Что такое параллакс в астрономии кратко

Обновлено: 02.07.2024

§ 22. Р асстояния до звёзд. Х арактеристики излучения звёзд

Н аше Солнце справедливо называют типичной звездой, но среди огромного многообразия мира звёзд есть немало таких, которые значительно отличаются от него по физическим характеристикам. Поэтому более полное представление о звёздах даёт такое определение:

звезда — это пространственно обособленный, гравитационно связанный, непрозрачный для излучения космический объект, в котором в значительных масштабах происходили, происходят или будут происходить термоядерные реакции превращения водорода в гелий.

Солнце существует уже несколько миллиардов лет и мало изменилось за это время, поскольку в его недрах всё ещё происходят термоядерные реакции, в результате которых из четырёх протонов (ядер водорода) образуется альфа-частица (ядро гелия, состоящее из двух протонов и двух нейтронов). Более массивные звёзды расходуют запасы водорода значительно быстрее (за десятки миллионов лет). После того как водород израсходован, начинаются реакции между ядрами гелия с образованием устойчивого изотопа углерода-12 и другие реакции, продуктами которых являются кислород и тяжёлые элементы (натрий, сера, магний и т. д.). Таким образом, в недрах звёзд образуются ядра многих химических элементов, вплоть до железа.

У наиболее массивных звёзд прекращение всех возможных термоядерных реакций сопровождается мощным взрывом, который наблюдается как вспышка сверхновой звезды.

Все элементы, которые входят в состав нашей планеты и всего живого на ней, образовались в результате термоядерных реакций, происходивших в звёздах, поэтому звёзды не только самые распространённые во Вселенной объекты, но и самые важные для понимания происходящих в ней явлений и процессов.

Именно термоядерные реакции являются характерной отличительной особенностью звёзд от планет. Поэтому современное определение планеты формулируется так:

планета — небесное тело, обращающееся вокруг звезды или остатка звезды, достаточно массивное, чтобы приобрести сферическую форму под действием собственной гравитации, и своим воздействием удалившее малые тела с орбиты, близкой к собственной, но при этом в её недрах не происходят и никогда не происходили реакции термоядерного синтеза.

1. Годичный параллакс и расстояния до звёзд

М ысли о том, что звёзды — это далёкие солнца, высказывались ещё в глубокой древности. Однако долгое время оставалось неясным, как далеко они находятся от Земли. Ещё Аристотель понимал, что если Земля движется, то, наблюдая положение какой-либо звезды из двух диаметрально противоположных точек земной орбиты, можно заметить, что направление на звезду изменится (рис. 5.12). Это кажущееся (параллактическое) смещение звезды будет служить мерой расстояния до неё: чем оно больше, тем ближе к нам расположена звезда. Но не только самому Аристотелю, но даже значительно позднее Копернику не удалось обнаружить это смещение. Только в конце первой половины XIX в., когда телескопы были оборудованы приспособлениями для точных угловых измерений, удалось измерить такое смещение у ближайших звёзд.


Рис. 5.12. Параллактическое смещение звезды


Рис. 5.13. Годичный параллакс звезды

Годичным параллаксом звезды p называется угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду (рис. 5.13) .

Расстояние до звезды


D = ,

где a — большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв a = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:


D = .

В 1837 г. впервые были осуществлены надёжные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793—1864) провёл эти измерения для ярчайшей звезды Северного полушария Веги ( α Лиры). Почти одновременно в других странах определили параллаксы ещё двух звёзд, одной из которых была α Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у неё годичный параллакс составил всего 0,75 ʺ . Под таким углом невооружённому глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить.


Расстояние до ближайшей звезды, параллакс которой p = 0,75 ʺ , составляет D = = 270 000 а. е. Единицами для измерения столь значительных расстояний являются парсек и световой год.

Световой год — это такое расстояние, которое свет, распространяясь со скоростью 300 тыс. км/с, проходит за год. От ближайшей звезды свет идёт до Земли свыше четырёх лет, тогда как от Солнца около восьми минут, а от Луны немногим более одной секунды.

1 пк (парсек) = 3,26 светового года = 206 265 а. е. = 3 • 10 13 км.

Таким образом, теперь измерением годичного параллакса можно надёжно определить расстояния до звёзд, удалённых от нас на 1000 пк, или 3000 св. лет. Расстояния до более далёких звёзд определяются другими методами.

2. Видимая и абсолютная звёздные величины. Светимость звёзд

П осле того как астрономы получили возможность определять расстояния до звёзд, выяснилось, что звёзды, находящиеся на одинаковом расстоянии, могут отличаться по видимой яркости (т. е. по блеску). Стало очевидно, что звёзды имеют различную светимость . Солнце кажется самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звёзд.

Светимостью называется полная энергия, излучаемая звездой в единицу времени.

Она выражается в абсолютных единицах (ваттах) или в единицах светимости Солнца.

В астрономии принято сравнивать звёзды по светимости, рассчитывая их блеск (звёздную величину) для одного и того же стандартного расстояния — 10 пк.

Видимая звёздная величина, которую имела бы звезда, если бы находилась от нас на расстоянии D 0 = 10 пк, получила название абсолютной звёздной величины M .

Рассмотрим, как можно определить абсолютную звёздную величину M , зная расстояние до звезды D (или параллакс — p ) и её видимую звёздную величину m . Напомним, что блеск двух источников, звёздные величины которых отличаются на единицу, отличается в 2,512 раза. Для звёзд, звёздные величины которых равны m 1 и m 2 соответственно, отношение их блесков I 1 и I 2 выражается соотношением:


I 1 : I 2 = .

Для видимой и абсолютной звёздных величин одной и той же звезды отношение блесков будет выглядеть так:

I : I 0 = 2,512 M – m ,

где I 0 — блеск этой звезды, если бы она находилась на расстоянии D 0 = 10 пк.

В то же время известно, что блеск звезды меняется обратно пропорционально квадрату расстояния до неё. Поэтому


I : I 0 = : D 2 .


2,512 M – m = : D 2 .

Логарифмируя это выражение, находим

0,4( M – m ) = lg 10 2 – lg D 2 ,

M = m + 5 – 5 lg D ,

Абсолютная звёздная величина Солнца M ☉ = 5 m . Иначе говоря, с расстояния 10 пк наше Солнце выглядело бы как звезда пятой звёздной величины.

Зная абсолютную звёздную величину звезды M , легко вычислить её светимость L . Считая светимость Солнца L ☉ = 1, получаем:

По светимости (мощности излучения) звёзды значительно отличаются друг от друга: некоторые излучают энергию в сотни тысяч раз больше, чем Солнце, другие — в десятки тысяч раз меньше. Абсолютные звёздные величины звёзд наиболее высокой светимости (гигантов и сверхгигантов) достигают M = –9 m , а звёзды-карлики, обладающие наименьшей светимостью, имеют абсолютную звёздную величину M = +17 m .

3. Спектры, цвет и температура звёзд

В сю информацию о звёздах можно получить только на основе исследования приходящего от них излучения. Наблюдая звёзды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости даёт изучение звёздных спектров. Для большинства звёзд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются тёмные линии.

Температуру наружных слоёв звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14), а также по интенсивности разных спектральных линий. Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Ви́на:


λ max = ,

где λ max — длина волны (в см), на которую приходится максимум излучения, а T — абсолютная температура.

Рис. 5.14. Распределение энергии в непрерывном спектре Солнца и чёрного тела при различных температурах


Как оказалось, эта температура для различных типов звёзд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звёзд, что отражается в их спектрах. По ряду характерных особенностей спектров звёзды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: O, B, A, F, G, K, M.

У наиболее холодных (красных) звёзд класса M в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звёзд, температура которых около 3000 К, являются Антарес и Бетельгейзе.

В спектрах жёлтых звёзд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.

Для спектров белых звёзд класса A, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звёзд появляются линии нейтрального и ионизованного гелия.

Различия звёздных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звёзд. Изучение спектров показывает, что преобладают в составе звёздных атмосфер (и звёзд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью v , то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера , согласно которому зависимость разности длин волн от скорости источника по лучу зрения v и скорости света c выражается следующей формулой:

= ,

где λ 0 — длина волны спектральной линии для неподвижного источника, а λ — длина волны в спектре движущегося источника.

Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.


П РимеР РешениЯ задаЧи

Какова светимость звезды ξ Скорпиона, если её звёздная величина 3 m , а расстояние до неё 7500 св. лет?

M = m + 5 – 5 lg D , где D = 7500 : 3,26 = 2300 пк.

Тогда M = 3 + 5 – 5 lg 2300 = –8,8.

lg L = 0,4 • [5 – (–8,8)] = 5,52.

Отсюда L = 330 000.

Ответ : L = 330 000.


В опросы 1. Как определяют расстояния до звёзд? 2. От чего зависит цвет звезды? 3. В чём главная причина различия спектров звёзд? 4. От чего зависит светимость звезды?


У пражнение 18 1. Во сколько раз Сириус ярче, чем Альдебаран; Солнце ярче, чем Сириус? 2. Одна звезда ярче другой в 16 раз. Чему равна разность их звёздных величин? 3. Параллакс Веги 0,11 ʺ . Сколько времени идёт свет от неё до Земли? 4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе? 5. Во сколько раз звезда 3,4 звёздной величины слабее, чем Сириус, имеющий звёздную величину –1,6? Чему равны абсолютные величины этих звёзд, если расстояние до каждой составляет 3 пк?

ПАРАЛЛА́КС (от греч. παρ άλλαξις – от­кло­не­ние) в ас­тро­но­мии, ве­ли­чи­на, рав­ная ви­ди­мо­му сме­ще­нию све­тил на не­бес­ной сфе­ре, обу­слов­лен­но­му пе­ре­ме­ще­ни­ем на­блю­да­те­ля в про­стран­ст­ве. Чем бли­же к на­блю­да­те­лю рас­по­ла­га­ет­ся не­бес­ное те­ло, тем силь­нее ме­ня­ет­ся на­прав­ле­ние на не­го при пе­ре­ме­ще­нии на­блю­да­те­ля. П. на­зы­ва­ют угол, под ко­то­рым с не­бес­но­го те­ла вид­но рас­стоя­ние, на ко­то­рое сме­ща­ет­ся на­блю­да­тель. Точ­но из­ме­рен­ные П. не­бес­ных све­тил и групп све­тил по­зво­ля­ют оп­ре­де­лять рас­стоя­ния до них.

Параллакс

Планета Земля не является стационарным объектом в космическом пространстве, а совершает один оборот вокруг своей оси каждые 24 часа (земные сутки), а так же обращается вокруг Солнца за 365 земных суток (один земной год).

Краткие сведения

Радиус земной орбиты составляет одну астрономическую единицу или около 150 миллионов километров. В связи с этим все внеземные объекты на земном небе так же выписывают годичные “петли” (параллактическое движение). Чем дальше небесный объект находится от Земли, тем его параллактическое движение на земном небе является менее заметным (в переводе с греческого слово “параллакс” означает “смещение”).

Измерения углового диаметра параллактического движения небесных тел на земном небе позволяет проводить наиболее точные измерения расстояния до них (тригонометрическое расстояние). Кроме того, важным в истории астрономии оказался суточный (геоцентрический) и вековой параллакс. Первый из них обозначает половину от максимального различия в угловых координатах небесного тела на земном небе при различных географических положениях на поверхности Земли (относительно центра Земли), второй обозначает собственные движения звезд на небе нашей планеты по причине движения Солнечной Системы вокруг центра галактики.

История

Суточным (геоцентрическим) параллаксом называется угол, под которым виден земной радиус с определенного небесного тела. Кроме того, выделяют понятие горизонтального параллакса. Горизонтальным параллаксом называется угол, под которым виден экваториальный радиус Земли из центра определенного небесного тела при нахождении последнего на истинном горизонте (истинный горизонт — мысленно воображаемый большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии в точке наблюдения). Различия понятий суточного и горизонтального параллакса связаны с несферичностью Земли (так полярный радиус Земли короче экваториального радиуса на 21 км).

Суточный параллакс сыграл очень важную роль в истории астрономии, как наиболее простой и достоверный способ определения расстояния до объектов Солнечной Системы. Фактически этот метод являлся единственным геометрическим методом измерения расстояний в Солнечной Системе вплоть до радиолокации, лазерной локации и методов радиоинтерференции сигналов межпланетных станций. Базой суточного параллакса является земной радиус. Самым большим суточный параллакс является у Луны (57 угловых минут) и у Солнца (9 угловых минут). У всех планет Солнечной Системы суточный параллакс подвержен регулярным изменениям и значительно меньше угловой минуты (у Венеры 0.1-0.6 угловых минут, у Марса 0.1-0.4 угловых минут, у Юпитера и Сатурна меньше 0.1 угловой минуты, а у Урана и Нептуна меньше одной угловой секунды).

Первыми параллакс Луны и Солнца определили древнегреческие астрономы на основе наблюдений лунных затмений, которые позволяли определять параллакс Луны из одного и того же места. Так древнегреческий астроном Гиппарх Никейский (180-125 годы до нашей эры) в 129 году до нашей эры оценил параллакс Солнца в 7 угловых минут (максимальная величина угла, который неразличим невооруженным глазом). Похожие расчеты выполнил до него другой древнегреческий астроном Аристарх Самосский (310-230 годы до нашей эры).

С другой стороны, александрийский астроном Клавдий Птолемей (100-170 годы нашей эры) полагал, что расстояние до Луны зависит от её фаз. Это говорит о больших разногласиях среди астрономов Древнего мира по поводу оценок параллаксов Луны и Солнца. Позже ошибка Птолемея о зависимости размера параллакса Луны от её фаз стала одним из основных объектом критики птолемевской системы мира. Так юный Николай Коперник (1473-1543 годы нашей эры) во время учебы в Италии проводил измерения параллакса Луны вместе со своим учителем Новарой. Наблюдения положения Луны во время затмения яркой звезды Альдебаран из Болоньи 9 марта 1497 года показали, что параллакс Луны не зависит от её фазы. В последующие века началось широкое использование одновременных наблюдений из северного и южного полушария для точного измерения параллаксов Луны, Солнца и Марса. К примеру, в 18 веке такие наблюдения осуществлялись в обсерватории мыса Доброй Надежды в южной части Африки и Берлинской обсерватории.

Сравнение гелиоцентрической и геоцентрической системы мира

Сравнение гелиоцентрической и геоцентрической системы мира

Сравнение гелиоцентрической и геоцентрической системы мира

Впервые факт отсутствия неизменности положения звезд на земном небе был обнаружен ещё Гиппархом на основе сверки положения ярких звезд его каталога, состоящего из примерно тысячи звезд с более древними каталогами вавилонян и александрийских астрономов. Гиппарх обнаружил систематическое изменение долготы положения звезд примерно на один градус (в то время как широта звезд относительно эклиптики оставалась неизвестной). Ныне это явление называется прецессией земной оси с периодом в 26 тысяч лет. Истинное движение звезд было впервые обнаружено в 1718 году английским астрономом Эдмондом Галлеем (1656-1743). В процессе уточнения прецессии Э. Галилей сравнил положения звезд из каталога Гиппарха с современными звездными каталогами. Сравнение показало, что на фоне большинства звезд, у которых положение на земном небе менялось согласно прецессии, встречался ряд аномалий (для Сириуса, Арктура и Альдебарана). У этих звезд отклонения в положении в несколько раз превысили погрешность измерений.

Василий Струве и Пулковская обсерватория в которой он работал

Василий Струве

Орбитальное движение звезд системы 61 Лебедя (черным отметками отмечены измерения астрономов)

Орбитальное движение звезд системы 61 Лебедя (черным отметками отмечены измерения астрономов)

Кроме того французский астроном Доминик Араго (1786-1853) ещё за несколько лет до Ф. Бесселя опубликовал значение параллакса 61 Лебедя с большой погрешностью. Результат Ф. Бесселя был воспринят мировым сообществом как наиболее достоверный в связи с большим количеством астрометрических измерений (более 400).

Для сравнения у Ф. Струве для Веги было сделано только 17 астрометрических измерений. Кроме того работу Бесселя облегчил факт того, что двойная система 61 Лебедя обладает заметным орбитальным движением. Так можно было сравнить параллакс для обеих звезд системы.

Визуальные измерения параллаксов и собственных движений являлись крайне трудоемкими. К концу 19 века удалось измерить тригонометрические расстояния лишь до сотни звезд. Всё резко изменилось с использованием фотографии. Точность измерений выросла до 10 угловых микросекунд, а число измеряемых звезд достигло нескольких тысяч. Замена фотопластинок приборами с зарядовой связью (ПЗС-матрицами), широкое использование компьютеров для обработки данных, а также вынос телескопов за пределы атмосферы Земли позволил улучшить точность измерения положения звезд до миллионных долей угловой секунды, а размер астрометрических каталогов вырос до девятизначных цифр.

Прогресс в точности измерения положения звезд за последние 2.5 тысячи лет

Прогресс в точности измерения положения звезд за последние 2.5 тысячи лет

Основы геометрии и тригонометрии

При вычислении лунного параллакса активно используются основы геометрии для прямоугольного треугольника. Прямоугольным треугольником называется такой треугольник, у которого один из углов равен 90 градусов.

В прямоугольном треугольнике стороны, которые образуют угол в 90 градусов, называются катетами, а сторона, лежащая напротив угла в 90 градусов гипотенузой. Сумма углов в прямоугольном треугольнике равна 180 градусов. Отсюда несложно определить, что при известном катете (радиусе Земли) и угле между гипотенузой и катетом (суточным параллаксом) гипотенуза (расстояние до небесного тела) будет равна отношению известного катета к синусу суточного параллакса.

Только в этом случае радиус Земли заменяется радиусом земной орбиты вокруг Солнца, а суточный параллакс заменяется годичным параллаксом

Только в этом случае радиус Земли заменяется радиусом земной орбиты вокруг Солнца, а суточный параллакс заменяется годичным параллаксом

Синусом в прямоугольном треугольнике называют отношение катета противолежащего угла к гипотенузе.

Аналогичный принцип вычислений существует для расчетов тригонометрических расстояний до звезд.

По причине огромных расстояний до звезд (ближайшая звезда находится в 270 тысячах астрономических единиц от Солнца), для вычисления тригонометрических расстояний чаще всего используют отношение 206265 угловых секунд и измеренного годичного параллакса, который так же представлен в угловых секундах. Число 206265 означает число угловых секунд в одном радиане. Радиан – это угол, соответствующий дуге окружности, длина которой равна радиусу этой окружности.

Частные случаи использования суточного и годичного параллакса

Многие тысячи лет число известных объектов в Солнечной Системе было постоянным и было равно девяти (Земля, Луна, Солнце, Меркурий, Венера, Земля, Марс, Юпитер и Сатурн). Это постоянство нарушали лишь кометы, которые периодически появлялись во внутренних областях Солнечной Системы. В 18 веке в Солнечной Системе начались открытия новых планет и астероидов (к примеру, Урана и Цереры). Шквал новых открытий вынудил астрономов разрабатывать методики по вычислению орбит небесных тел Солнечной Системы по минимальному числу измерений. В 1801 году 24-летний немецкий математик Фридрих Гаусс (1777-1855 годы) с целью обнаружения потерянной Цереры разработал математический метод, по которому было возможно определить орбиту небесного тела на основе всего трех его наблюдений.

В то же время примерное расстояние до небесного тела в Солнечной Системе, возможно, определить лишь по двум наблюдениям. Особенно, это актуально в случае открываемых объектов за орбитой Нептуна (ТНО). У таких объектов скорость движения является минимальной по сравнению с орбитальной скоростью Земли (несколько сотен метров в секунду против 30 км в секунду). В результате этого наблюдаемое расстояние от Солнца (гелиоцентрическое расстояние) до ТНО в астрономических единицах можно определить простым соотношением 150/q, где q – это угловая скорость объекта в угловых секундах за один час.

С другой стороны в последние годы астрометрические наблюдения мигрируют из оптического диапазона в более длинноволновые диапазоны электромагнитного спектра: инфракрасные лучи и радиоволны. Первый диапазон является очень перспективным для астрометрии красных и коричневых карликов во Вселенной (наиболее распространенной популяции массивных объектов в галактике, чей максимум теплового излучения приходится на инфракрасный диапазон). Второй диапазон является уникальным во всем электромагнитном спектре по проникающей способности.

Так недавно радиоастрономы с помощью радиоинтерферометра VLBA смогли установить рекорд самого далекого измеренного параллакса: расстояние до межзвездного облака G007.47+00.05 (внешний рукав Щита – Центавра) составило 20 тысяч парсек или 67 тысяч световых лет

Так недавно радиоастрономы с помощью радиоинтерферометра VLBA смогли установить рекорд самого далекого измеренного параллакса: расстояние до межзвездного облака G007.47+00.05 (внешний рукав Щита – Центавра) составило 20 тысяч парсек или 67 тысяч световых лет

Вековой и внегалактический параллакс

Солнечная Система, как сотни миллиардов планетных систем нашей галактики обращается вокруг центра галактики в созвездии Стрельца. Один оборот Солнечной Системы вокруг центра галактики (галактический год) равен 225-250 миллионов лет (средняя скорость движения Солнечной Системы в межзвездном пространстве около 220 км в секунду). По причине различий в галактических орбитах другие звезды на земном небе движутся по различным траекториям, с различной угловой и пространственной скоростью.

Как говорилось выше, собственные движения звезд были впервые обнаружены в 1718 году английским астрономом Эдмондом Галлеем (1656-1743). Так как это открытие случилось за столетие до первых измерений параллаксов, звезды с высоким собственным движением стали потенциально интересными для измерения параллаксов. Из трех первых опубликованных параллаксов в 1837-1838 годах, два приходятся на звезды с высоким собственным движением (61 Лебедя и Альфа Центавра). Собственное движение этих систем составляет около 4 угловых секунд в год. Для сравнения, у третьей звезды – Веги собственное движение в 20 раз меньше (Ф. Бессель выбрал эту звезду для измерения параллакса по причине её околорекордной видимой яркости на северном небе). В дальнейшем поиск неизвестных близких звезд в большинстве случаев проходил через первоначальное обнаружение звезд с высоким собственным движением (к примеру, так были обнаружены в 20 веке звезды Проксима Центавра и Летящая Барнарда). В результате этого в последние годы астрономы открывают близкие звездные системы только с минимальным собственным движением (0.15 угловых секунд в год и меньше). Исключением из этого правила могут стать лишь плотные звездные поля или области вблизи очень ярких звезд.

Естественно и наша галактика в космическом пространстве Вселенной не является неподвижным объектом. Сегодня астрономы полагают, что наша галактика с соседними галактиками (Местная группа галактик) входят в состав сверхскопления галактик созвездия Девы. Исследования реликтового излучения в конце 20 века показали, что Солнечная Система движется относительно реликтового излучения со скоростью 368 ± 2 км/с (или 78 астрономических единиц в год). В результате этого движения, объект, который находится в миллионе парсек от нас, и расположен перпендикулярно внегалактическому апексу будет обладать на земном небе собственным движением в 78 угловых микросекунд в год (миллионных долей угловой секунды). Подобная точность измерений является вполне достижимой в последние десятилетия. В ходе измерения собственных движений близких галактик широко используются снимки крупнейших наземных телескопов и космических телескопов Хаббл и Гаяй, а так же данные радиоинтерферометров. К примеру, измерение собственного движения галактики М31 привело к прогнозу её столкновения с нашей галактикой через несколько миллиардов лет.

Схема движения галактик в Местной группе относительно нашей галактики взята из работы A. Brunthaler et al. 2007 года

Схема движения галактик в Местной группе относительно нашей галактики взята из работы A. Brunthaler et al. 2007 года

Измеренное собственное движение галактики Андромеды с расстоянием в 0.8 миллионов парсек составило около 50 угловых микросекунд в год. Для сравнения современные радиоинтерферометры способны регистрировать собственные движения галактик на основе наблюдения мазеров до удаления в 20 миллионов парсек за 10-летние наблюдения. Сложности измерения собственных движений галактик заключаются в необходимости разграничения общего движения всей галактики от орбитального движения отдельных звездных скоплений или межзвездных туманностей в ней. Решением этой проблемы является измерение собственного движения ядер галактик. В связи с этим удобным источником для измерения внегалактических собственных движений являются галактики с активными ядрами (квазары) – одни из ярчайших радиоисточников на земном небе. В работе 2005 года с названием “Quasar Apparent Proper Motion Observed by Geodetic VLBI Networks” сообщается, что геодезическим радиоинтерферометрам в период с 1980 по 2002 годы удалось измерить или ограничить собственное движение 580 квазаров.

У многих из них собственное движение составляет несколько сотен угловых микросекунд

У многих из них собственное движение составляет несколько сотен угловых микросекунд

Большинство этих источников находились на огромных расстояниях в многие миллиарды световых лет

Большинство этих источников находились на огромных расстояниях в многие миллиарды световых лет

В работе 2017 года был опубликован каталог собственных движений 713 внегалактических радиоисточников, которые наблюдались в среднем около 22 лет. Средняя погрешность этих измерений составила 24 угловых микросекунд в год. Эти наблюдения позволили зарегистрировать ускорение движения Солнечной Системы по галактической орбите (статистический уровень значимости 6.3 сигм). Это явление приводит к систематическому изменению угловой скорости внегалактических объектов на несколько микросекунд в год.

Карта собственных движений из нового каталога

Карта собственных движений из нового каталога

Самое большое наблюдаемое собственное движение в вышеназванном каталоге (около 1.5 угловых миллисекунд в год) наблюдается у радиогалактики SDSS J213836.38+001241.8, у которой наблюдаемый блеск в оптическом диапазоне составляет примерно 23 звездных величины (её красное смещение равно 0.6). Для сравнения у одной ближайшей галактики (Большое Магелланово облако) собственное движение равно 2 угловым миллисекундам.

Публикация первых (предварительных) релизов космического телескопа GAIA, который работает в оптическом диапазоне, так же смогла зарегистрировать собственные движения некоторых галактик и квазаров

Публикация первых (предварительных) релизов космического телескопа GAIA, который работает в оптическом диапазоне, так же смогла зарегистрировать собственные движения некоторых галактик и квазаров

Актуальность регистрации собственных движений внегалактических объектов в последние годы возрастает в связи с поисками темной (скрытной материи). Как известно темная материя была заподозрена на основе аномально высоких лучевых скоростей движения внешних областей многих галактик. В этих случаях лучевые скорости были измерены через анализ спектров. Измерение собственного движения этих аномальных областей позволило бы лучше прояснить этот вопрос.

ПАРАЛЛАКС, угол, под которым некоторое данное расстояние видно из данной точки. Так, если расстояние а между точками А и В видно из отдаленного пункта S (фиг. 1) под углом ε, то последний и называется параллаксом пункта S по отношению к а. При постоянном AS (например AS = d) величина параллакса будет зависеть от угла BAS; при AS = BS величина ε достигает своего максимума и определяется из следующего соотношения:

Если пункт S лежит на направлении АВ, то ε = 0. Так как при вычислениях ε обычно не превышает 1°, то на практике вместо приведенного выше уравнения пользуются формулой:

где ϕ = 206265. Таким образом, при сделанных допущениях величина параллакса обратно пропорциональна расстоянию. В астрономии под расстоянием а подразумевают либо радиус земного экватора (при вычислении расстояний внутри солнечной системы) либо средний радиус земной орбиты (равный около 23400 земных радиусов), если вопрос касается расстояний неподвижных звезд от тел солнечной системы.

Параллакс в астрономии различают суточный и годичный, причем суточным параллаксом называется угол, под которым со светила виден радиус земли, проведенный в данную точку земной поверхности, а также угол между направлениями на светило из данной точки и из центра земли. Наибольшей величины для данной точки параллакс достигает, когда светило видно в горизонте; соответствующий параллакс называется горизонтальным параллаксом . Наибольшую величину для земли вообще параллакс имеет в горизонте для точки земного экватора; соответствующий параллакс называется горизонтальным экваториальным параллаксом ; в дальнейшем он обозначен через π0. Последний зависит только от расстояния Δ светила и связан с ним простым соотношением:

где р - радиус земного экватора. Для всех тел солнечной системы кроме луны (для которой средний π0 = 57' 2,70") можно по малости параллакса заменить sin π0 через π0" sin 1". Если еще за единицу расстояния принять большую полуось а земной орбиты, то для Δ получается формула:

Где в числителе стоит средний горизонтальный экваториальный параллакс солнца. Имея в виду эту простую связь между расстоянием и параллаксом, эти два термина в современной астрономии принимают равнозначащими. Расстояния луны и солнца определяются именно посредством измерения параллакса либо путем наблюдения из двух разных точек земной поверхности, что дает разность соответствующих местных параллаксов, либо, наблюдая из одного места, но пользуясь перемещением последнего вследствие суточного вращения земли (отсюда произошел и самый термин: суточный параллакс).

В астрономических ежегодниках и таблицах положение тел солнечной системы всегда дается для центра земли ( геоцентрические координаты ). Чтобы найти топоцентрические координаты , т.е. видимые из данного места земной поверхности, нужно учесть влияние параллакса, который понижает светило к горизонту на угол , являющийся параллаксом по высоте. Здесь ϱ есть местный радиус земли, z - зенитное расстояние. Влияние параллакса на азимут ничтожно, т.к. происходит лишь благодаря отклонению формы земли от точного шара и ощутимо только для луны. Параллакс по прямому восхождению а и склонению δ вычисляется по формулам:

где ϕ' - геоцентрическая широта места, t - часовой угол светила. Для луны эти выражения недостаточно строги и требуют еще дополнительных членов. Суточный параллакс для звезд исчезающе мал. По отношению к ним говорят о годичном параллаксе , т. е. угле, под которым со звезды видна полуось земной орбиты. Связь годичного параллакса с расстоянием дается формулой:

Ближайшая звезда имеет π = 0,76", откуда Δ = 270000 а. Для выражения таких больших расстояний употребляется особая единица, называемая парсеком (начальные слоги двух слов: параллакс, секунда); она равна 206265 а = 3,09 х 10 13 км = 3,26 световых лет. Тогда связь между параллаксом и расстоянием становится еще проще: парсеков. Годичный параллакс влияет на видимое положение звезды. Однако по малости его приходится учитывать только для немногих самых близких звезд. Для огромного большинства звезд он меньше 0,01". Иногда употребляется еще термин вековой параллакс . Последний обозначает смещение звезды, вызываемое движением солнечной системы в пространстве.

Параллакс нитей трубы - кажущееся перемещение центра нитей трубы относительно точки визирования при перемещении глаза наблюдателя, вправо или влево, вверх или вниз относительно центра окуляра. Диафрагма с сеткой нитей устанавливается в трубе, в сеточном колене, в фокусе объектива, т. е. в том месте, где получается действительное изображение предметов через объектив, рассматриваемое наблюдателем через окуляр (фиг. 2—4):

на фиг. 2 - в точке В. При визировании трубой наводят на точку визирования центр пересечения двух нитей, или центр квадратика, образуемого четырьмя нитями, или центр треугольника, образуемого тремя нитями. При визировании нити должны представляться наблюдателю резкими линиями; поэтому перед наблюдением надо вдвинуть (или выдвинуть) окулярную трубочку bс из окулярного колена ВС настолько, чтобы нити представлялись резкими линиями (фиг. 5).

Затем при визировании на каждый предмет необходимо получать в трубе наиболее ясное его изображение; это достигается вдвижением (или выдвижением) всего окулярного колена ВС (вместе с трубочкой bс) в объективное колено DE с помощью зубчатого колеса и рейки (кремальеры). Однако точная установка сетки относительно действительного изображения предмета визирования не м. б. достигнута одною только ясностью видения изображения, потому что глаз не всегда улавливает при этом неточное совмещение плоскости сетки с плоскостью изображения в трубе.

Между тем если сетка нитей не вполне совмещена с действительным изображением в трубе, то при различных положениях глаза наблюдателя центр нитей покрывает разные точки изображения, поэтому точное наведение не достигается. На фиг. 6—8, где С - плоскость сетки, А - действительное изображение, N - окуляр, Н - глаз, видно, что только при полном совмещении сетки С с изображением А точка изображения, лежащая против центра сетки, не зависит от положения глаза.

Отсюда ясно, что при визирований, добившись ясности изображения предмета визирования и точки визирования, необходимо мелкими перемещениями глаза вправо, влево, вверх и вниз относительно центра окуляра убедиться в отсутствии параллакса нитей; если параллакс имеет место, то надо его уничтожить движением кремальеры, т. е. сближением (или удалением) окуляра с объективом довести плоскость сетки до точного совпадения с плоскостью изображения (фиг. 8). Только при отсутствии параллакса нитей точность визирования трубой W равна точности визирования диоптрами (1'), деленной на увеличение v трубы:

Читайте также: