Что такое наноматериалы кратко

Обновлено: 05.07.2024

Покорение природы человеком еще не закончилось. Во всяком случае, пока мы еще не захватили наномир и не установили в нем свои правила. Посмотрим, что это такое и какие возможности нам дает мир объектов, измеряемых нанометрами.

Размеры бактерий составляют в среднем 0,5–5 мкм (500–5000 нм). Вирусы, одни из главных врагов бактерий, еще меньше. Средний диаметр большинства изученных вирусов составляет 20–300 нм (0,02–0,3 мкм). А вот спираль ДНК имеет диаметр уже 1,8–2,3 нм. Считается, что самый маленький атом – это атом гелия, его радиус 32 пм (0,032 нм), а самый большой – цезия 225 пм (0,255 нм). В целом, нанообъектом будет считаться такой объект, размер которого хотя бы в одном измерении находится в нанодиапазоне (1–100 нм).

Можно ли увидеть наномир?

Конечно, все, о чем говорится, хочется увидеть своими глазами. Ну хотя бы в окуляр оптического микроскопа. Можно ли заглянуть в наномир? Обычным способом, как мы наблюдаем, например, микробов, нельзя. Почему? Потому что свет с некоторой долей условности можно назвать нановолнами. Длина волны фиолетового цвета, с которого начинается видимый диапазон, – 380–440 нм. Длина волны красного цвета – 620–740 нм. Длины волн видимого излучения составляют сотни нанометров. При этом разрешение обычных оптических микроскопов ограничивается дифракционным пределом Аббе примерно на уровне половины длины волны. Большинство интересующих нас объектов еще меньше.

Поэтому первым шагом на пути проникновения в наномир стало изобретение просвечивающего электронного микроскопа. Причем первый такой микроскоп был создан Максом Кноллем и Эрнстом Руска еще в 1931 году. В 1986 году за его изобретение была вручена Нобелевская премия по физике. Принцип работы такой же, как и у обычного оптического микроскопа. Только вместо света на интересующий объект направляется поток электронов, который фокусируется магнитными линзами. Если оптический микроскоп давал увеличение примерно в тысячу раз, то электронный уже в миллионы раз. Но у него есть и свои недостатки. Во-первых, это необходимость получить для работы достаточно тонкие образцы материалов. Они должны быть прозрачны в электронном пучке, поэтому их толщина варьируется в пределах 20–200 нм. Во-вторых, это то, что образец под воздействием пучков электронов может разлагаться и приходить в негодность.

Похожий принцип работы использует и другой микроскоп из класса сканирующих зондовых микроскопов – атомно-силовой. Здесь есть и игла-зонд, и аналогичный результат – графическое изображение рельефа поверхности. Но измеряется не величина тока, а силовое взаимодействие между поверхностью и зондом. В первую очередь подразумеваются силы Ван-дер-Ваальса, но также и упругие силы, капиллярные силы, силы адгезии и другие. В отличие от сканирующего туннельного микроскопа, который может применяться только для исследования металлов и полупроводников, атомно-силовой позволяет изучить и диэлектрики. Но это не единственное его преимущество. Он позволяет не только заглянуть в наномир, но и манипулировать атомами.

Молекула пентацена. А – модель молекулы. В – изображение, полученное сканирующим туннельным микроскопом. С – изображение, полученное атомно-силовым микроскопом. D –несколько молекул (АСМ). А, B и C в одном масштабе. / © Science

Молекула пентацена. А – модель молекулы. В – изображение, полученное сканирующим туннельным микроскопом. С – изображение, полученное атомно-силовым микроскопом. D –несколько молекул (АСМ). А, B и C в одном масштабе. / © Science

Наномашины

В природе на наноуровне, то есть на уровне атомов и молекул, происходит множество процессов. Мы можем, конечно, и сейчас оказывать влияние на то, как они протекают. Но делаем мы это практически вслепую. Наномашины – это адресный инструмент для работы в наномире, это устройства, позволяющие манипулировать одиночными атомами и молекулами. До недавнего времени только природа могла создавать их и управлять ими. Мы в шаге от того дня, когда тоже сможем делать это.

Что могут наномашины? Возьмем, к примеру, химию. Синтез химических соединений основан на том, что мы создаем необходимые условия для протекания химической реакции. В результате на выходе имеем некое вещество. В будущем химические соединения можно будет создать, условно говоря, механическим путем. Наномашины смогут соединять и разъединять отдельные атомы и молекулы. В результате будут образовываться химические связи или, наоборот, имеющиеся связи будут рваться. Наномашины-строители смогут создавать из атомов нужные нам молекулярные конструкции. Нанороботы-химики – синтезировать химические соединения. Это прорыв в создании материалов с заданными свойствами. Одновременно это прорыв в деле защиты окружающей среды. Несложно предположить, что наномашины – прекрасный инструмент для переработки отходов, которые в обычных условиях сложно поддаются утилизации. Тем более если говорить о наноматериалах. Ведь чем дальше заходит технический прогресс, тем сложнее окружающей среде справляться с его результатами. Слишком долго происходит разложение в природной среде новых материалов, придуманных человеком. Всем известно, как долго разлагаются выброшенные пластиковые пакеты – продукт предыдущей научно-технической революции. Что будет с наноматериалами, которые рано или поздно окажутся мусором? Их переработкой должны будут заняться те же наномашины.

Ученые давно уже говорят о механосинтезе. Это химический синтез, который осуществляется благодаря механическим системам. Его преимущество видится в том, что он позволит позиционировать реагирующие вещества с высокой степенью точности. Вот только пока не существует инструмента, который позволил бы эффективно осуществлять его. Конечно, такими инструментами могут выступать существующие сегодня атомно-силовые микроскопы. Да, они позволяют не только заглянуть в наномир, но и оперировать атомами. Но они как объекты макромира не лучшим образом подходят для массового применения технологии, чего нельзя сказать о наномашинах. В будущем на их основе будут создавать целые молекулярные конвейеры и нанофабрики.

Но уже сейчас имеются целые биологические нанофабрики. Они существуют в нас и во всех живых организмах. Вот поэтому от нанотехнологий ожидают прорывов в медицине, биотехнологиях и генетике. Создав искусственные наномашины и внедрив их в живые клетки, мы можем добиться впечатляющих результатов. Во-первых, наномашины могут быть использованы для адресной переноски лекарственных препаратов к нужному органу. Нам не придется принимать лекарство, понимая, что только часть его попадет к больному органу. Во-вторых, уже сейчас наномашины берут на себя функции редактирования генома. Технология CRISPR/Cas9 , подсмотренная у природы, позволяет вносить изменения в геном как одноклеточных, так и высших организмов, и в том числе человека. Причем речь идет не только о редактировании генома эмбрионов, но и генома живых взрослых организмов. И займутся всем этим наномашины.

Нанорадио

Если наномашины – это наш инструмент в наномире, то ими как-то нужно управлять. Впрочем, и здесь что-то принципиально новое придумывать не придется. Один из наиболее вероятных способов управления – это радио. Первые шаги в этом направлении уже сделаны. Учеными из Национальной лаборатории Лоуренса в Беркли во главе с Алексом Зеттлом создан радиоприемник из всего одной нанотрубки диаметром около 10 нм. Причем нанотрубка выступает одновременно в качестве антенны, селектора, усилителя и демодулятора. Принимать нанорадиоприемник может как FM, так и AM волны с частотой от 40 до 400 МГц. Использовать устройство, по словам разработчиков, можно не только для приема радиосигнала, но и для его передачи.

В качестве тестового сигнала послужила музыка Эрика Клэптона и группы Beach Boys. Ученые передали сигнал из одной части комнаты в другую, где находилось созданное ими радио. Как оказалось, качество сигнала было достаточно хорошим. Но, естественно, предназначение такого радиоприемника не прослушивание музыки. Радиоприемник может быть применен во множестве наноустройств. К примеру, в тех же нанороботах-доставщиках лекарств, которые будут пробираться к нужному органу по кровотоку.

Наноматериалы

Нульмерные (0D) – нанокластеры, нанокристаллы, нанодисперсии, квантовые точки. Ни одна из сторон 0D-наноматериала не выходит за пределы нанодиапазона. Это материалы, в которых наночастицы изолированы друг от друга. Первые сложные нульмерные структуры, полученные и применяемые на практике, – это фуллерены. Фуллерены – это сильнейшие антиоксиданты из известных на сегодняшний день. В фармакологии с ними связывают надежды на создание новых лекарств. Производные фуллеренов хорошо показывают себя в лечении ВИЧ. А при создании наномашин фуллерены могут быть использованы в качестве деталей. Наномашина с фулереновыми колесами на изображении выше.

Одномерные (1D) – нанотрубки, волокна и прутки. Их длина составляет от 100 нм до десятков микрометров, но диаметр укладывается в нанодиапазон. Самые известные одномерные материалы сегодня – это нанотрубки. Они обладают уникальными электрическими, оптическими, механическими и магнитными свойствами. В ближайшее время нанотрубки должны найти применение в молекулярной электронике, биомедицине, в создании новых сверхпрочных и сверхлегких композиционных материалов. Уже используются нанотрубки и в качестве игл в сканирующих туннельных и атомно-силовых микроскопах. Выше говорилось о создании на основе нанотрубок нанорадио. Ну и, конечно, на углеродные нанотрубки возлагается надежда как на материал для троса космического лифта.

Двумерные (2D) – пленки (покрытия) нанометровой толщины. Это всем известный графен – двумерная аллотропная модификация углерода (за графен вручена Нобелевская премия по физике за 2010 год). Менее известные общественности силицен – двумерная модификация кремния, фосфорен – фосфора, германен – германия. В прошлом году ученые создали борофен, который, в отличие от других двумерных материалов, получился не плоским, а гофрированным. Расположение атомов бора в виде гофрированной структуры обеспечивает уникальные свойства полученного наноматериала. Борофен претендует на лидерство по прочности на растяжение среди двумерных материалов.

Двумерные материалы должны найти применение в электронике, при создании фильтров для опреснения морской воды (графеновые мембраны) и создании солнечных батарей. Уже в ближайшее время графен может заменить окись индия – редкого и дорогого металла – при производстве сенсорных экранов.

Трехмерные (3D) наноматериалы – это порошки, волоконные, многослойные и поликристаллические материалы, в которых вышеперечисленные нульмерные, одномерные и двумерные наноматериалы являются структурными элементами. Плотно прилегая друг к другу, они образуют между собой поверхности раздела – интерфейсы.

Пройдет еще немного времени и нанотехнологии – технологии манипуляции наноразмерными объектами станут привычным явлением. Так же, как привычными стали технологии микроэлектроники, подарившие нам компьютеры, мобильные телефоны, спутники и многие другие атрибуты современной информационной эпохи. Но влияние нанотехнологий на жизнь будет куда шире. Нас ожидают изменения практически во всех сферах деятельности человека.

Концепция нанотехнологии впервые была введена в научную практику американским физиком и лауреатом Нобелевской премии Ричардом Фейнманом в 1959 году. Последующее развитие науки и техники подтвердило актуальность теории Фейнмана – наноматериалы стали одним из ключевых разделов современного материаловедения. Фейнман описал также своё видение использования машин, предназначенных для создания оборудования меньших размеров вплоть до молекулярного уровня.

В определении японского учёного Норио Танигучи, нанотехнология состоит из целенаправленной совокупности методов обработки, разделения, консолидации и деформации вещества на уровне и с помощью одного атома или одной молекулы.

Структура нанокристаллических материалов

технология наноматериалы

Продукты нанотехнологий с типичным размером зерна менее 100 нм благодаря своим новым свойствам и разнообразным возможностям применения привлекает возрастающий интерес во всем мире. Эти структуры традиционно подразделяются на:

  • одномерные (или слоистые);
  • двумерные (стержневые или проволочные);
  • трёхмерные (или равноосные).

Одно- и и двумерные структуры широко исследуются для нанесения покрытий в электронных компонентах, а с трёхмерными равноосными структурами ведутся эксперименты по их использованию в объёмных изделиях. Из-за небольшого размера зерна и, как следствие, большой объёмной доле атомов на границах зерен (или вблизи них), наноматериалы демонстрируют свойства, которые часто превосходят свойства обычных крупнозернистых материалов.

Установлено, что структура кристаллитов по существу такая же, как у крупнозернистых наноматериалов, с той разницей, что параметры решётки в нанокристаллическом состоянии немного увеличены (от 0,2% до 0,8%). Впрочем, это касается только изделий, которые получены путём кристаллизации аморфной фазы.

Имеется два предположения относительно структур границ зёрен - одно предполагает наличие газоподобного беспорядка на границах другое - что структура границ зерен одинакова как в нанокристаллических, так и в крупнозернистых материалах. Последнее предположение получило более широкое признание.

Классификация наноматериалов

нанокристаллические материалы

Большинство современных нано материалов можно разделить на четыре типа:

  • Продукты на углеродной основе;
  • Материалы на основе металлов;
  • Дендримеры;
  • Композиты.

Продукты на основе углерода состоят в основном из углерода, чаще всего принимающего форму полых сфер, эллипсоидов или трубок. Сферические и эллипсоидальные углеродные наноматериалы называют фуллеренами, а цилиндрические - нанотрубками. Эти частицы имеют множество потенциальных применений, в том числе улучшенные плёнки и покрытия, более прочные и легкие материалы, а также приложения в электронике.

Материалы на основе металлов включают квантовые точки, нанозолото, наносеребро и оксиды металлов, например, диоксид титана. Квантовая точка представляет собой плотно упакованный кристалл полупроводника, состоящий из сотен или тысяч атомов, размер которого составляет от нескольких нанометров до нескольких сотен нанометров. При изменении размера квантовых точек их оптические свойства также меняются.

Дендримеры -это наноразмерные полимеры, состоящие из разветвлённых элементов. Поверхность дендримера имеет многочисленные концы цепей, которые можно приспособить для выполнения определенных химических функций, в частности, при проведении реакций катализа. Поскольку трёхмерные дендримеры содержат внутренние полости, в которые могут быть помещены другие молекулы, они могут быть полезны для доставки лекарств.

Композиты объединяют одни наночастицы с другими, превращаясь в крупногабаритные сыпучие продукты. Например, наноразмерные глины уже добавляются к различным продуктам - от автомобильных запчастей до упаковки – с целью улучшения механических, термических, барьерных и огнестойких свойств.

Способы получения

нано материалы

Производственные подходы к синтезу различных наноструктур подразделяются на две категории: нисходящие и восходящие, которые различаются по степени качества, скорости и стоимости.

Нисходящий подход - это, по сути, разделение сыпучих веществ для получения наноразмерных частиц. Этого можно достичь, используя передовые методы, такие как точное машиностроение и литография, которые были разработаны и оптимизированы промышленностью в течение последних десятилетий.Точное машиностроение поддерживает большую часть микроэлектронной промышленности на протяжении всего производственного процесса, а высокая производительность может быть достигнута за счет использования комбинации улучшений. К ним относятся использование передовой наноструктуры на основе алмаза или кубического нитрида бора и датчиков для контроля размера в сочетании с числовым программным управлением и передовыми технологиями сервоприводов. Литография включает в себя формирование рисунка на поверхности посредством воздействия света, ионов или электронов и осаждение материала на эту поверхность для получения желаемого результатаа.

Технология наноматериалов базируется на основе синтеза, при этом исходный образец может находиться в парообразном, жидком или твёрдом состоянии. Исторически первым методом, который был использован для синтеза нанокристаллических металлов и сплавов был метод конденсации инертного газа, при которой испаряющееся вещество закаливается на холодную подложку.

получение наноматериалов

Впоследствии также использовались плазменная обработка и другие методы физического и химического осаждения из паровой фазы. При электроосаждении и быстром затвердевании в качестве исходного сырья используется жидкое состояние веществ.

Механическое легирование, сварка трением с перемешиванием, сильная пластическая деформация, искровая эрозия, износ при скольжении и многократная холодная прокатка также приводят к образованию нанокристаллических структур. Некоторые из этих методов используются в достаточно крупных производственных масштабах для конденсации инертного газа, расположения электродов и при механическом легировании

Остальные пока не вышли из стадии лабораторных исследований.

Выбор метода синтеза нанокристаллических материалов определяется следующими факторами:

  • Простотой процесса;
  • Его экономической целесообразностью;
  • Масштабируемостью;
  • Желаемой чистотой конечного продукта.

Большинство упомянутых технологий производят нанокристаллическую заготовку в форме порошка. Применение таких структур требует, чтобы порошки были уплотнены до максимально возможных значений, когда пористость практически отсутствует. Уплотнение с полным связыванием частиц требует воздействия на порошок высоких температур и давлений в течение продолжительных периодов времени, что приводит к укрупнению микроструктурных особенностей. Однако сохранение материала в сверхплотном состоянии возможно лишь при условии, что порошок не подвергается воздействию высоких температур в течение длительных периодов времени. Таким образом, успешное уплотнение до полной плотности требует инновационных методов уплотнения.

нанотехнологичные материалы

Известно, что рассматриваемые вещества имеют преобладающую долю атомов на границах зерен, поэтому эффективный коэффициент диффузии нанокристаллических материалов намного выше, чем у крупнозернистых структур того же состава. Это будет способствовать достижению полной консолидации наноматериалов при температурах на 300…400 ° C ниже, чем те, которые требуются для крупнозернистых материалов. Успешное уплотнение нанокристаллических порошков может достигаться:

  • Электроразрядным уплотнением;
  • Плазменным спеканием;
  • Ударным (взрывным) уплотнением;
  • Горячим изостатическим прессованием;
  • Гидростатической экструзией;
  • Прокаткой предварительно напряжённого порошка.

Уплотнение не требуется, если порошок может использоваться в исходном состоянии, например, в виде суспензии.

Свойства наноматериалов

При выяснении свойств данных веществ решающим фактором оказывается их термоустойчивость. Из-за своего малого размера зерна, нанокристаллические материалы с большой площадью поверхности обладают сильной потенциальной энергией роста зёрен. Знание термической стабильности важно как по научным, так и по технологическим причинам. С технологической точки зрения термостойкость важна для консолидации нанокристаллического порошка без огрубления микроструктуры. С научной точки зрения было бы полезно проверять, отличается ли поведение роста зёрен в нанокристаллических материалах от подобных процессах, протекающих в крупнозернистых структурах.

Энергию активации роста зёрен в нанокристаллических материалах обычно сравнивают с энергией активации решёточной, либо межзёренной диффузии в крупнозернистых веществах. Отмечено, что энергия активации роста зерен в нанокристаллических материалах более выгодна по сравнению с межзёренной диффузией. При этом рост зёрен в нанокристаллических материалах, полученных любым способом, очень мал до достаточно высокой температуры. Это сопротивление росту зёрен объясняется такими факторами, как узким распределением зёрен по своим размерам, равноосной морфологией зёрен, низкоэнергетической границей зёрен.

наноматериалы наноструктуры

Из-за очень маленького размера зерна и, как следствие, высокой плотности поверхностей раздела, нанокристаллические материалы обладают множеством свойств, которые отличаются (и часто превосходят) от свойств обычных крупнозернистых образцов. К ним относятся:

  • Повышенная прочность/твёрдость;
  • Повышенный коэффициент диффузии;
  • Повышенная пластичность/вязкость;
  • Уменьшенный модуль упругости;
  • Повышенное удельное электрическое сопротивление;
  • Повышенная удельная теплоемкость;
  • Более высокие значения коэффициента теплового расширения;
  • Более низкая теплопроводность;
  • Отличные магнитомягкие свойства.

Следует отметить, что первые результаты исследования свойств нанокристаллитов не очень надёжны, в основном из-за значительной пористости, присутствующей в исследуемых образцах. Например, в керамических образцах при комнатной температуре не удаётся воспроизвести пластичность. Некоторые исследователи утверждают, что коэффициент теплового расширения увеличивается с уменьшением размера зерна. В то же время другие сообщают о том, что данный параметр примерно одинаков как для нанокристаллических, так и для крупнозернистых материалов. Аналогичным образом, уменьшение модуля упругости может быть связано с пористостью и трещинами, присутствующими в консолидированном продукте.

Таким образом, важно сравнивать между собой свойства только полностью плотных материалов, не имеющих пористости, трещин или неоднородностей.

функциональные наноматериалы

Наиболее важными для практического применения являются механические свойства. Достоверно устанавливать их сложно из-за отсутствия достаточно больших и бездефектных образцов, необходимых при испытаниях. Поэтому наиболее распространенным показателем для оценки механических свойств нанокристаллических материалов является твёрдость.

В результате испытаний установлено, что увеличение твёрдости и предела текучести связано с уменьшением размера зерна. Поскольку существующие экспериментальные методики разработаны на основе активности дислокаций в крупнозернистых образцах, допустимо считать, что в нанокристаллических материалах активность дислокаций минимальна и, следовательно, упрочнения не происходит. Приравнивая силу отталкивания дислокаций к приложенному усилию силе, можно вычислить критический размер зерна, ниже которого будет наблюдаться размягчение размера зерна. По расчетам, это значение составляет около 10…30 нм для большинства материалов.

Прочность нанокристаллитов намного выше, чем у крупнозернистых материалов. Однако другой подход к синтезу высокопрочных продуктов, по-видимому, заключается в создании нанокристаллических композитов с частицами, размерная фаза которых диспергирована в аморфной матрице. Это может быть достигнуто путём получения полностью аморфной фазы такими методами, как быстрым затвердеванием из расплава, механическим легированием, а также низкотемпературной первичной кристаллизацией, которая воздействует на образование нанокристаллической фазы.

Области применения

получение наноматериалов

При существующем уровне развития науки и техники наноматериалы характеризуются нестабильностью свойств. Например, в зависимости от способа получения исходного образца прочность нанокомпозитов намного выше, чем их аморфных аналогов того же химического состава.

Широкое использование и поиск технологических приложений требуют экономичного производства хорошо изученных нанокристаллитов в промышленных масштабах и с воспроизводимыми свойствами.

В настоящее время нановещества используются:

  • При производстве очков, устойчивых к царапинам;
  • Стойких к растрескиванию красок;
  • Прочных настенных покрытий;
  • Прозрачных солнцезащитных кремов;
  • Пятноотталкивающих тканей;
  • Самоочищающихся окон;
  • Керамических покрытий для солнечных батарей.

Наноматериалы, которые используются в качестве наполнителя в шинах, могут улучшить сцепление с дорогой, уменьшая тормозной путь во влажных условиях, а жёсткость кузова автомобиля можно повысить за счет использования стали, упрочненной нановеществами. Новые методы гель-напыления позволяют экономично наносить просветляющие слои диоксида кремния или других материалов нанометровой толщины на дисплеи или панели. Ультратонкие прозрачные слои на серебряной основе можно использовать для обогреваемых оконных стекол, которые очищаются от запотевания и льда.

Установлено, что использование нанотехнологий перспективно в производстве, переработке, обеспечении безопасности и упаковке пищевых продуктов. Не исключено, что нанотехнологии позволят манипулировать молекулярными формами пищевых продуктов, чтобы обеспечить больше возможностей повышения качества и пищевой ценности, а также более низкие затраты.

Наноматериалы — материалы, созданные с использованием наночастиц и/или посредством нанотехнологий, обладающие какими-либо уникальными свойствами, обусловленными присутствием этих частиц в материале. К наноматериалам относят объекты, один из характерных размеров которых лежит в интервале от 1 до 100 нм [1] . Способы получения наноматериалов можно разделить на две группы:

Согласно 7-ой Международной конференции по нанотехнологиям (Висбаден, 2004) [2] выделяют следующие типы наноматериалов:

  • нанопористые структуры и нановолокна (коллоиды)
  • наноструктурированные поверхности и пленки
  • нанокристаллы и нанокластеры.

Сами наноматериалы делят по назначению [3] на:

  • Функциональные
  • Композиционные
  • Конструкционные.

По количеству измерений [4] :

  • нульмерные/ квазинульмерные (квантовые точки, сфероидные наночастицы);
  • одномерные/ квазиодномерные (квантовые проводники, нанотрубки);
  • двумерные/квазидвумерные (тонкие пленки, поверхности разделов);
  • трехмерные/квазитрехмерные (многослойные структуры с наноразмерными дислокациями, сверхрешетки, нанокластеры).

Свойства наноматериалов, как правило, отличаются от аналогичных материалов в массивном состоянии. Например, у наноматериалов можно наблюдать изменение магнитных, тепло- и электропроводных свойств. Для особо мелких материалов можно заметить изменение температуры плавления в сторону ее уменьшения.

Для наноматериалов актуальна проблема их хранения и транспортировки. Обладая развитой поверхностью, материалы очень активны и охотно взаимодействуют с окружающей средой, прежде всего это касается металлических наноматериалов. Применение наноматериалов пока не очень широко развито, поскольку подробное их изучение только началось и сейчас идет накопление знаний об этих материалах. В генной инженерии векторы на основе наноматериалов используются для доставки биологически активных веществ в клетки [5] .

См. также

Примечания

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Добавить иллюстрации.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Наноматериал" в других словарях:

Наноматериал — материал, содержащий структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и благодаря этому обладающий качественно новыми свойствами, в том числе заданными функциональными и эксплуатационными… … Энциклопедия терминов, определений и пояснений строительных материалов

наноматериал — сущ., кол во синонимов: 1 • материал (306) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

наноматериал — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN nanomaterial … Справочник технического переводчика

наноматериал — Термин наноматериал Термин на английском Синонимы Аббревиатуры Связанные термины биомиметические наноматериалы, композиционные материалы, полимерные, криопомол, многофункциональные наночастицы в медицине, наноионика, векторы на основе… … Энциклопедический словарь нанотехнологий

Побочный наноматериал — incidental nanomaterial – наноматериал, непреднамеренно образующийся в ходе процесса. К понятию “процесс” относят технологические, биотехнологические и иные процессы. 2. См. ИСО/ТС 27628:2007, статья 2.21, определение термина … Энциклопедия терминов, определений и пояснений строительных материалов

Промышленный наноматериал — manufactured nanomaterial – наноматериал с определенными свойствами или определенным составом, преднамеренно изготовленный для коммерческих целей. [ГОСТ Р 55416 2013/ISO/TS 80004 1:2010] Рубрика термина: Общие термины Рубрики энциклопедии:… … Энциклопедия терминов, определений и пояснений строительных материалов

Технический наноматериал — engineered nanomaterial – наноматериал, изготовленный с конкретной целью или для реализации определенной функции. [ГОСТ Р 55416 2013/ISO/TS 80004 1:2010] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное оборудование, Абразивы … Энциклопедия терминов, определений и пояснений строительных материалов

Общие термины — Термины рубрики: Общие термины Абсолютно чёрное тело Абсолютный минимум Абсолютный показатель ресурсоиспользования и ресурсосбережения … Энциклопедия терминов, определений и пояснений строительных материалов

наноробот — Термин наноробот Термин на английском nanorobot Синонимы nanobot Аббревиатуры Связанные термины биологические моторы, биомедицинские микроэлектромеханические системы, многофункциональные наночастицы в медицине, наноматериал Определение Автономная … Энциклопедический словарь нанотехнологий

Источник: Вячеслав Бернат. Фото: Berkeley Laboratory, California Institute of Technology, IBM, Intech Open Science, Inverstor Intel, Massachusetts Institute of Technology, Nature, Nobel Committee, Wikipedia

Нанотехнологии


Иллюстрация размера в 1 нм, собранная из атомов меди инженерами IBM.

Прежде всего, нанометр (нм) — это одна миллиардная часть метра. Несколько фактов, чтобы ощутить масштаб: щетина растет со скоростью 5 нм в секунду, диаметр двойной спирали ДНК составляет примерно 2 нм, а толщина человеческого волоса — от 20 до 150 тысяч нм в зависимости от цвета. В то же время диаметр атома гелия — 0,1 нм. Таким образом, нанотехнологии подразумевают под собой создание и манипулирование многоатомными структурами, размеры которых хотя бы в одном измерении (длина, ширина или толщина) не превышают 100 нм.

Дело в том, что свойства вещества, состоящего из таких частиц, значительно отличаются от того же вещества в более привычном для нас (компактном) виде. С приближением к атомарному масштабу сильно возрастает удельная поверхность материалов (суммарная площадь поверхности, деленная на массу). Сильно возрастает роль квантово-механических эффектов. Зачастую именно они определяют новые удивительные и часто неожиданные свойства наноструктурированных материалов.

Для примера: в наноразмере существенно возрастает способность веществ вступать в химические реакции. В повседневной жизни алюминий — инертный металл, в фольге из которого можно спокойно запекать мясо в духовке. А вот наночастицы алюминия добавляют в качестве катализатора к твердому ракетному топливу, что сильно увеличивает его тепловыделение и эффективность.

Также значительно изменяются оптические свойства веществ. Например, ничем не примечательный в макромире полупроводник — селенид кадмия — в наномасштабе флуоресцирует всеми цветами радуги, причем цвет зависит лишь от диаметра частиц. Это свойство флуоресцентных наночастиц (так называемых квантовых точек) уже давно используется в лазерах и биологии, а также имеет хорошие шансы найти применение в производстве гибких цветных дисплеев и в медицинской диагностике.



Листья лотоса и многих других тропических растений практически не задерживают воду на своей поверхности. Наноматериалы, копирующие структуру поверхности листа, уже сейчас продаются в качестве супергидрофобного (водоотталкивающего) и суперолеофобного (маслоотталкивающего) покрытия.

Зная исходный принцип, можно разработать покрытие с совершенно противоположными свойствами — супергидрофильное. Такие материалы можно использовать для изготовления мембранных фильтров для глубокой очистки воды. В нашем организме их роль играют белки аквапорины, в большом количестве содержащиеся в почечных канальцах.

Производство наноматериалов

Естественно, какими бы чудесными ни были свойства наноматериалов, главным критерием их массового внедрения является дешевизна производства. Как правило, в лаборатории ученые имеют дело с небольшими образцами. Так, описанный выше наноструктурированный нитрид титана был получен в виде кубика с ребром 1 мм. Этого достаточно, чтобы измерить его характеристики, но согласитесь — говорить о промышленном производстве еще рано.


Ниже перечислены некоторые последние достижения наноматериаловедения, которые, возможно, через несколько лет изменят наш мир до неузнаваемости.

Графен

Это вещество, за открытие которого была выдана Нобелевская премия по физике в 2010 году, является поистине чемпионом по количеству опубликованных о нем научных статей. И заслуженно: спектр уникальных свойств и применений графена поражает воображение. И это несмотря на то, что получить материал можно с помощью всего лишь куска графита и канцелярского скотча! Некоторые оптимисты уже сейчас считают, что XXI век будет веком графена. Что же в нем такого особенного?


В первую очередь, в отличие от всех предметов, окружающих нас, графен — двухмерный материал. По сути это плоскость, состоящая из атомов углерода, образующих шестиугольники, как в пчелиных сотах. Поэтому графен обладает самой высокой удельной поверхностью — он сам по себе лишь поверхность.


Как и его трехмерный прародитель (графит), графен — хороший проводник. При этом благодаря двухмерности его удельное сопротивление при комнатной температуре ниже, чем у серебра, а теплопроводность в 10 раз выше, чем у меди. Стоит ли упоминать, что транзисторы на основе графена намного быстрее кремниевых? И это все при том, что материал прозрачный и гибкий.

Графен обладает также уникальными механическими свойствами: он тверже и прочнее, чем алмаз, но при этом может быть растянут на четверть своей длины. Так, по словам нобелевских лауреатов 2010 года, графеновый гамак площадью в квадратный метр способен выдержать вес 4-килограммового кота и при этом сам будет весить меньше миллиграмма — как кошачий ус.


В довесок ко всем уникальным свойствам графена их можно еще и регулировать, например с помощью магнитного поля, различных подложек либо путем создания композитных материалов. А если проделать в нем нанометровые отверстия, то из графена можно делать эффективные фильтры для опреснения воды!


В отличие от многих других наноматериалов массовое производство графена относительно дешево и уже активно осваивается ведущими производителями электроники.

Топологические изоляторы

Это материалы, являющиеся диэлектриками внутри, но имеющие на поверхности атомы, в которых электроны могут находиться близко к зоне проводимости. Поэтому движение электронов в топологических изоляторах возможно лишь по поверхности. Как следствие, возникающее сопротивление минимально, и электрон может легко разгоняться практически до скорости света без обратного рассеяния и разогревания проводящего слоя.

Принципиальная возможность их существования была предсказана в 2007 году, и уже вскоре были получены материалы, обладающие нужными свойствами: селенид и теллурид висмута.

Благодаря своим свойствам топологические изоляторы могут в недалеком будущем стать заменой полупроводникам. Дополнительным их преимуществом над полупроводниками является малая чувствительность к примесям. К тому же по сути они являются одновременно и проводниками, и собственными изоляторами.


Мемристоры


В 2008 году группа ученых из Hewlett-Packard сообщила в журнале Nature о первом реальном устройстве такого типа. Оно состояло из нанопленки (50 нм) оксида титана, зажатой между титановым и платиновым электродами (каждый в 5 нм толщиной). Уникальным свойством прибора является его способность изменять собственное сопротивление и таким образом хранить информацию, а размеры (к 2010 году инженеры HP довели их до 3×3 нм) и скорость работы (1 ГГц) делают очевидным их огромный потенциал.


Метаматериалы

Создавать что-то новое — в человеческой природе. Если чего-то не существует самого по себе, то почему бы это не сделать. Метаматериалы — это полностью искусственные устройства, обладающие свойствами, которых в природе попросту нет. Они состоят из упорядоченных наноэлементов, например наноэлектрических цепей. Строгая организация усиливает свойства отдельных элементов и позволяет метаматериалам проявлять их в макромире.



Другое применение метаматериалов — это так называемые суперлинзы. Они состоят из искусственного материала, имеющего отрицательный коэффициент преломления. Суперлинзы позволяют фокусировать свет на участке меньше длины волны, открывая тем самым новые горизонты в оптической микроскопии: они позволят непосредственно наблюдать биологические макромолекулы (ДНК и белки) и создавать еще более миниатюрные компьютерные чипы. Акустические аналоги суперлинз в будущем улучшат качество УЗИ-диагностики.


Перечислять достижения нанотехнологий можно долго, так же как и фантазировать на тему нашего нанобудущего. Но нужно четко понимать, что нанотехнологии — это не волшебство и не панацея. Технологическая революция — это непрерывный процесс, от каменного века и до наших дней. Он происходит здесь и сейчас, творится руками движимых любопытством людей и для людей.

Перепечатка текста и фотографий Onliner.by запрещена без разрешения редакции. db@onliner.by

Источник: Вячеслав Бернат. Фото: Berkeley Laboratory, California Institute of Technology, IBM, Intech Open Science, Inverstor Intel, Massachusetts Institute of Technology, Nature, Nobel Committee, Wikipedia

Читайте также: