Что такое перпендикуляр опущенный из данной точки на плоскость ответ кратко

Обновлено: 05.07.2024

Определение. Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости.

Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.

Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, не являющийся перпендикуляром к плоскости, с одним концом в данной точке, а с другим – на плоскости.

Конец отрезка, лежащий в плоскости, называется основанием наклонной.

Отрезок, соединяющий основание перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной (рис.24)


СВ – проекция наклонной

С – основание наклонной,

В – основание перпендикуляра

Теорема 2.10. О трех перпендикулярах. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции,то она перпендикулярна наклонной. И обратно: Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной (рис.25)
АВ- перпендикуляр плоскости α, АС- наклонная и с - прямая в плоскости, проходящая через основание С

Определение. Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен девяноста градусам (рис.26)




Определение. Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис.27)

Если плоскости α и β перпендикулярны, то можно также сказать, что плоскость α перпендикулярна к плоскости β или плоскость β перпендикулярна к плоскости α. Поэтому перпендикулярные плоскости α и β часто называют взаимно перпендикулярными.

В качестве примера перпендикулярных плоскостей можно привести плоскости стены и пола в комнате.

На практике часто приходится определять, перпендикулярны ли две заданные плоскости. Для этого можно найти угол между заданными плоскостями, и если он будет равен 90 о , то по определению плоскости будут перпендикулярными.

Также существует признак перпендикулярности двух плоскостей, который часто используется для доказательства перпендикулярности двух плоскостей. В его формулировке участвуют перпендикулярные прямая и плоскость.

Определение. Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости.

Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.

Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, не являющийся перпендикуляром к плоскости, с одним концом в данной точке, а с другим – на плоскости.

Конец отрезка, лежащий в плоскости, называется основанием наклонной.

Отрезок, соединяющий основание перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной (рис.24)


СВ – проекция наклонной

С – основание наклонной,

В – основание перпендикуляра

Теорема 2.10. О трех перпендикулярах. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции,то она перпендикулярна наклонной. И обратно: Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной (рис.25)
АВ- перпендикуляр плоскости α, АС- наклонная и с - прямая в плоскости, проходящая через основание С

Определение. Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен девяноста градусам (рис.26)







Определение. Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис.27)

Если плоскости α и β перпендикулярны, то можно также сказать, что плоскость α перпендикулярна к плоскости β или плоскость β перпендикулярна к плоскости α. Поэтому перпендикулярные плоскости α и β часто называют взаимно перпендикулярными.

В качестве примера перпендикулярных плоскостей можно привести плоскости стены и пола в комнате.

На практике часто приходится определять, перпендикулярны ли две заданные плоскости. Для этого можно найти угол между заданными плоскостями, и если он будет равен 90 о , то по определению плоскости будут перпендикулярными.

Также существует признак перпендикулярности двух плоскостей, который часто используется для доказательства перпендикулярности двух плоскостей. В его формулировке участвуют перпендикулярные прямая и плоскость.

Перпендикуляром, опущенным из данной точки данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной. Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

Перпендикуляр и наклонная

AB – перпендикуляр к плоскости α.
AC – наклонная, CB – проекция.

Формулировка теоремы

Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна к наклонной.


Доказательство

Пусть AB — перпендикуляр к плоскости α , AC — наклонная и c — прямая в плоскости α , проходящая через точку C и перпендикулярная проекции BC . Проведем прямую CK параллельно прямой AB . Прямая CK перпендикулярна плоскости α (так как она параллельна AB ), а значит, и любой прямой этой плоскости, следовательно, CK перпендикулярна прямой c . Проведем через параллельные прямые AB и CK плоскость β (параллельные прямые определяют плоскость, причем только одну). Прямая c перпендикулярна двум пересекающимся прямым, лежащим в плоскости β , это BC по условию и CK по построению, значит, она перпендикулярна и любой прямой, принадлежащей этой плоскости, значит, перпендикулярна и прямой AC .

Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.

Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной. Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

наклонная и перпендикуляр

AB – перпендикуляр к плоскости α. AC – наклонная, CB – проекция. С – основание наклонной, B – основание перпендикуляра.

У равных наклонных, проведенных к плоскости из одной точки, проекции равны.

Из двух наклонных, проведенных к плоскости из одной точки, больше та, у которой проекция больше.

ш
свойство наклонных к плоскости

Теорема о трех перпендикулярах. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.

Обратная теорема. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.

Теорема о трёх перпендикулярах

Прямая a, не лежащая в плоскости α, перпендикулярна прямой b, лежащей в плоскости α, тогда и только тогда, когда проекция a'​​ прямой a перпендикулярна прямой b.

Пример. От­ре­зок – пер­пен­ди­ку­ляр к плос­ко­сти квад­ра­та АВСD, где точка О – центр квад­ра­та. До­ка­зать: \(BD \perp SC\) .


Пер­вый спо­соб.

Имеем квад­рат, центр квад­ра­та точка – О, – пер­пен­ди­ку­ляр. Зна­чит, для на­клон­ной SC от­ре­зок ОС есть про­ек­ция.

Пря­мая ВD пер­пен­ди­ку­ляр­на пря­мой ОС, ко­то­рая яв­ля­ет­ся про­ек­ци­ей на­клон­ной SC, зна­чит, по тео­ре­ме о трех пер­пен­ди­ку­ля­рах, пря­мая ВD пер­пен­ди­ку­ляр­на на­клон­ной SC.

Вто­рой спо­соб.

Пря­мая пер­пен­ди­ку­ляр­на плос­ко­сти АВС, а зна­чит – и пря­мой ВD, ле­жа­щей в ней.

Пря­мая ВD пер­пен­ди­ку­ляр­на и пря­мая ВD пер­пен­ди­ку­ляр­на пря­мой АС по свой­ству квад­ра­та.

По­лу­ча­ем, что пря­мая ВD пер­пен­ди­ку­ляр­на двум пе­ре­се­ка­ю­щим­ся пря­мым плос­ко­сти SОС, зна­чит, она пер­пен­ди­ку­ляр­на ко всей плос­ко­сти SОС, а зна­чит – и к пря­мой SC, ле­жа­щей в этой плос­ко­сти.

Расстояние от точки до плоскости есть перпендикуляр, опущенный на эту плоскость, то есть расстояние от точки А до плоскости a, есть длина перпендикуляра АВ.

  1. Если прямая параллельна плоскости, то расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.
  2. Если две плоскости параллельны, то расстояние от произвольной точки одной из плоскостей до другой называется расстоянием между данными плоскостями.
  3. Если две прямые скрещиваются, то расстояние между одной из этих прямых и плоскостью, проведенной через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми.

В единичном тетраэдре DABC найдите расстояние от точки C до плоскости ADB.

В кубе, ребра которого равны \(\sqrt2\) , найдите расстояние от точки \(B\) до плоскости \(CDA_1.\)

Основанием прямого параллелепипеда служит параллелограмм с углом 120 \(^\circ\) и сторонами, равными 3 и 4. Меньшая диагональ параллелепипеда равна большей диагонали основания. Найдите объем параллелепипеда.

Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки М до плоскости ABC, если АВ = 6 см.

Через вершину А прямоугольника АВСD проведена прямая АК, перпендикулярная его плоскости. Расстояния от точки К до других вершин прямоугольника равны 12 м, 14 м, 18 м. Найдите отрезок АК.

Отрезок АD перпендикулярен к плоскости равнобедренного треугольника АВС.

АВ = АС = 10 см, ВС = 12 см, AD = 6 см.

Найдите расстояние от точки D до ВС.

Через вершину прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника.

Прямая, перпендикулярная к плоскости. Признак перпендикулярности прямой и плоскости

Определение . Прямой, перпендикулярной к плоскости , называют такую прямую, которая перпендикулярна к каждой прямой, лежащей на этой плоскости.

Признак перпендикулярности прямой и плоскости . Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в некоторой плоскости, то прямая перпендикулярна к этой плоскости.

Доказательство . Рассмотрим сначала следующий случай.

Предположим, что прямая p , пересекающая плоскость α в точке O, перпендикулярна к прямым a и b , лежащим на плоскости α и проходящим через точку O . Докажем, что в этом случае прямая p перпендикулярна любой другой прямой c , лежащей на плоскости α и проходящей через точку O .

С этой целью отметим на прямой a произвольную точку A , а на прямой b произвольную точку B (рис. 1).

Признак перпендикулярности прямой и плоскости

Признак перпендикулярности прямой и плоскости

Признак перпендикулярности прямой и плоскости

Проведем прямую AB и обозначим буквой C точку пересечения прямых AB и c. Отметим на прямой p произвольную точку P и обозначим символом P' точку, расположенную на прямой p так, чтобы точка O оказалась серединой отрезка PP' . Поскольку прямые OA и OB являются серединными перпендикулярами к отрезку PP' , то справедливы равенства

Из этих равенств, а также поскольку отрезок AB является общей стороной треугольников APB и AP'B , заключаем, что в силу признака равенства треугольников по трем сторонам трегольники APB и AP'B равны. Следовательно,

Отсюда в силу признака равенства треугольников по двум сторонам и углу между ними заключаем, что трегольник PBС равен треугольнику P'BС ( BP = BP' , , сторона BС - общая). Следовательно,

Таким образом, прямые PO и c перпендикулярны, что и требовалось доказать в рассматриваемом случае.

Теперь перейдем к общему случаю.

Предположим, что что прямая p , пересекающая плоскость α в точке O, перпендикулярна к прямым a и b , лежащим на плоскости α . Докажем, что в этом случае прямая p перпендикулярна любой другой прямой c , лежащей плоскости α (рис. 2).

Признак перпендикулярности прямой и плоскости

Признак перпендикулярности прямой и плоскости

Признак перпендикулярности прямой и плоскости

С этой целью проведем через точку O прямые a' , b' и c' соответственно параллельные прямым параллельные прямым a , b и c .

По определению угла между скрещивающимися прямыми прямая будет перпендикулярна прямым a' и b' , проходящим через точку O, и мы оказываемся в условиях уже рассмотренного случая.

Доказательство признака перпендикулярности прямой и плоскости завершено.

Замечание . Прямую, перпендикулярную к плоскости, часто называют перпендикуляром к плоскости. Точку перечения прямой, перпендикулярной к плоскости, с самой плоскостью называют основанием перпендикуляра.

Так, например, на рисунке 1 точка O является основанием перпендикуляра, опущенного из точки P на плоскость α .

Свойства перпендикуляра к плоскости

Перечислим следующие свойства перпендикуляра к плоскости, доказательства которых мы оставляем читателю в качестве полезных упражнений.

РисунокСвойство
свойства перпендикуляра к плоскости
Из любой точки можно опустить перпендикуляр на любую плоскость. Если точка O - основание перпендикуляра, опущенного из точки P на плоскость α , то длину отрезка PO называют расстоянием от точки P до плоскости α.
свойства перпендикуляра к плоскости
Два любых перпендикуляра к плоскости параллельны
свойства перпендикуляра к плоскости
Плоскости, перпендикулярные к одной прямой, параллельны.
свойства перпендикуляра к плоскости
Если одна из плоскостей проходит через перпендикуляр к другой плоскости, то эти плоскости перпендикулярны.
свойства перпендикуляра к плоскости
Если плоскости α и β перпендикулярны, а точка P лежит на плоскости β, то и перпендикуляр PO, опущенный из точки P на плоскость α , также лежит в плоскости β.

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

Свойство:
Из любой точки можно опустить перпендикуляр на любую плоскость. Если точка O - основание перпендикуляра, опущенного из точки P на плоскость α , то длину отрезка PO называют расстоянием от точки P до плоскости α.

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

Свойство:
Два любых перпендикуляра к плоскости параллельны параллельны

свойства плоскостей перпендикулярных к прямой

свойства плоскостей перпендикулярных к прямой

свойства плоскостей перпендикулярных к прямой

Свойство:
Плоскости, перпендикулярные к одной прямой, параллельны.

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

Свойство:
Если одна из плоскостей проходит через перпендикуляр к другой плоскости, то эти плоскости перпендикулярны.

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

свойства перпендикуляра к плоскости

Свойство:
Если плоскости α и β перпендикулярны, а точка P лежит на плоскости β, то и перпендикуляр PO, опущенный из точки P на плоскость α , также лежит в плоскости β.

Читайте также: