Что такое приливное ускорение в астрономии кратко

Обновлено: 05.07.2024

Всем хорошо известен морской прилив, когда два раза в сутки вода поднимается у морских берегов, затем вновь откатывается от берега. Но прилив существует не только на море, но и на суше. Два раза в сутки поверхность земли, на которой выстроены все дома, улицы, дороги, поднимаются и опускаются. В Москве амплитуда этих колебаний составляет приблизительно 0,5 м. Но мы этого не замечаем. Отчего это происходит?

Как известно, результатом действия силы на тело является либо его ускорение, если оно свободно и не взаимодействует с другими телами, либо его деформация, если такое взаимодействие существует. Притяжения Луны и Солнца нашей планеты сообщают ей ускорение, которое она имеет, совершая движение по орбите. Однако не все части планеты испытывают одинаковое притяжение. В качестве притягивающего тела возьмем пока только Луну. Максимальное притяжение Луной испытывают те части Земли, для которых она находится строго в зените, а минимальное -- в надире. Центр масс Земли находится в промежуточном положении. Результирующая сила притяжения планеты приложена к центру масс. Она сообщает Земле поступательное ускорение. Для описания процессов в системе отсчета, связанной с Землей, то есть в неинерциальной системе координат, кроме упомянутых сил притяжения необходимо ввести силу инерции, равную массе какого-либо пробного тела умноженную на ускорение системы отсчета и направленную в сторону, противоположную ускорению системы отсчета.

Пренебрегая размером, строением и формой Луны, запишем удельную силу притяжения пробного тела, находящегося на Земле. Пусть -- радиус-вектор, направленный от пробного тела в сторону Луны, -- длина этого радиус-вектора, тогда сила притяжения этого тела Луной будет равна

Здесь -- селеноцентрическая гравитационная постоянная. Пробное тело поместим в точку . Сила притяжения пробного тела помещенного в центр масс Земли будет равна

где и соответственно радиус-вектор, соединяющий центры масс Земли и Луны, и его абсолютная величина. Тогда приливной силой называется разность этих двух сил притяжения

В формулах (6.1) и (6.2) притягивающее тело (Луна) рассматривается как материальная точка или шар со сферически симметричным распределением масс

Силовая функция притяжения пробного тела Луной ничем не отличается от силовой функции притяжения шара (материальной точки), то есть она равна . Что касается второй силы, приложенной к центру масс и являющейся силой инерции для всех материальных точек Земли, то она строго постоянная. Для получения силовой функции для этой силы нам необходимо ввести временную систему координат. Ось Ox проведем из центра Земли и направим в сторону Луны. Направления двух других осей -- произвольные. Тогда силовая функция для силы , очевидно, равна . Приливообразующий потенциал равен разности этих двух силовых функций. Обозначив его через , будем иметь

Постоянную определим при условии, что приливообразующий потенциал в центра Земли равен нулю. При этом , . Поэтому . Следовательно, для приливообразующего потенциала можно записать

Полагая отношения малыми, последнее выражение можно представить следующим образом

Подставим полученное выражение в (6.4), получим

Выражение для приливообразующего потенциала можно уточнить, если в (6.4) отношение заменить разложением в ряд по полиномам Лежандра, подобно тому, как мы делали при выводе гравитационного потенциала планеты. Пусть -- расстояние точки от центра планеты ( от начала сферической системы координат), а -- геоцентрическое зенитное расстояние притягивающего тела (Луны), тогда

Поскольку , получим . Поставляя полученное выражение в формулу для приливообразующего потенциала (6.4), окончательно получим

Остается определить приливообразующий потенциал на поверхности планеты. Поскольку на поверхности сферической планеты , то

6.1.1 Приливная деформация уровенной поверхности планеты

Приливное возмущение потенциала неизбежно деформирует уровенную поверхность планеты. Выполним приближенную оценку этих искажений. Для простоты будем считать, что Земля шар со сферически симметрично распределенной массой. Тогда ее невозмущенный гравитационный потенциал на поверхности планеты имеет простой вид . Для точки , находящейся на расстоянии от центра сферы гравитационный потенциал Земли равен . Добавляя сюда приливной потенциал, получим возмущенную поверхность уровня

В качестве константы мы возьмем невозмущенный гравитационный потенциал на поверхности. Тогда, после деления на гравитационную постоянную, получим

Здесь переменными величинами являются и . Обозначим отношение масс гравитирующего тела к массе планеты греческой буквой и решим полученное выражение относительно :

Так как , с той же степенью точности получим

Преобразуем полученное выражение

Учитывая, что отношения -- малые величины последнее выражение можно переписать так

Мы получили уравнение двухосного эллипсоида, у которого ось вращения совпадает с осью , то есть с прямой, соединяющей притягивающее тело с центром Земли. Полуоси этого эллипсоида, очевидно, равны

Итак, уровенная поверхность, заданная в виде шара, вследствие приливного действия другого небесного тела вытягивается в сторону этого тела и превращается в эллипсоид вращения. Большая полуось будет превышать радиус планеты на величину , а малые полуоси будут меньше радиуса на величину . Заметим, кстати, что с той же степенью точности произведение всех трех полуосей остаются постоянными, что говорит о неизменности объема, ограниченного поверхностью уровня.

Для иллюстрации сказанного приведем численный пример. Вычислим приливной "горб" на Земле, вызванный притяжением Луны. Радиус Земли равен = 6378 км, расстояние между центрами Земли и Луны равно км, отношение масс Луна/Земля равно 1:81. Подставляя эти данные в формулу для увеличения большой полуоси, получим 0,36 м Нетрудно подсчитать, что на Луне аналогичный приливной горб, направленный в сторону Земли будет равен 13 м.

Необходимо подчеркнуть, что в приведенных рассуждениях не учитывается приливные деформации самой Земли, что также изменит поверхность уровня. Для строгих выкладок необходимо задать модель Земли, ее строение, упругие постоянные и т.п., что, конечно, выходит далеко за рамки нашего курса.

6.1.2 Преобразование формулы для приливообразующего потенциала

Вернемся к формуле (6.10). Здесь аргументом полиномов Лежандра является геоцентрическое зенитное расстояние притягивающего небесного тела . Рассмотрим треугольник OPL. Сторона ОР, как мы знаем, равна радиусу Земного шара (если точка P находится на поверхности земного шара), сторона OL равна расстоянию между центрами масс притягивающего и притягиваемого тела , угол между этими сторонами равен геоцентрическому зенитному расстоянию , угол между сторонами PL и продолжением стороны ОР равен зенитному расстоянию z. Проекция стороны OL на продолжение стороны ОР равна . Отсюда

Можно ли заменить геоцентрическое зенитное расстояние топоцентрическим, которое используется в астрономии? Какую ошибку мы сделаем, если заменим в формуле (6.8) угол зенитным расстоянием ? Очевидно, что мы должны оценить величину

Пусть отношение является малой величиной, тогда

следовательно . Эта величина максимальна при . Так если гравитирующее тело -- Луна, то =6.371/384.4=0.0166. Следовательно, максимальное искажение зенитного расстояния в системе Земля-Луна не превосходит 1,7%. Для большинства задач этим отличием можно пренебречь и в качестве приливообразующего потенциала брать

Понятно, что наибольший вклад в приливные явления создает первый член формулы (6.10). Очень часто им и ограничиваются, хотя при строгом анализе приливных явлений приходится учитывать и остальные члены разложения (6.10).

Итак, приливообразующий потенциал с точностью до имеет вид

Выполним некоторые преобразования полученной формулы и приведем к общепринятому виду. Поскольку , то подставляя это выражение в формулу (6.11) осле несложных преобразований, получим

Величина называется постоянной Дудсона. Теперь вместо (6.12) можно записать

Заметим, что так называемая постоянная Дудсона вовсе не является, постоянной величиной, так как расстояние между притягивающим и притягиваемым телами изменяются из-за того что они движутся по орбитам, строго говоря, не эллиптическим, подчиняясь законам небесной механики. В книге бельгийского ученого П. Мельхиора известного специалиста по приливам приводятся численные значения постоянных Дудсона:

Под действием взаимного притяжения частиц тело стремится принять форму шара. Форма Солнца, планет, их спутников и звезд поэтому и близка к шарообразной. Вращение тел (как вы знаете из физических опытов) ведет к их сплющиванию, к сжатию вдоль оси вращения. Поэтому немного сжат у полюсов земной шар, а более всего сжаты быстро вращающиеся Юпитер и Сатурн.

Но форма планет может изменяться и от действия сил взаимного притяжения. Шарообразное тело (планета) движется в целом под действием гравитационного притяжения другого тела так, как если бы вся сила притяжения была приложена к ее центру. Однако отдельные части планеты находятся на разном расстоянии от притягивающего тела, поэтому гравитационное ускорение в них также различно, что и приводит к возникновению сил, стремящихся деформировать планету. Разность ускорений, вызываемых притяжением другого тела, в данной точке и в центре планеты называется приливным ускорением.

Рассмотрим для примера систему Земля — Луна. Один и тот же элемент массы в центре Земли будет притягиваться Луной слабее, чем на стороне, обращенной к Луне, и сильнее, чем на противоположной стороне. В результате Земля, и в первую очередь водная оболочка Земли, слегка вытягивается в обе стороны вдоль линии, соединяющей ее с Луной. На рисунке 28 океан для наглядности изображен покрывающим всю Землю. В точках, лежащих на линии Земля — Луна, уровень воды выше всего — там приливы. Вдоль круга, плоскость которого перпендикулярна направлению линии Земля — Луна и проходит через центр Земли, уровень воды ниже всего — там отлив. При суточном вращении Земли в полосу приливов и отливов поочередно вступают разные места Земли. Легко понять, что за сутки могут быть два прилива и два отлива.

Солнце также вызывает на Земле приливы и отливы, но из-за большой удаленности Солнца они меньше, чем лунные, и менее заметны.

С приливами перемещается огромная масса воды. В настоящее время приступают к использованию громадной энергии воды, участвующей в приливах, на берегах океанов и открытых морей.

Ось приливных выступов должна быть всегда направлена к Луне При вращении Земля стремится повернуть водяной приливный выступ. Поскольку Земля вращается вокруг оси гораздо быстрее, чем Луна обращается вокруг Земли, то Луна оттягивает его к себе. Происходит трение между водой и твердым дном океана. В результате возникает так называемое приливное трение. Оно тормозит вращение Земли, и сутки с течением времени становятся длиннее (когда-то они составляли только 5—6 ч). Сильные приливы, вызываемые на Меркурии и Венере Солнцем, по-видимому, и явились причиной их крайне медленного вращения вокруг оси.

Сильные приливы, вызывавшиеся Землей, настолько затормозили вращение Луны, что она всегда обращена к Земле одной стороной. Земля также постепенно тормозит свое вращение под действием лунных приливов. По законам механики (закон сохранения момента импульса) замедление вращения Земли вызывает удаление Луны от Земли. Через много миллионов лет Земля тоже станет обращена к Луне одной стороной. Земные сутки станут тогда равны месяцу, который будет значительно длиннее, чем продолжительность современного оборота Луны вокруг Земли. Таким образом, приливы являются важным фактором эволюции небесных тел


Земли и Луна видна из марта : присутствие Луны, чья масса составляет 1/81 го из Земли замедляет вращение последнего около 2 миллисекунды в веко .

Ускорение приливный эффект является результатом приливной силы между естественным спутником (например, Луной ) и планетами , вокруг которой орбиты (например, Земля ).

Этот эффект заставляет спутник постепенно удаляться, если он имеет прямую орбиту и замедление скорости вращения планеты. Этот двойной эффект приводит к синхронному вращению сначала меньшего тела, а затем большего. Система Земля-Луна является наиболее изученным случаем: таким образом, Луна удаляется от Земли примерно на 3 метра за столетие, а время вращения Земли (день) удлиняется при этом примерно на 2 миллисекунды.

Этот процесс называется приливным замедлением, когда орбитальный период спутника короче периода вращения основного тела или когда его орбита ретроградна.

Номенклатура сбивает с толку, потому что скорость спутника уменьшается с ускорением из- за приливного эффекта и увеличивается с таким замедлением . Этот кажущийся парадокс объясняется тем, что ускорение тела на орбите вызывает увеличение его апогея и, следовательно, расстояния. Однако законы Кеплера подразумевают, что чем дальше тело удаляется, тем медленнее его орбитальная скорость. И наоборот для замедления.

Резюме

Механизм


Обращение спутника значительной массы вокруг планеты вызывает деформации гравитационного поля системы планета-спутник. Эти деформации вызывают движение вещества внутри планеты, например, для Земли в основном движение океанов, порождающих приливы, но также и движения внутри мантии Земли .

Общая энергия изолированной системы остается постоянной ( сохранение энергии ). Эти внутренние движения потребляют большое количество кинетической энергии , которая берется из гравитационной потенциальной энергии спутника, которая обратно пропорциональна его расстоянию, заставляя его удаляться, и угловому моменту планеты, вызывая уменьшение ее скорости. вращения.

Система Земля-Луна

История открытия векового ускорения

В 1695 году Эдмонд Галлей был первым, кто предположил, что среднее движение Луны ускоряется, сравнив его с наблюдениями за старыми затмениями, но не предоставил никаких данных. Во времена Галлея еще не было известно, что в действительности происходит замедление скорости вращения Земли : см. Также эфемеридное время .

Рассмот­рим, следуя Ньютону, более подробно приливы, вызываемые притяжением Луны, так как воздействие Солнца существен­но (в 2,2 раза) меньше.

Запишем выражения для ускорений, вызываемых притя­жением Луны для разных точек Земли, учитывая, что для всех тел в данной точке пространства эти ускорения одинако­вы. В инерциальной системе отсчёта, связанной с центром масс системы, значения ускорений будут:

где aA, aO, aB — ускорения, вызванные притяжением Луны в точках A, O, B (рис. 37); М — масса Луны; r — радиус Зем­ли; R — расстояние между центрами Земли и Луны (для рас­чётов его можно принять равным 60r); G — гравитационная постоянная.

Но мы живём на Земле и все наблюдения проводим в си­стеме отсчёта, связанной с центром Земли, а не с центром масс Земля — Луна. Чтобы перейти в эту систему, необходимо из всех ускорений вычесть ускорение центра Земли. Тогда

Выполним действия в скобках и учтём, что r мало по срав­нению с R и в суммах и разностях им можно пренебречь. Тогда

Ускорения aA и aB одинаковы по модулю, противополож­ны по направлению, каждое направлено от центра Земли. Они называются приливными ускорениями. В точках C и D при­ливные ускорения, меньшие по модулю и направлены к цен­тру Земли.

Приливное ускорение

Приливными ускорениями называются ускорения, возни­кающие в системе отсчёта, связанной с телом из-за того, что вследствие конечных размеров этого тела разные его части по-разному притягиваются возмущающим телом. В точках A и B ускорение силы тяжести оказывается меньшим, чем в точках C и D (рис. 37). Следовательно, для того чтобы давление на одинаковой глубине было одинаковым (как у сообщающих­ся сосудов) в этих точках, вода должна подняться, образуя так называемый приливный горб. Подсчёт показывает, что подъем воды или прилив в открытом океане составляет око­ло 40 см. В прибрежных водах он гораздо больше, а рекорд составляет около 18 м. Ньютоновская теория этого объяснить не может.

Читайте также: