Что такое коэрцитивная сила кратко

Обновлено: 06.07.2024

Пермалло́й — прецизионный сплав с магнитно-мягкими свойствами, состоящий из железа и никеля (45—82 % Ni). Может быть дополнительно легирован несколькими другими компонентами. Сплав обладает высокой магнитной проницаемостью (максимальная относительная магнитная проницаемость μ ~ 100 000), малой коэрцитивной силой, почти нулевой магнитострикцией и значительным магниторезистивным эффектом. Благодаря низкой магнитострикции сплав применяется в прецизионных магнито-механических устройствах и других устройствах.

Подвижность носителей заряда — коэффициент пропорциональности между дрейфовой скоростью носителей и приложенным внешним электрическим полем. Определяет способность электронов и дырок в металлах и полупроводниках реагировать на внешнее воздействие. Размерность подвижности м2/(В·с) или см2/(В·с). Фактически подвижность численно равна средней скорости носителей заряда при напряженности электрического поля в 1 В/м. Стоит заметить, что мгновенная скорость может быть много больше дрейфовой. Понятие подвижности.

Магнитосопротивление (магниторезистивный эффект) — изменение электрического сопротивления материала в магнитном поле. Впервые эффект был обнаружен в 1856 Уильямом Томсоном. В общем случае можно говорить о любом изменении тока через образец при том же приложенном напряжении и изменении магнитного поля. Все вещества в той или иной мере обладают магнетосопротивлением. Для сверхпроводников, способных без сопротивления проводить электрический ток, существует критическое магнитное поле, которое разрушает.

Магнитная восприимчивость — физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе.

Коэффицие́нт теплово́го расшире́ния — физическая величина, характеризующая относительное изменение объёма или линейных размеров тела с увеличением температуры на 1 К при постоянном давлении. Имеет размерность обратной температуры. Различают коэффициенты объёмного и линейного расширения.

Пироэле́ктрики (от др.-греч. πῦρ — огонь) — кристаллические диэлектрики, обладающие спонтанной (самопроизвольной) поляризацией, то есть поляризацией в отсутствие внешних воздействий.

Электропроводность (электри́ческая проводи́мость, проводимость) — способность тела (среды) проводить электрический ток, свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Пространственный заряд — распределённый нескомпенсированный электрический заряд одного знака. Пространственные заряды возникают в вакуумных и газоразрядных лампах в пространстве между электродами, а также в неоднородных областях полупроводниковых приборов, и сильно влияют на прохождение тока через эти области, приводя к нелинейным вольт-амперным характеристикам таких приборов.

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Суперпарамагнетизм — форма магнетизма, проявляющаяся у ферромагнитных и ферримагнитных частиц. Если такие частицы достаточно малы, то они переходят в однодоменное состояние, то есть становятся равномерно намагниченными по всему объёму. Магнитный момент таких частиц может случайным образом менять направление под влиянием температуры, и при отсутствии внешнего магнитного поля средняя намагниченность суперпарамагнитных частиц равна нулю. Но во внешнем магнитном поле такие частицы ведут себя как парамагнетики.

Эффе́кт Баркга́узена — скачкообразное изменение намагниченности (J) ферромагнитного вещества при монотонном, непрерывном изменении внешних условий, приводящих к изменению доменной структуры материала.

Собственный полупроводник или полупроводник i-типа или нелегированный полупроводник (англ. intrinsic — собственный) — это чистый полупроводник, содержание посторонних примесей в котором не превышает 10−8 … 10−9%. Концентрация дырок в нём всегда равна концентрации свободных электронов, так как она определяется не легированием, а собственными свойствами материала, а именно термически возбуждёнными носителями, излучением и собственными дефектами. Технология позволяет получать материалы с высокой степенью.

Постоя́нный магни́т — изделие из магнитотвёрдого материала с высокой остаточной магнитной индукцией, сохраняющее состояние намагниченности в течение длительного времени. Постоянные магниты изготавливаются различной формы и применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Омический контакт — контакт между металлом и полупроводником или двумя полупроводниками, характеризующийся линейной симметричной вольт-амперной характеристикой (ВАХ). Если ВАХ асимметрична и нелинейна, то контакт является выпрямляющим (например, является контактом с барьером Шоттки, на основе которого создан диод Шоттки). В модели барьера Шоттки, выпрямление зависит от разницы между работой выхода металла и электронного сродства полупроводника.

Сегнетоэлектричество — явление возникновения в определенном интервале температур спонтанной поляризации в кристалле, даже в отсутствии внешнего электрического поля, которая может быть переориентирована его приложением. Кристаллы, которым присуще явление сегнетоэлектричества, называются сегнетоэлектриками. Сегнетоэлектрики отличаются от пироэлектриков тем, что при определённой температуре (так называемой диэлектрической точке Кюри) их кристаллическая модификация меняется и спонтанная поляризация пропадает.

Ферримагне́тики — материалы, у которых магнитные моменты атомов различных подрешёток ориентируются антипараллельно, как и в антиферромагнетиках, но моменты различных подрешёток не равны, и, тем самым, результирующий момент не равен нулю. Ферримагнетики характеризуются спонтанной намагниченностью. Различные подрешётки в них состоят из различных атомов или ионов, например, ими могут быть различные ионы железа, Fe2+ и Fe3+. Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы.

Магнитостри́кция (от лат. strictio — сжатие, натягивание) — явление, заключающееся в том, что при изменении состояния намагниченности тела его объём и линейные размеры изменяются.

Титана́т ба́рия — соединение оксидов бария и титана BaTiO3. Бариевая соль несуществующей в свободном виде метатитановой кислоты — H2TiO3. Кристаллическая модификация титаната бария со структурой перовскита является сегнетоэлектриком, обладающим фоторефрактивным и пьезоэлектрическим эффектом. После открытия Б. М. Вулом в 1944 году сегнетоэлектрических свойств у титаната бария начался принципиально новый этап в исследовании сегнетоэлектриков.

Двумерный электронный газ (ДЭГ) — электронный газ, в котором частицы могут двигаться свободно только в двух направлениях, а в третьем они помещены в энергетическую потенциальную яму. Ограничивающий движение электронов потенциал может быть создан электрическим полем, например, с помощью затвора в полевом транзисторе или встроенным электрическим полем в области гетероперехода между различными полупроводниками. Если число заполненных энергетических подзон в ДЭГ превышает одну, то говорят о квазидвумерном.

Магнитная анизотропия — зависимость магнитных свойств ферромагнетика от направления намагниченности по отношению к структурным осям образующего его кристалла. Её причиной являются слабые релятивистские взаимодействия между атомами, такие как спин-орбитальное и спин-спиновое.

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного.

Домен — макроскопическая область в магнитном кристалле, в которой ориентация вектора спонтанной однородной намагниченности или вектора антиферромагнетизма (при температуре ниже точки Кюри или Нееля соответственно) определенным — строго упорядоченным — образом повернута или сдвинута, то есть поляризована, относительно направлений соответствующего вектора в соседних доменах.

Прецизионные сплавы (от фр. précision — точность) — группа сплавов с заданными физико-механическими свойствами. В эту группу, как правило, входят высоколегированные сплавы с точным химическим составом.

Эффект Зеебека — явление возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах.

Фосфи́д га́ллия (химическая формула GaP) — бинарное неорганическое химическое соединение галлия и фосфора. При нормальных условиях оранжево-жёлтые кристаллы.

Ио́нные криста́ллы представляют собой кристаллы, состоящие из ионов, связанных между собой электростатическим притяжением. Примерами таких кристаллов являются галогениды щелочных металлов, в том числе фторид калия, хлорид калия, бромид калия, иодид калия, фторид натрия и другие комбинации ионов натрия, цезия, рубидия и лития с ионами фтора, брома, хлора и иода.NaCl имеет расположение ионов по системе 6:6. Свойства NaCl отражают сильные взаимодействия, которые существуют между ионами. В расплавленном.

Двойной электрический слой (межфазный) (ДЭС) — слой ионов, образующийся на поверхности частиц в результате адсорбции ионов из раствора, диссоциации поверхностного соединения или ориентирования полярных молекул на границе фаз. Ионы, непосредственно связанные с поверхностью, называются потенциалоопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами.

Диамагнетизм (от греч. dia… — расхождение (силовых линий), и магнетизм) — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.

Поверхностные состояния, (англ. Surface states) (также поверхностные электронные состояния) — электронные состояния, пространственно локализованные вблизи поверхности твёрдого тела.

Пьезоэлектри́ческий эффе́кт (от греч. piézō (πιέζω) — давлю, сжимаю) — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует и обратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля.

Полупроводниковые материалы — вещества с чётко выраженными свойствами полупроводника, включая комнатную (~ 300 К) полупроводниковых приборов. Удельная электрическая проводимость σ при 300 К составляет 10−4−10~10 Ом−1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

Фотопроводи́мость — явление изменения электропроводности вещества при поглощении электромагнитного излучения, такого как видимое, инфракрасное, ультрафиолетовое или рентгеновское излучение.

Запрещённая зо́на — термин из физики твёрдого тела — зона — область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Этот диапазон называют шириной запрещённой зоны и обычно численно выражают в электрон-вольтах.

Наклёп (нагарто́вка) — упрочнение металлов и сплавов вследствие изменения их структуры и фазового состава в процессе пластической деформации при температуре ниже температуры рекристаллизации. Наклёп сопровождается выходом на поверхность образца дефектов кристаллической решётки, увеличением прочности и твёрдости и снижением пластичности, ударной вязкости, сопротивления металлов деформации противоположного знака (эффект Баушингера).

Вихревые токи, или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревой индукционный объёмный электрический ток, возникающий в электрических проводниках при изменении во времени потока действующего на них магнитного поля.

Постоя́нная решётки, или, что то же самое, параметр решётки — размеры элементарной кристаллической ячейки кристалла. В общем случае элементарная ячейка представляет собой параллелепипед с различными длинами рёбер, обычно эти длины обозначают как a, b, c. Но в некоторых частных случаях кристаллической структуры дли́ны этих рёбер совпадают. Если к тому же выходящие из одной вершины рёбра равны и взаимно перпендикулярны, то такую структуру называют кубической. Структуру с двумя равными рёбрами, находящимися.

Дефектами кристалла называют всякое устойчивое нарушение трансляционной симметрии кристалла — идеальной периодичности кристаллической решётки. По числу измерений, в которых размеры дефекта существенно превышают межатомное расстояние, дефекты делят на нульмерные (точечные), одномерные (линейные), двумерные (плоские) и трёхмерные (объёмные) дефекты.

Зерно (иногда употребляется термин кристаллит) — минимальный объём кристалла, окружённый высокодефектными высокоугловыми границами, в поликристаллическом материале.

Эрсте́д (русское обозначение Э, международное обозначение Oe) — единица измерения напряжённости магнитного поля в системе СГС. Введена в 1930 году Международной электротехнической комиссией, названа в честь датского физика Ганса Христиана Эрстеда (H. C. Ørsted).

Электроны проводимости — это электроны, способные переносить электрический заряд в кристалле, отрицательно заряженные квазичастицы в металлах и полупроводниках, электронные состояния в зоне проводимости.

Электролити́ческие конденсаторы — разновидность конденсаторов, в которых диэлектриком между обкладками является плёнка оксида металла между металлом электрода электролита.

Феррит (лат. ferrum — железо), фазовая составляющая сплавов железа, представляющая собой твёрдый раствор углерода и легирующих элементов в α-железе (α-феррит). Имеет объёмноцентрированную кубическую кристаллическую решётку. Является фазовой составляющей других структур, например, перлита, состоящего из феррита и цементита.

(коэрцитивное поле) (от лат. coercitio — удерживание), одна из хар-к магн. гистерезиса. К. с.— напряжённость Нс магнитного поля, в котором ферромагн. образец, первоначально намагниченный до насыщения, размагничивается (см. рис. 1 в ст. (см. ГИСТЕРЕЗИС)). Различают К. с. Нс (или JHc) и BHc, когда обращается в нуль соответственно намагниченность J образца или магнитная индукция В в образце.

Измеряют К. с. коэрцитиметрами. Величина К. с. ферромагнетиков меняется в широких пределах: от 10-3 до 104 Э (от 8•10-2 до 8•105 А/м). Магн. материалы принято делить по величине К. с. на магнитно-мягкие материалы (малое Hc) и магнитно-жёсткие материалы (большое Нс). Значение К. с. определяется факторами, препятствующими перемагничиванию образца. Наличие в образцах примесей и др. дефектов кристаллич. решётки затрудняет движение границ магн. доменов и тем самым повышает Нс. Для данного магн. материала К. с. в большой степени зависит от способа приготовления образца и его обработки, а также от внеш. условий, напр. темп-ры.

Особенно высоких значений (103 — 104 Э) К. с. достигает у однодоменных ферромагнитных ч-ц (со значит. магн. анизотропией).

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

(коэрцитивное поле) (от лат. coercitio - удерживание) - характеристика ферромагн. материалов (ФМ), показывающая, в какой степени затруднены в них процессы намагничивания (перемагничивания). При графич. изображении зависимости намагниченности М от циклически изменяющейся в пределах Н т напряжённости магн. поля получается петля гистерезиса (рис. к ст. Гистерезис магнитный). После снижения магн. поля от Н т до нуля в ФМ сохраняется остаточная намагниченность М r . Намагниченность становится равной нулю только после приложения магн. поля Н с , противоположного по знаку предшествующему намагничивающему полю. Величина Н c и является К. с. данного гистерезисного цикла.

Если Н т недостаточно велико, получаются частные циклы гистерезиса. Значение К. с. в этом случае зависит от величины Н т . Наиб. значение Н с , соответствующее предельной петле гистерезиса (размагничиванию из состояния техн. насыщения), является К. с. данного материала.

2529-88.jpg

К. с. различных ФМ изменяется в очень широких пределах: от 10 -3 до 10 5 Э (1 Э 80 А/м). Её значение существенно для классификации магнитных материалов на магнитно-мягкие (H с c >15-100 Э).

К. с. определяется механизмом процесса перемагни-чивания, значением таких фундам. характеристик, как энергия магнитной анизотропии, магнитострикция, намагниченность насыщения. В одном и том же материале К. с. может быть весьма различной в зависимости от его кристаллич. структуры, темп-ры, распределения внутр. напряжений. Предельное для данного материала значение К. с. равно его полю анизотропии и может быть реализовано в однодоменных частицах. Их перемагничивание состоит в необратимом вращении вектора спонтанной намагниченности М s . Состояния с однодоменной структурой присущи нек-рым магнитно-твёрдым материалам.

Высокие значения К. с. возможны и в очень совершенных многодоменных кристаллах. Их высокая К. с. обусловлена тем, что после намагничивания до насыщения в них затруднены процессы образования и роста областей с обратной намагниченностью (зародышей перемагничивания). Такой механизм К. с. реализуется в нек-рых магнитно-твёрдых материалах на основе редкоземельных интерметаллических соединений.

В большинстве ФМ К. с. определяется критич. полем необратимого смещения доменных стенок. Смещению препятствуют разл. неоднородности: градиенты внутр. механич. напряжений, инородные включения, структурные дефекты и т. д. Поэтому для реализации низких значений К. с. в магнитно-мягких материалах эти материалы должны обладать предельно однородной структурой.

Как структурно-чувствительная характеристика К. с. используется для неразрушающего контроля качества термич. обработки мн. изделий из ферромагн. сталей и сплавов.

Лит.: Пейн Т., Магнитные свойства мелких частиц, в сб.: Магнитные свойства металлов и сплавов, пер. с англ., М., 1961; Вонсовский С. В., Магнетизм, М., 1971; Несбитт Е., Верник Дж.. Постоянные магниты на основе редкоземельных элементов, пер. с англ., М., 1977.

Л. С. Ермоленко.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

КОЭРЦИТИ́ВНАЯ СИ́ЛА (ко­эр­ци­тив­ное по­ле) (от лат. coercitio – удер­жи­ва­ние), на­пря­жён­ность H c маг­нит­но­го по­ля, не­об­хо­ди­мо­го для из­ме­не­ния на­маг­ни­чен­но­сти те­ла от зна­че­ния ос­та­точ­ной на­маг­ни­чен­но­сти до ну­ля и имею­ще­го знак, про­ти­во­по­лож­ный пред­ше­ст­вую­ще­му на­маг­ни­чи­ваю­ще­му по­лю (см. Гис­те­ре­зис ). К. с. по­ка­зы­ва­ет, в ка­кой сте­пе­ни за­труд­не­ны про­цес­сы на­маг­ни­чи­ва­ния (пе­ре­маг­ни­чи­ва­ния) в фер­ро­маг­нит­ных ма­териа­лах. К. с. разл. ве­ществ из­ме­ня­ется в диа­па­зо­не от 10 –3 до 10 5 Э. Её зна­че­ние су­ще­ст­вен­но для клас­си­фи­ка­ции маг­нит­ных ма­те­риа­лов на маг­ни­то­мяг­кие ( H c 1–15 Э) и маг­ни­тот­вёр­дые ( H c > 15–100 Э). Ве­ли­чи­на К. с. опре­де­ля­ет­ся ме­ха­низ­мом про­цес­са пе­ре­маг­ни­чи­ва­ния, а так­же зна­че­ния­ми та­ких ха­рак­те­ри­стик ма­те­риа­ла, как энер­гия маг­нит­ной ани­зо­тро­пии, маг­ни­то­стрик­ция, на­маг­ни­чен­ность на­сы­ще­ния.

Для ферромагнетиков характерно явление гистерезиса. Оно проявляется в том, что вектор магнитной индукции B → , созданный в ферромагнетике, определяется историей намагничивания вещества и зависит от напряженности внешнего магнитного поля H → .

Гистерезис - от греческого "запаздывание"- свойство физических систем. Когда системе свойственен гистерезис, ее мгновенный отклик на приложенное внешнее воздейстие зависит от текущего состояния системы, а поведение системы на некотором интервале времени определяется ее предысторией.

Например, если ненамагниченный ферромагнетик поместить в магнитное поле у величить его напряженность до H 1 , затем уменьшить до - H 1 , а потом снова увеличить, кривая намагничивания вещества опишет так называемую петлю гистерезиса.

Гистерезис. Явление остаточной индукции

На рисунке видно, как сначала индукция растет по кривой OA. Затем, при уменьшении напряженности, спадает по кривой ACKD. При дальнейшем увеличении напряженности образуется путля гистерезиса ACKDFA.

Как видим, когда напряденность уменьшили до нуля, магнитная индукция в веществе стала равна OC. Это так называемая остаточная индукция B r , которой соответствует отстачная намагниченность ферромагнетика J r . В данном состоянии ферромагнетик представляет собой постоянный магнит.

Величины B r и J r - основные характеристики ферромагнетиков. Материалы с наибольшей остаточной намагниченностью применяюьтся в сердечниках трансформаторов и электромагнитов, используются в качестве носителей информации.

Коэрцитивная сила

Чтобы размагнитить ферромагнетик, необходимо внешнее магнитное поле, направленное противоположно первоначальному полю. Кривая CKD изображает ход магнитной индукции при росте напряженности этого поля. При напряженности поля, равной отрезку OK, намагниченность вещества станет равной нулю.

Отрезок ОК определяет величину напряженности размагничивающего поля H k . Она является мерой того, насколько сильно ферромагнетик удерживается в намагничиченном состоянии. Величина H k , при которой остаточная намагниченность исчезает, называется задерживающей силой, или коэрцитивной силой ферромагнетика. Для разных ферромагнетиков ее значение широко варьируется.

Так, ферромагнетики с узкой петлей гистерезиса и, соответсвенно, малой коэрцитивной силой, называются мягкими. Материалы с широкой петлей и большой коэрцитивной силой, наоборот, называются жесткими ферромагнетиками.

Ферромагнетики - материалы с большой магнитная проницаемостью вещества, величина которой также зависит от напряженности магнитного поля. Помимо этого ферромагнетики отличаются от других магнетиков особой связью между намагниченностью и величиной напряженности внешнего поля.

Зависимость намагниченности от напряженности внешнего поля называется гистерезисом. Следствия явления гистерезиса - остаточная намагниченность и коэрцитивная сила.

Есть ли разница в работе при намагничивании и размагничивании ферромагнетика и магнетика без гистерезиса? Чем она обусловлена?

Работа по намагничиванию объема магнетика вычисляется по формуле:

Эта работа идет на увеличение энергии магнитного поля магнетика. Соотношения также предствляет формулу для плотности энергии магнитного поля в магнетике без гистерезиса.

Для такого магнетика обратная и прямая ветви кривой намагничивания совпадают.

Коэрцитивная сила

Площадь криволинейной трапеции 1234 представляет собой элементарную работу, которую нужно совершить для увеличения намагниченности. Площадь фигуры O A B 1 - полная работа, которую совершают внешние силы при увеличении индукции от 0 до B 1 .

При размагничивании магнетика без гистерезиса работа также равна площади фигуры O A B 1 . Работы при намагничивании и при размагничивании совпадают.

Теперь рассмотрим магнетик с гистерезисом.

Коэрцитивная сила

Для роста магнитной индукции в ферромагнетике от B 1 до B 2 понадобится работа, равная площади фигуры B 1 a b B 2 , ограниченная кривой 1. Обратная и прямая кривые намагниченности не совпадают, размагничивание происходит по по кривой, обозначенной номером 2.

Разница в работе по намагничиванию и размагничиванию такого ферромагнетика определяется площадью петли гистерезиса, ограниченной кривыми 1 и 2 и обозначенной S .

При полном перемагничивании на единицу объема ферромагнетика приходится энергия, равная ω = S . Эта энергия расходуется на преодоление коэрцитивной силы и выделяется в виде тепла, поэтому ферромагнетики нагреваются при циклическом перемагничивании.

Читайте также: