Что такое мыла как их получают почему реакцию щелочного гидролиза жиров называют омылением кратко

Обновлено: 06.07.2024

Мыло – это вещество, которое используется в качестве косметического средства или средства бытовой химии. Это жидкий или твердый продукт, который содержит поверхностно-активные вещества (ПАВ). Эти вещества снижают поверхностное натяжение и увеличивают смачивающую способность воды.

История открытия мыла

Как считают археологи, мыльные растворы были известны еще 5 тыс. лет назад. Тогда мыло представляло собой смесь из золы, животного жира и воды. Полученную смесь кипятили и использовали как очищающее средство. Египтяне в древности применяли соду как мыло. В 1500 г. до н. э. использовали смесь из животного организма, растительных жиров и свинца или карбоната натрия.

Впервые о мыле в Древнем Риме в 77 г. н.э. говорил Плиний Старший. В Русь из Византийской империи пришло не только православие, но и мыло. Особенно поддерживал мыловарение Петр I.

Формула мыла в химии была определена Мишелем Эжен Шеврёль в XIX веке. Ученый установил, что мыло — это смесь натриевых солей жирных кислот. В нашей столице первое производство мыла было открыто во второй половине XIX века. Мыло стоило одну копейку, поэтому его могли покупать даже бедные люди.

Химическая формула мыла

С точки зрения химии, мыло – растворимая соль высших жирных кислот. Как правило, используют соли калия, натрия и аммония. При производстве очищающих средств применяются стеариновая, пальмитиновая, миристиновая, лауриновая и олеиновая кислоты.

Например, формула твердого мыла C17H35COONa, а жидкого – C17H35COOК. В состав мыла также входят красящие вещества и ароматизаторы.

Особенные свойства мыла

Мыло включает в себя анион кислоты и катион металла. Из-за того что щелочное мыло образовано слабыми кислотами и сильными основаниями, оно подвергается гидролизу. Среда таких растворов щелочная (рН>7). В разбавленных мыльных растворах происходит диссоциация на ионы.

Мыло формирует пену благодаря образованию мицелл и высокой поверхностной активности. Остаток кислоты – гидрофобная часть очищающего средства, карбоксильный ион – гидрофильная.

Грязь растворяется в несколько этапов:

  • Гидрофобная часть мыла связывается с гидрофобной частью грязи, которая обволакивается слоем гидрофильных групп.
  • Гидрофильная часть мыла реагирует с водой.
  • Ионы мыла притягивают грязь, которая с потоком воды удаляется с поверхности.

Классификация мыла

I. По особенностям реагирования с водой:

  • растворимые щелочные – калиевые, натриевые и аммониевые соли высших карбоновых кислот;
  • нерастворимые металлические – соли других металлов.

II. По агрегатному состоянию:

  • жидкие – соли калия, аммония;
  • твердые – соли натрия, лития и других металлов.

III. По сферам применения:

  • хозяйственные (применяются для стирки вещей);
  • медицинские (содержат дезинфицирующие средства);
  • туалетные (используются для мытья тела) и др.

Способы получения мыла

  1. Нейтрализация кислот карбонатом натрия
    • RCOOH + Na2CO3 = 2 RCOONa + CO2 + H2O

  2. Нейтрализация кислот щелочью
    • C17H35COOН + NaOH = C17H35COONa + Н2О
    • C17H35COOН + КOH = C17H35COOК + Н2О

  3. Омыление триглицеридов гидроксидом натрия

Процесс изготовления мыла

Сырье для изготовления мыла – животные и растительные жиры или жирозаменители. Жиры, из которых изготавливается мыло, не включают в себя воду и различные примеси.

Очищающее средство в промышленных условиях синтезируют в результате двух стадий.

  • Химическая стадия. Она включает в себя карбонатное омыление, где нейтрализуется около 70 % кислот. Остальная часть кислот нейтрализуются гидроксидом натрия.
  • Механическая стадия. Охлаждение, сушение, шлифование, отделка и упаковка готового материала.

Мыло можно сварить двумя способами.

  1. Прямой способ. В данном случае применяется только хорошо очищенная жировая смесь. В результате образуется мыльный клей, на 67-70% состоящий из жирных кислот. Прямой способ актуален в производстве хозяйственного мыла.
  2. Косвенный способ. Мыльный клей высаливают, т.е. обрабатывают электролитами. Мыльную массу затем разделяют на несколько фаз: ядро, подмыльный клей, подмыльный щелок. Мыльное ядро примерно на 65 % состоит из высших карбоновых кислот. Потом ядро обрабатывают как очищающее средство, полученное прямым способом. Косвенный способ актуален для изготовления декоративные мыла.

Как ПАВ влияют на природу

Водные растворы ПАВ попадают в окружающую среду вместе с промышленными стоками. ПАВ медленно разлагаются и негативно влияют на жизнедеятельность растений и животных, поэтому сточные воды необходимо постоянно очищать. Например, некоторые ПАВ вызывают усиленный рост растительных организмов, что загрязняет чистые реки, озера и т. д. Растения гниют при отмирании, что уменьшает количество кислорода в воде.

Водоемы могут самоочищаться, что достигается разбавлением, оседанием частичек на дно и созданием отложений, разложением органики до аммиака и солей аммония при помощи микробов. Устранить негативные последствия действия ПАВ сложно, ведь ПАВ в водоемах присутствуют в виде гомологов и изомеров. Если концентрация ПАВ в смеси близка к критической, то вредные свойства всех веществ в смеси суммируются.

ПАВ можно классифицировать на две группы:

  • быстро разрушающиеся;
  • практически неразрушающиеся и накапливающиеся в опасных концентрациях.

ПАВ опасны для природы, т. к. они понижают поверхностное натяжение. Если в водоемах поверхностное натяжение изменяется, то концентрация кислорода в воде снижается. Это приводит к развитию биомассы водных растений и гибели водных животных. Но ПАВ могут быть не только вредными, но и безопасными. Некоторые ПАВ распадаются на углеводы.

В организм человека или животного ПАВ попадают с пищей, водой и через кожу. ПАВ могут вызывать аллергию, которые иногда сопровождаются осложнениями.

Гидролиз жиров (в отличие от гидролиза сложных эфиров) протекает необратимо и приводит в результате к образованию не карбоновых кислот, а их солей которые называют МЫЛАМИ.
Поэтому гидролиз жиров в щелочной среде называют ОМЫЛЕНИЕМ ЖИРОВ.

Влада,
гидролиз сложных эфиров (если водой) он обратим, если щелочной гидролиз, то и как у жиров необратим.
Для смещения равновесия в сторону обр. продукта гидролиза его проводят в щелочной среде. В этих условиях гидролиз жиров протекает необратимо и приводит к обр. не карбоновых к-т, а их солей, которые называются малами. Поэтому гидролиз жиров в щелочной среде называют омылением жиров. При омылении жиров образуется глизерин и мыла-натриевые или каливые соли высших карбоновых кислот.

В каких условиях протекает щелочной гидролиз жиров (омыление). Для каких целей используется. С помощью какой реакции можно получить стеарат натрия. Что это за вещество и как оно используется?

мыло фото

С химической точки зрения мыла представляют собой со­ли выс­ших жир­ных (C8–C18), нафтеновых или смоляных кислот.

В бы­товом смысле — это технические продукты, обладающие моющим действием.

Классификация мыла

Существует несколько классификаций мыл.

По растворимости мыла делят на:

  • Растворимые щелочные мыла — калиевые, натриевые, аммониевые соли жирных кислот. В зависимости от природы катиона мыла растворимость в воде увеличивается в ряду: Li + — Na + — K + — NH4 +
  • нерастворимые металлические мыла — соли поливалентных металлов (Ca, Mg, Ni, Mn, Al, Co, Pb).

По консистенции:

  • Жидкие мыла – соли калия, аммония
  • Твердые мыла – соли натрия, лития, поливалентных металлов

По назначе­нию:

  • хозяйственные,
  • туалетные,
  • тех­ни­че­ские,
  • ме­ди­цин­ские,
  • спе­ци­аль­ные

По спо­со­бу по­лу­че­ния:

  • клее­вые,
  • яд­ро­вые,
  • пи­ли­ро­ван­ные.

Химические способы получения мыла

Производство мыла (мыловарение) довольно длительный и сложный процесс, состоящий из нескольких стадий.

Если рассматривать только химические реакции, лежащие в основе получения мыла, то как уже было рассмотрено мыла можно получить при щелочном гидролизе жиров, при этом образуются глицерин и соли высших карбоновых кислот – мыла. Кроме этого мыла получаются при нейтрализации высших карбоновых кислот гидроксидом натрия или калия или углекислым натрием:

  • Омыление триглицеридов гидроксидами натрия или калия

получение мыла - щелочной гидролиз жиров

  • Нейтрализация высших карбоновых кислот гидроксидом натрия (каустической содой) или гидроксидом калия

Твердые мыла получают при растворении высших карбоновых кислот в водном растворе гидроксида натрия, жидкие мыла — при растворении высших карбоновых кислот в водном растворе гидроксида калия.

получение мыла - нейтрализация кислот щелочами

  • Нейтрализация высших карбоновых кислот углекислым натрием (кальцинированной содой):

получение мыла - нейтрализация кислот карбонатом натрия

Промышленное получение мыла (варка мыла)

Для производства мыла в промышленности используют как синтетические жирные (высшие) кислоты, так и животные жиры, растительные масла, канифоль.

Для получения хозяйственных мыл применяют саломас с температурой плавления 46–60°С, для туалетного мыла — с температурой плавления 39–43°С.

Салома́с — это твёрдый жир, получаемый в промышленности путём гидрогенизации жидких жиров, в основном растительных масел.

Все жиры, используемые при варке мыла, не должны содержать воду и механические примеси.

Жидкие растительные масла применяют в мыловарении всех видов жидких хозяйственных и туалетных мыл. Наиболее ценным из является хлопковое масло, содержащее до 30 % насыщенных высших кислот, в основном пальмитиновой. Также используют и другие масла, такие как подсолнечное, соевое, кокосовое, пальмовое.

Введение небольших количеств жидких растительных масел в рецептуру хозяйственных мыл способствует снижению температуры их застывания.

Внесение 10–15 % канифоли увеличивает растворимость и пластичность мыла.

Основные стадии варки мыла

В промышленности мыла получают в две стадии – первая стадия химическая, вторая — механическая:

  • Химическая стадия – варка мыла. Вначале проводят карбонатное омыление, при котором нейтрализуется около 70 % свободных жирных кислот. Затем проводят каустическое доомыление – нейтрализация оставшихся кислот гидроксидом натрия.
  • Механическая стадия – охлаждение, сушка, шлифовка, отделка и упаковка готового продукта

Способы варки мыла

Варку мыла (химическая стадия) можно осуществить прямым и косвенным способом.

Для варки мыла прямым способом исходная жировая смесь должна быть хорошо очищена. Этим способом проводят нейтрализацию жировой смеси растворами содопродуктов и получают мыльный клей, содержащий 67–70 % жирных кислот. Далее его подвергают механической очистке — охлаждению, сушке, шлифовке, отделке. Прямой способ используется при варке хозяйственного мыла.

При варке мыла косвенным способом полученный прямым способом мыльный клей, подвергают дальнейшей обработке растворами электролитов, т.е. проводят высаливание. При этом происходит разделение мыльной массы на фазы: ядро и подмыльный щелок или ядро, подмыльный клей, подмыльный щелок. Полученное мыльное ядро в этом случае содержит 60–63 % жирных кислот. Далее полученное мыльное ядро обрабатывают подобно мылу, сваренному прямым способом. В качестве электролитов используют NaCl, NaOH. Косвенный способ применим для варки мыла из неочищенного жирового сырья. Варка мыла косвенным способом позволяет получить мыло высокой степени чистоты.

Жидкое мыло готовят из растительных масел, канифоли, таллового масли и др. прямым или косвенным способом. В качестве основания применяют соединения калия (KOH, K2CO3).

Если при варке мыла использовалось сырье из животных или растительных жиров, то после отделения ядра выделяют образующийся побочный продукт – глицерин. Глицерин широко применяют в различных отраслях производства.

Кратко схему производства мыла можно представить следующим образом:

Схема производства мыла

Моющие свойства мыла

Итак, мыла – соли высших жирных кислот – состоят из аниона жирной кислоты и катиона металла (чаще всего натрия или калия).

В вод­ных рас­тво­рах ще­лоч­ные мыла подвергаются гидролизу, т.к. образованы сла­быми ки­слотами и силь­ными ос­но­ва­ниями. Их рас­тво­ры име­ют ще­лоч­ную ре­ак­цию (рН>7). В сильно раз­бав­лен­ных рас­тво­рах мыла пол­но­стью дис­со­ции­ру­ют на ио­ны:

гидролиз мыла

Спо­соб­ность мыла пе­нить­ся, от­мы­вать за­гряз­не­ния связана с образованием ми­целл и вы­со­кой по­верх­но­ст­ной ак­тив­ности. Во­до­рас­тво­ри­мые щелочные мыла являются ани­он­ными по­верх­но­ст­но-ак­тив­ными ве­ще­ст­вами.

Углеводородный остаток жирной кислоты является гидрофобной частью мыла, кабоксильный ион – гидрофильной частью.

Этапы растворения грязи под действием мыла:

В домашних условиях тоже можно приготовить мыло. Имея под рукой необходимые ингредиенты, самостоятельное производство мыла не составит большого труда.

Для корректного отображения информации рекомендуем добавить наш сайт в исключения вашего блокировщика баннеров.


Для просмотра в натуральную величину нажмите на картинку

Идея нашего сайта - развиваться в направлении помощи ученикам школ и студентам. Мы размещаем задачи и решения к ним. Новые задачи, которые недавно добавляются на наш сайт, временно могут не содержать решения, но очень скоро решение появится, т.к. администраторы следят за этим. И если сегодня вы попали на наш сайт и не нашли решения, то завтра уже к этой задаче может появится решение, а также и ко многим другим задачам. основной поток посетителей к нам - это из поисковых систем при наборе запроса, содержащего условие задачи

Читайте также: