Что такое обратная связь в физике кратко

Обновлено: 30.06.2024

В связи с вопросами читателей моей публикации [1] касательно условий возбуждения автоколебаний в механической системе, я решил описать явление возникновения и поддержания автоколебаний подробно, выделив основные области возникновения и применения автоколебаний.

В википедии автоколебания объясняют так [2]:

Незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы. При этом частота становится почти равной резонансной.

Автоколебания в технике

Автоколебательная система с запаздыванием (на примере электромеханического звонка)
Приведём пример электромеханического звонка:


При замыкании цепи кнопкой (К) электромагнит (Е) притягивает ударник, ударник бьёт по звонку и размыкает цепь питания электромагнита, механически связанным с ним контактом (Т) ударник (А) возвращается назад и процесс повторяется.

При рассмотрении процесса возникновения автоколебаний будем считать, что сила, действующая на боёк (А) звонка, изменяется пропорционально изменению тока в RL цепи.

Такое допущение сделано для упрощения рассмотрения, поскольку зависимость силы от тока в обмотке и зазора между бойком и полюсами значительно сложнее [3].

Ниже приведены конструкции электромеханических звонков и их упрощённая электрическая схема:


Боёк колеблется относительно установленного зазора согласно соотношению A*sin (w*t).
Решив численным методом дифференциальное уравнение RL цепи с начальными условиями
для замыкания и размыкания контакта, наложив на эти решения колебания бойка, получим:



Для приближенной теории будем считать, что сила Fτ, выраженная последовательностью прямоугольных импульсов, которые возникает и исчезает мгновенно, но не в момент срабатывания контакта, а с запаздыванием τ=L/R. Добавим Fτ на график, получим:



Обозначим амплитуду силы Fτ через Aτ, получим разложения этой силы в ряд Фурье [4] (учитывая что x=a∙sin(ω∙t), для первых двух членов ряда:


Будем считать, что постоянная составляющая силы Aτ/2 компенсируется регулировкой.
Тогда уравнение для колебаний бойка с учётом его приведенной массы m, трения r и изгибной жёсткости k примет вид:


(1)


Разделим обе части на массу бойка, введем обозначения, получим:


(2)

Для того, чтобы получить аналитические соотношения для частоты и амплитуды колебаний бойка, решим (2) приближённым методом [5]. Преобразуем (2) к виду:


(3)

Подставив в (3) при условии:
пропуская промежуточные выкладки получим соотношения для частоты и амплитуды автоколебаний:


На основании приведенных соотношений можно сделать вывод, что, при отсутствии самоиндукции, звонок работать не может, поскольку при L=0 нет запаздывания τ=0. Таким образом, при нулевом запаздывании автоколебания не возможны.

Автоколебания в измерительной технике (на примере механического резонатора вибрационных плотномеров)

Механические резонаторы в виде трубок пластин или цилиндров широко используются в вибрационных плотномерах, внешний вид которых приведен на рисунках:



Будем рассматривать резонатор c сосредоточенными эквивалентными параметрами: массой жесткостью и трением, характеризуемым коэффициентом

Такая замена вполне допустима в ограниченной области частот при соблюдении равенства собственных частот колебаний обеих систем, а также равенства потерь энергии и обусловленных ими затуханий.

Запишем систему уравнений, описывающих движение резонатора в замкнутой системе возбуждения:


где: F- сила воздействия системы возбуждения на резонатор;
D(x)- неизвестный оператор обратной связи, подлежащий определению; Fупр — упругая восстанавливающая сила резонатора, которая в общем случае может описываться нелинейной функцией; х — поперечное смещение эквивалентной массы.

Воспользуемся выражением кубической упругой характеристики резонатора:


где γ — коэффициент, характеризующий отклонение реальной упругой характеристики от линейной.

Преобразуем записанную систему равенства к виду:


где — нелинейная составляющая упругой силы.

Структурная схема автоколебательной системы, работа которой характеризуется уравнениями, (1) приведена на рисунке:


Схема содержит нелинейное звено, выполняющее функцию корректирующей обратной связи линейного резонатора, имеющего частотную характеристику:


Для решения задачи синтеза оптимальной системы возбуждения, воспользуемся методом гармонической линеаризации [6].

Механические резонаторы являются высокодобротными колебательными системами, которые можно рассматривать как узкополосные фильтры с выходным сигналом вида: x~A∙cos⁡(ω∙τ), где A— амплитуда колебаний резонатора; ω — частота колебаний, близкая к резонансной [7].

Поэтому для нелинейного элемента справедливо соотношение:


Пренебрегая третьей гармоникой, отфильтрованной линейной частью резонатора, частотную характеристику линеаризованного звена нелинейной упругости механического резонатора можно в виде:


Рассмотрим уравнение для первой гармоники колебаний линеаризованной системы:


Для определения вида частотной характеристики D(iω), обеспечивающей совместность этой системы, исключим промежуточные переменные прямой подстановкой их выражений через другие переменные. В результате получим:


Из соотношения (2) определим смещение фазы, осуществляемое системой возбуждения:



Нетрудно установить, что частота автоколебаний не будет зависеть от трения при сдвиге фазы φ=π/2, тогда:


При этом условии из (2) следует, что система возбуждения должна быть дифференцирующим звеном D(iω)=(i*rэ* ω) т.е.



Из (5) следует, что частотная характеристика цепи обратной связи системы возбуждения должна быть пропорциональна коэффициенту трения

Система возбуждения состоит из трех элементов, D(iω)=Dп* Dу* D(в ), характеризующих частотные характеристики: приемника Dп, усилителя Dу и возбудителя D(в ) колебаний. Приемник является дифференцирующим – Dп=Kп* i*ω, а возбудитель усилительным
звеном – Dв=Kв.

Для выполнения условия (5) усилитель должен иметь частотную характеристику:



Коэффициент усиления должен меняться вместе с изменением трения
Звено с переменным коэффициентом усиления можно реализовать простейшей нелинейностью типа двухпозиционного реле, имеющей частотную характеристику по первой гармонике [6]:


где — амплитуда первой гармоники на входе усилителя; — выходное напряжение усилителя, подаваемое на возбудитель колебаний.

Из (6) и (7) можно получить выражение для амплитуды установившихся автоколебаний резонатора:


Для устранения этого влияния амплитуды на частоту резонатора можно стабилизировать амплитуду A варьированием напряжения U0 с помощью регулятора, стабилизирующего амплитуду входного сигнала Aвх, поступающего с приемника колебаний.

Из изложенного можно сделать вывод, что частота автоколебаний резонатора вибрационного измерительного преобразователя не будет зависеть от трения при сдвиге фазы φ=π/2, когда система возбуждения является дифференцирующим звеном, и не будет зависит от амплитуды автоколебаний при стабилизации входного сигнала этого звена.

Автоколебания в радиотехнических генераторах (на примере решения уравнения
Ван-дер-Поля)

Обобщённая схема радиотехнического генератора автоколебаний приведена на рисунке:


Механизм возбуждения автоколебаний в генераторе можно качественно описать следующим образом. Даже при отсутствии напряжения на выходе усилителя напряжение в контуре испытывает случайные флуктуации. Они усиливаются усилителем и вновь поступают в контур через цепь обратной связи.

При этом из шумового спектра флуктуаций будет выделяться составляющая на собственной частоте высокодобротного контура. Если энергия, вносимая в контур таким образом, превосходит энергию потерь, амплитуда колебаний нарастает.

Основной моделью, описывающей автоколебания в радиотехническом генераторе, является уравнение Ван-дер-Поля. Приведём уравнение Ван-дер-Поля к виду, содержащему единственный управляющий параметр с безразмерными переменными:


Получим фазовые портреты (слева) и временные реализации колебаний (справа) осциллятора Ван-дер-Поля: λ =0.1, λ =1.1




Для λ =10.0



Уравнение Ван-дер-Поля имеет единственную особую точку , которая является устойчивым узлом при устойчивым фокусом при неустойчивым фокусом при и неустойчивым узлом при . Если выполнено условие самовозбуждения, на фазовой плоскости имеется также предельный цикл, отвечающий режиму периодических автоколебаний.

Химические колебания. Брюсселятор

Важным и нетривиальным примером автоколебательных процессов служат некоторые химические реакции. Химические колебания — это колебания концентраций реагирующих веществ.

К настоящему времени известно достаточно много колебательных реакций. Наиболее знаменитая из них была открыта Б.П. Белоусовым в 1950 г. и позднее детально изучена А.М. Жаботинским. Реакция Белоусова — Жаботинского (БЖ) представляет собой процесс окисления малоновой кислоты при взаимодействии в присутствии ионов в качестве катализатора.

В ходе реакции раствор периодически изменяет свой цвет: голубой — красный — голубой — красный и т.д. Кроме простых периодических колебаний, реакция БЖ демонстрирует (в зависимости от условий эксперимента) множество различных типов пространственно-временной динамики, которые окончательно еще не исследованы.

Мы рассмотрим более простой модельный пример: гипотетическую химическую реакцию, которая получила название Брюсселятор [8]. Уравнения этой реакции имеют вид:


Предполагается, что реагенты A и B имеются в избытке, так что их концентрации можно считать постоянными, а D и E ни в какие реакции не вступают. Составим кинетические уравнения, соответствующие реакции, которые описывают динамику концентраций реагирующих веществ.

Поскольку число актов химической реакции в единицу времени определяется вероятностью столкновения молекул реагентов, скорости изменения концентраций продуктов реакции пропорциональны произведению концентраций соответствующих реагентов с коэффициентами пропорциональности, называемыми константами скоростей реакций. Тогда кинетические уравнения можно записать в виде:



Символами Y,X будем теперь обозначать соответствующие концентрации. Отметим, что из третьего уравнения системы следует, что скорость образования вещества X зависит от его концентрации, т.е. эта стадия реакции носит автокаталитический характер. Приведем уравнения (1) к безразмерному виду, содержащему минимальное число управляющих параметров. Для этого перейдём к новым переменным, Тогда уравнения (1) примут вид:


Построим фазовые портреты для: a=1.0; b=2.1; b=3.0;b=5.0





Таким образом, химический осциллятор демонстрирует поведение, типичное для автоколебательных систем и вполне аналогичное, например, осциллятору Ван-дер-Поля.

Автоколебания в биосистемах (на примере модели Лотки Вольтерра –“Хищник -жертва”)

В динамике популяций есть много примеров, когда изменение численности популяций во времени носит колебательный характер. Одним из самых известных примеров описания динамики взаимодействующих популяций являются уравнения Вольтерра—Лотка.

Рассмотрим модель взаимодействия хищников и их добычи, когда между особями одного вида нет соперничества. Пусть x и y— число жертв и хищников соответственно. Предположим, что относительный прирост жертв y'/x равен a-by, a>0, b>0, где a — скорость размножения жертв в отсутствие хищников, -by— потери от хищников.

Развитие популяции хищников зависит от количества пищи (жертв), при отсутствии пищи ( x=0 ) относительная скорость изменения популяции хищников равна y'/y =-c, c>0, наличие пищи компенсирует убывание, и при x>0 имеем y'/y =(-c +d*x), d>0.

Таким образом, система Вольтерра—Лотка имеет вид:


Рассмотрим фазовый портрет системы Вольтерра Лотка, для a=4 b=2.5, c=2, d=1 и графики ее решения с начальным условием x(0)=3, y(0)=1, построенные программой Python для численного решения системы обыкновенных дифференциальных уравнений:




Видно, что процесс имеет колебательный характер. При заданном начальном соотношении числа особей обоих видов 3: 1, обе популяции сначала растут. Когда число хищников достигает величины b=2.5, популяция жертв не успевает восстанавливаться и число жертв начинает убывать.

Уменьшение количества пищи через некоторое время начинает сказываться на популяции хищников и когда число жертв достигает величины x=c/d =2 (в этой точке y'=0), число хищников тоже начинает сокращаться вместе с сокращением числа жертв. Сокращение популяций происходит до тех пор, пока число хищников не достигнет величины y=a/b =1.6 (в этой точке x'=0).

С этого момента начинает расти популяция жертв, через некоторое время пищи становится достаточно, чтобы обеспечить прирост хищников, обе популяции растут, и… процесс повторяется снова и снова.

Рассмотренная модель может описывать поведение конкурирующих фирм, рост народонаселения, численность воюющих армий, изменение экологической обстановки, развитие науки и т.п.

Изображение 1. Что такое автоколебательная система?2. B чем отличие автоколебаний от вынужденных и свободных колебаний?3. Опишите свойства p—n-перехода в.

*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.

Похожие решебники

Популярные решебники 11 класс Все решебники

Изображение учебника

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

воздействие результатов к.-л. процесса на его протекание. Если при этом интенсивность процесса возрастает, то О. с. наз. п о л о ж и т е л ь н о й, а в противопол. случае — о т р и ц а т е л ь н о й. Отрицат. О. с. может обеспечить автоматич. поддержание регулируемых физ. хар-к системы на требуемом уровне. Положит. О. с. приводит к тому, что возникшее отклонение от стационарного состояния всё более увеличивается и ранее устойчивая система может стать неустойчивой. Многие скачкообразные и лавинные процессы — следствие положит. О. с. (напр., взрыв). О. с. является необходимым элементом автоколебательных систем. О. с. могут существовать в самых различных динамич. системах— от простейших механических до биологич. и общественных. Существование О. с. определяет ход многих природных процессов (возбуждение волн на поверхности воды под действием ветра; звук, возникающий при обтекании препятствий возд. потоком; колебание яркости некоторых звёзд и т. д.). О. с. широко используется в технич. устройствах (механич., электрич., тепловых, оптических, в генераторах эл.-магн. колебаний, а также в системах автоматического регулирования, переработки информации и управления производственными процессами).

Впервые О. с. была применена при создании часов. Ход механич. (до Галилея) часов, не имеющих маятника, регулировался при помощи крыльчатки или центробежного регулятора, увеличивающих трение в механизме при увеличении скорости и уменьшающих трение при замедлении движения механизма (отрицат. О. с.). В современных часах содержится как устройство О. с., так и резонансный элемент (маятник, балансир, кварцевая пластина, ансамбль атомов или молекул). В совр. механических часах О. с. осуществляется анкерным устройством, соединяющим источник энергии (гирю, пружину) с маятником (или балансиром). При каждом качании маятника анкер позволяет анкерному колесу, соединённому с источником энергии, поворачиваться только на небольшой угол, определяемый расстоянием между соседними зубцами и определяющий порцию энергии, передаваемой от гири (пружины) маятнику. При упоре очередного зуба анкерного колеса в выступ на конце анкера маятник получает от источника энергии небольшой толчок, поддерживающий его колебания.

В паровой машине положит. О. с. осуществляется тем, что золотник соединён с поршнем так, что он подаёт пар из котла в цилиндр только во время рабочего хода поршня и соединяет цилиндр с холодильником во время холостого хода. В паровой машине есть и отрицат. О. с., к-рую осуществляет центробежный регулятор Уатта, он уменьшает подачу пара в цилиндр при увеличении скорости маховика и увеличивает подачу, когда скорость падает. Англ. физик Дж. Максвелл и И. А. Вышнеградский исследовали св-ва регуляторов и процесс регулирования, положив начало теории автоматич. регулирования и тем самым — теории О. с.

ОБРАТНАЯ СВЯЗЬ1

где Кй — коэфф. усиления в отсутствие О. с., b — коэфф. передачи (доля выходного сигнала, передаваемая на вход усилителя, рис. 1).

ОБРАТНАЯ СВЯЗЬ2

Если приположит. О. с. bK0=1, то знаменатель в (*) обращается в 0. Это соответствует потере устойчивости и возможности самовозбуждения.

Если О. с. осуществляется в противофазе, т. е. ток, возбуждаемый в сеточной цепи, через цепь О. с. направлен противоположно току, текущему в сеточной цепи (отрицат. О. с.), то коэфф. усиления уменьшается (К

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

- воздействие результатовк.-л. процесса на его протекание; самовоздействне, взаимовлияние разл. X по известномуили заданному алгоритму происходит в цепи О. с.
Для полного теоретич. описания системы, Z, Z - > х, X, (X, U вх) -> z, к-рые могут иметьхарактер алгебраич. действии, дифференцирования, интегрирования и т. п.

Рис. 2. Блок-схема системы с обратной связью.

В радиоэлектронике используется термин"запаздывающая О. с." для цепей О. с., содержащих линию задержки. Еслицепь О. с. по переменному току содержит фазосдвигающие элементы, то О. р 2 уравнение (3) имеет единственное решение, 2 exp(l/y), у =разделяет на плоскости параметров | р, Ф н| области, вк-рых ур-ние (3) имеет одно или три стационарных состояния.

Рис. 5. Катастрофа сборки, характернаядля задач теории теплового взрыва.

К тем же выводам можно прийти, рассматриваяизображённый на рис. 2 усилитель, к-рый в отсутствие О. с. характеризуетсянелинейной передаточной ф-цией Z = f(z). В установившемся режимевеличина сигнала z на входе усилителя определяется из ур-ния

где - коэф. передачи по каналу О. с. Для нелинейной характеристики вида f(z)= A ехр( - U0/z) ур-ние (4) сводится к (3) простымпереобозначением переменных. Если же усилитель без О. с. характеризуетсялинейным коэф. усиления К 0[f(z) = К 0z], тоиз (4) определяется коэф. усиления К усилителя с О. с.:Случай соответствует потере устойчивости и возможности самовозбуждения усилителя.
Для нелинейного усилителя, описываемогоур-нием (4), аналогом рис. 4 является N -образная вольт-ампернаяхарактеристика, содержащая падающий участок. В ряде устройств полупроводниковойэлектроники ( Ганна диод, туннельный диод и др.) аналогичный N -образныйвид вольт-амперной характеристики реализуется благодаря положительной О. 2 (безынерц. нелинейность),положительная О. с. формируется за счёт отклонения лучей в область большогопоказателя преломления, что в свою очередь приводит к росту показателяпреломления за счёт роста интенсивности света, фокусируемого такой нелинейнойлинзой. Если коэф. передачи по каналу такой положительной О. с. превышаеткоэф. передачи по каналу отрицательной О. с., связанной с дифракцией света,

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Полезное

Смотреть что такое "ОБРАТНАЯ СВЯЗЬ" в других словарях:

обратная связь — Зависимость текущих воздействий на объект от его состояния, обусловленного предшествующими воздействиями на этот же объект. Примечания 1. Обратная связь может быть естественной (присущей объекту) или искусственно организуемой. 2. Различают… … Справочник технического переводчика

обратная связь — Ответное действие, регулирующая реакция, вызванная возникшей ситуацией. В групповой терапии ведущий часто запрашивает в конце эпизода индивидуальной работы обратную связь от участников группы. Целью может являться получение дополнительной… … Большая психологическая энциклопедия

ОБРАТНАЯ СВЯЗЬ — воздействие результатов функционирования какой либо системы (объекта) на характер этого функционирования. Если влияние обратной связи усиливает результаты функционирования, то такая обратная связь называется положительной; если ослабляет… … Большой Энциклопедический словарь

ОБРАТНАЯ СВЯЗЬ — обратное воздействие результатов процесса на его протекание или управляемого процесса на управляющий орган. О. с. характеризует системы регулирования и управления в живой природе, обществе и технике. Различают положит. и отрицат. О. с.… … Философская энциклопедия

ОБРАТНАЯ СВЯЗЬ — ОБРАТНАЯ связь, воздействие результатов функционирования какой либо системы (объекта) на характер этого функционирования. Если обратная связь усиливает результаты функционирования, то она называется положительной; если ослабляет отрицательной.… … Современная энциклопедия

Обратная связь — ОБРАТНАЯ СВЯЗЬ, воздействие результатов функционирования какой–либо системы (объекта) на характер этого функционирования. Если обратная связь усиливает результаты функционирования, то она называется положительной; если ослабляет отрицательной.… … Иллюстрированный энциклопедический словарь

ОБРАТНАЯ СВЯЗЬ — ОБРАТНАЯ СВЯЗЬ, в технологии процесс, посредством которого электронная или механическая контрольная система регулирует сама себя. Обратная связь функционирует по принципу возвращения части переработанной информации в систему ввода. Другими… … Научно-технический энциклопедический словарь

ОБРАТНАЯ СВЯЗЬ — реакция определенной системы на результаты действия ее компонентов (ее в целом) в тех случаях, когда имеется причинно следственная зависимость между двумя переменными. Обратная связь необходимый элемент реализации гомеостаза, саморазвития… … Экологический словарь

ОБРАТНАЯ СВЯЗЬ — связь между сеткой и анодом электронной лампы. Благодаря О. С. цепь анода лампы воздействует на колебательный контур, связанный с цепью сетки, и усиливает колебания, возбуждаемые в этом контуре. Благодаря этому колебательный контур становится как … Морской словарь

Положительная обратная связь - это когда (часть сигнала) /сигнал на выходе приходит обратно на вход ( в той же фазе) и усиливает его, когда надо - до максимального уровня - то есть - до самовозбуждения. . Так работают всевозможные автогенераторы - на самовозбуждении.
Отрицательная ОС - когда сигнал со выхода ( в противофазе) уменьшает сигнал на входе и чем больше на выходе, тем больше он "давит" (уменьшает) его усиление на входе - это так называется "Автоматическая Регулировка Усиления - ( АРУ) . В рез-те на выходе получается сигнал одного уровня

Подача части выходного сигнала обратно на вход, возможно, со сдвигом по фазе. Если фаза будет той же - положительная обратная связь. Если обратная - отрицательная обратная связь.

есть положительная и отрицательная
говоря на пальцах, от выхода идёт один провод обратно на вход

Автоколебания. Генератор незатухающих колебаний (на транзисторе)

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.

Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.


Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль "клапана" играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.


При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды. Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.

Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю. Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура — это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре — это амплитудное условие самовозбуждения.

Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.

Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.

Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы — напряжением источника, расстоянием между Lсв и L, сопротивлением контура.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 394-395.

Читайте также: