Теплопередача. В курсе ТМО изучают расчет теплопередачи через стенки плоской, цилиндрической, сферической и произвольной формы. В нашем кратком курсе ограничимся расчетом теплопередачи через плоскую и цилиндрическую стенки. График температурного поля при теплопередаче через плоскую стенку показан на рис. 4.

Рис. 1.4. Схема процесса теплопередачи: Tf,1 и Tf,2 – температура горячего и холодного флюида (текучей среды); Tw,1 и Tw,1 – температура поверхностей плоской стенки; δ – толщина плоской стенки.

Итак, теплопередача включает в себя следующие процессы:

а) теплоотдачу от горячей текучей среды (горячего теплоносителя) к стенке;

б) теплопроводность внутри стенки;

в) теплоотдачу от стенки к холодной текучей среде (холодному теплоносителю).

Тепловой поток при теплопередаче, передаваемый от горячего флюида с температурой Tf,1 к холодному флюиду с температурой Tf,2 , рассчитывается по формуле (для плоской стенки):

где – коэффициент теплопередачи через плоскую стенку, Вт/(м 2 ·К); Rt – термическое сопротивление теплопроводности плоской стенки, (м 2 ·К)/Вт..

В заключение первого раздела курса можно сделать вывод о том, что для решения основной задачи расчета теплообмена – определения температурных полей и тепловых потоков при теплоотдаче и теплопередаче – необходимо уметь рассчитывать три элементарных способа передачи тепловой энергии.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Виды теплопередачи: теплопроводность, конвекция, излучение

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Виды теплопередачи: теплопроводность, конвекция, излучение

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

теплопередача виды

Передача тепла или теплообмен это процесс распространения внутренней энергии в пространстве с разными температурами.

Теплопроводность это способность веществ и тел проводить энергию (тепло) от частей с высокой температурой к частям с более низкой. Такая способность существует за счет движения частиц. Энергия может передаваться между телами и внутри одного тела. Нагревая в пламени один конец гвоздя, мы рискуем обжечься о другой его конец, не находящийся в пламени.

Теплопроводность

Виды теплообмена и способы передачи тепла

Виды теплообмена

В физике выделяют несколько видов теплообмена:

Теплопроводность – свойство материалов передавать через свой объем поток тепла путем обмена энергией движения частиц.

Конвекция – перенос тепла, осуществляемый перемещением неравномерно прогретых участков среды (газа, жидкости) в пространстве.

Излучение – в данном случае перенос тепла в вакууме или газовой среде осуществляется электромагнитными волнами.

Рассмотрим сущность и назначение каждого из видов теплообмена.

Теплопроводность

В большинстве случаев виды теплообмена тесно связаны и проходят одновременно. Конвекция всегда дополняется теплопроводностью, так как при движении объема среды всегда имеется взаимодействие частиц с разными температурами. Такой процесс имеет название конвективного теплообмена.

Горячий чай в кружке

Примером такого типа теплообмена является остывание горячего чая, налитого в холодную металлическую кружку. Отдача тепла может сопровождаться его излучением, тогда в переносе теплоты участвуют все три вида: теплопроводность, конвекция, тепловое излучение.

Рассмотрим более подробно теплопроводность.

Этот вид теплообмена присущ твердым телам, но присутствует так же в жидкостях и газах. В твердых телах теплопроводность является основным видом теплообмена и напрямую зависима от природы вещества, его плотности, химического состава, влажности, температуры.

Разные тела и вещества имеют разную теплопроводность. Количественным показателем теплопроводности служит коэффициент теплопроводности, он обозначается буквой λ (лямбда). Чем выше плотность, влажность и температура тела, тем больше λ.

Схема возникновения теплопроводности

Проведение тепла происходит за счет взаимодействий между частицами. Конечной целью процесса будет выравнивание внутренней температуры по всему телу. Теплопроводность жидкостей меньше, чем у твердых тел, у газов – меньше, чем у жидкостей. Причиной является большое расстояние между молекулами в жидкостях, особенно в газах.

Низкая теплопроводность воздуха издавна используется при изготовлении двойных оконных рам. Теплопроводность воздуха гораздо ниже теплопроводности стекла. Воздушная прослойка межу стеклами защищает от зимней стужи.

Песцы на снегу

Плохая теплопроводность, появившаяся в процессе эволюции в качестве защиты от критических температур, у живых организмов. Шерсть, пух, волосы, жир обладают очень низкой теплопроводностью. Именно поэтому мы не мерзнем зимой в теплых носках, песцы могут спать на снегу, а моржи выживают в условиях Арктики за счет жировой прослойки.

В таблице приведены примеры материалов, веществ и сред с наименьшей и наибольшей теплопроводностью.

Таблица теплопроводностей

Исходя из данных, приведенных в таблице, можно сделать некоторые выводы:

В вакууме тепло не проводится. Передача тепла в вакууме может происходить с помощью излучения. Таким способом тепло Солнца доходит до нашей планеты.

Материал с наивысшей теплопроводностью называется графен, который активно используется в наноэлектронике.

Металлы тоже достаточно теплопроводные. Известно, как быстро нагревается металлическая ложка в горячем супе.

Строительные материалы обладают низкой теплопроводностью, что и обуславливает их использование для возведения теплых и надежных жилищ.

С понятием теплопроводности тесно связано понятие теплоемкости.

Теплоемкость

Теплоемкостью называют количество тепла, которое поглотило тело (вещество), чтобы его температура повысилась на 1 градус. Действительно, для повышения температуры металлического стержня на 1 градус, необходимо, чтобы он обладал теплопроводностью для равномерного нагревания всего объёма.

Знания о теплопроводности веществ и материалов необходимы в строительстве, промышленности, быту. Степень теплопроводности материала обуславливает его применение в той или иной сфере. Разработка и поиск новых веществ с уникальными теплоизоляционными свойствами – важнейшая задача современной науки.

Конвекция

При конвекции энергия передается потоками, возникающими в различных средах.

Конвекция

В зависимости от причины возникновения, процессы этого типа теплообмена делят на естественную и вынужденную конвекцию:

Естественная конвекция возникает под влиянием естественных сил: неравномерного прогрева, силы тяжести. Процессы естественной конвекции происходят на планете ежеминутно. Появление облаков, формирование атмосферных фронтов, циклонов и антициклонов в атмосфере возможно благодаря этому процессу. Воды мирового океана так же подвержены процессам конвекции, в результате образуются океанические течения. Движение тектонических плит так же обусловлено конвективными процессами.

Вынужденная конвекция - зависит от присутствия внешних сил. Например, при помешивании ложкой горячий чай остывает именно за счет этого явления.

Излучение

Излучение тепла является электромагнитным процессом. Тепло выделяют любые тела, температура которых выше 0 К.

Виды излучений

Тепло излучается телами благодаря тому, что любое вещество состоит из молекул и атомов, а они, в свою очередь, из заряженных протонов и электронов. Таким образом, любое тело оказывается пронизанным электромагнитным полем.


Читайте также: