Что такое губчатая ткань кратко

Обновлено: 02.07.2024

Губчатая Ткань — рыхлая ткань главным образом мякоти (мезофилла) листа,пронизанная большими межклетниками. Выполняет функции газообмена,транспирации, фотосинтеза. Обычно развита на нижней стороне листа.

см. также морфологический разбор слова "губчатая ткань".

Только что искали: столбк сейчас акр бир сейчас ледоиамтралесзие сейчас м а т о н и н сейчас сговор сейчас труженица сейчас р а а л к в сейчас повлир сейчас я г о д а к р ч 1 секунда назад ачика 1 секунда назад лодыжка 1 секунда назад бдалещк 1 секунда назад полохып слова из этих букв 1 секунда назад нрав 2 секунды назад леумосцяп 2 секунды назад

Ткань как совокупность клеток и межклеточного вещества. Типы и виды тканей, их свойства. Межклеточные взаимодействия.

В организме взрослого человека различают около 200 типов клеток. Группы клеток, имеющие одинаковое или сходное строение, связанные единством происхождения и приспособленные к выполнению определенных функций, образуют ткани. Это следующий уровень иерархической структуры организма человека – переход с клеточного уровня на тканевой (смотри рисунок 1.3.2).

Любая ткань представляет собой совокупность клеток и межклеточного вещества, которого может быть много (кровь, лимфа, рыхлая соединительная ткань) или мало (покровный эпителий).

Клетки каждой ткани (и некоторых органов) имеют собственное название: клетки нервной ткани называются нейронами, клетки костной ткани – остеоцитами, печени – гепатоцитами и так далее.

Межклеточное вещество химически представляет собой систему, состоящую из биополимеров в высокой концентрации и молекул воды. В нем расположены структурные элементы: волокна коллагена, эластина, кровеносные и лимфатические капилляры, нервные волокна и чувствительные окончания (болевые, температурные и другие рецепторы). Это обеспечивает необходимые условия для нормальной жизнедеятельности тканей и выполнения ими своих функций.

Всего выделяют четыре типа тканей: эпителиальную, соединительную (включая кровь и лимфу), мышечную и нервную (смотри рисунок 1.5.1).

Эпителиальная ткань, или эпителий, покрывает тело, выстилает внутренние поверхности органов (желудка, кишечника, мочевого пузыря и других) и полостей (брюшной, плевральной), а также образует большинство желез. В соответствии с этим различают покровный и железистый эпителий.

Покровный эпителий (вид А на рисунке 1.5.1) образует пласты клеток (1), тесно – практически без межклеточного вещества – прилегающие друг к другу. Он бывает однослойным или многослойным. Покровный эпителий является пограничной тканью и выполняет основные функции: защита от внешних воздействий и участие в обмене веществ организма с окружающей средой – всасывание компонентов пищи и выделение продуктов обмена (экскреция). Покровный эпителий обладает гибкостью, обеспечивая подвижность внутренних органов (например, сокращения сердца, растяжение желудка, перистальтику кишечника, расширение легких и так далее).

Железистый эпителий состоит из клеток, внутри которых находятся гранулы с секретом (от латинского secretio – отделение). Эти клетки осуществляют синтез и выделение многих веществ, важных для организма. Путем секреции образуются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Железистый эпителий может образовывать самостоятельные органы – железы (например, поджелудочная железа, щитовидная железа, железы внутренней секреции, или эндокринные железы, выделяющие непосредственно в кровь гормоны, выполняющие в организме регулирующие функции и другие), а может являться частью других органов (например, железы желудка).

Соединительная ткань (виды Б и В на рисунке 1.5.1) отличается большим разнообразием клеток (1) и обилием межклеточного субстрата, состоящего из волокон (2) и аморфного вещества (3). Волокнистая соединительная ткань может быть рыхлой и плотной. Рыхлая соединительная ткань (вид Б) присутствует во всех органах, она окружает кровеносные и лимфатические сосуды. Плотная соединительная ткань выполняет механическую, опорную, формообразующую и защитную функции. Кроме того, существует еще очень плотная соединительная ткань (вид В), из нее состоят сухожилия и фиброзные мембраны (твердая мозговая оболочка, надкостница и другие). Соединительная ткань не только выполняет механические функции, но и активно участвует в обмене веществ, выработке иммунных тел, процессах регенерации и заживления ран, обеспечивает адаптацию к меняющимся условиям существования.

К соединительной ткани относится и жировая ткань (вид Г на рисунке 1.5.1). В ней депонируются (откладываются) жиры, при распаде которых высвобождается большое количество энергии.

Важную роль в организме играют скелетные (хрящевая и костная) соединительные ткани. Они выполняют, главным образом, опорную, механическую и защитную функции.

Хрящевая ткань (вид Д) состоит из клеток (1) и большого количества упругого межклеточного вещества (2), она образует межпозвоночные диски, некоторые компоненты суставов, трахеи, бронхов. Хрящевая ткань не имеет кровеносных сосудов и получает необходимые вещества, поглощая их из окружающих тканей.

Костная ткань (вид Е) состоит их костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными отростками. Костная ткань отличается твердостью и из этой ткани построены кости скелета.

Разновидностью соединительной ткани является и кровь. В нашем представлении кровь – это нечто очень важное для организма и, в то же время, сложное для понимания. Кровь (вид Ж на рисунке 1.5.1) состоит из межклеточного вещества – плазмы (1) и взвешенных в ней форменных элементов (2) – эритроцитов, лейкоцитов, тромбоцитов (на рисунке 1.5.2 даны их фотографии, полученные при помощи электронного микроскопа). Все форменные элементы развиваются из общей клетки-предшественницы. Подробнее свойства и функции крови рассматриваются в разделе 1.5.2.3.

Клетки мышечной ткани (рисунок 1.3.1 и виды З и И на рисунке 1.5.1) обладают способностью сокращаться. Так как для сокращения требуется много энергии, клетки мышечной ткани отличаются повышенным содержанием митохондрий.

Различают два основных типа мышечной ткани – гладкую (вид З на рисунке 1.5.1), которая присутствует в стенках многих, и, как правило полых, внутренних органов (сосуды, кишечник, протоки желез и другие), и поперечно-полосатую (вид И на рисунке 1.5.1) , к которой относятся сердечная и скелетная мышечные ткани. Пучки мышечной ткани образуют мышцы. Они окружены прослойками соединительной ткани и пронизаны нервами, кровеносными и лимфатическими сосудами (смотри рисунок 1.3.1).

Нервная ткань (вид К на рисунке 1.5.1) состоит из нервных клеток (нейронов) (1) и межклеточного вещества (2) с различными клеточными элементами (3), называемыми в совокупности нейроглией (от греческого glia – клей). Основным свойством нейронов (нейрон обозначен цифрой 7 на рисунке 1.3.4) является способность воспринимать раздражение, возбуждаться, вырабатывать импульс и передавать его далее по цепи. Они синтезируют и выделяют биологически активные вещества – посредники (медиаторы).

Нервная система регулирует функции всех тканей и органов, объединяет их в единый организм путем передачи информации по всем звеньям и осуществляет связь с окружающей средой.

Обобщающие сведения по тканям приведены в таблице 1.5.1.

Таблица 1.5.1. Ткани, их строение и функции

Сохранение формы и выполнение специфических функций тканью генетически запрограммировано: дочерним клеткам посредством ДНК передается способность к выполнению специфических функций и к дифференцированию. О регуляции экспрессии генов, как основе дифференцировки, было сказано в разделе 1.3.4.

Дифференцировка – это биохимический процесс, при котором относительно однородные клетки, возникшие из общей клетки-предшественницы, превращаются во все более специализированные, специфические типы клеток, формирующие ткани или органы. Большинство дифференцированных клеток обычно сохраняет свои специфические признаки даже в новом окружении.

В 1952 году ученые из Чикагского университета осуществили разделение клеток куриного эмбриона, выращивая (инкубируя) их в растворе фермента при осторожном помешивании. Однако клетки не оставались разделенными, а начинали объединяться в новые колонии. Более того, при смешивании печеночных клеток с клетками сетчатки глаза образование клеточных агрегатов происходило так, что клетки сетчатки всегда перемещались во внутреннюю часть клеточной массы.

Взаимодействия клеток. Что же позволяет тканям не рассыпаться при малейшем внешнем воздействии? И чем обеспечивается слаженная работа клеток и выполнение ими специфических функций?

Множество наблюдений доказывает наличие способности у клеток распознавать друг друга и соответствующим образом реагировать. Взаимодействие – это не только способность передавать сигналы от одной клетки к другой, но и способность действовать совместно, то есть синхронно. На поверхности каждой клетки располагаются рецепторы (смотри раздел 1.3.2), благодаря которым каждая клетка распознает другую себе подобную. И функционируют эти “детекторные устройства” согласно правилу “ключ – замок” – этот механизм неоднократно упоминается в книге.

Давайте немного поговорим о том, как клетки взаимодействуют друг с другом. Известно два основных способа межклеточного взаимодействия: диффузионное и адгезивное. Диффузионное – это взаимодействие на основе межклеточных каналов, пор в мембранах соседних клеток, расположенных строго напротив друг друга. Адгезивное (от латинского adhaesio – прилипание, слипание) – механическое соединение клеток, длительное и стабильное удерживание их на близком расстоянии друг от друга. В главе, посвященной строению клетки, описаны различные виды межклеточных соединений (десмосомы, синапсы и другие). Это является основой для организации клеток в различные многоклеточные структуры (ткани, органы).

Каждая клетка ткани не только соединяется с соседними клетками, но и взаимодействует с межклеточным веществом, получая с его помощью питательные вещества, сигнальные молекулы (гормоны, медиаторы) и так далее. Посредством химических веществ, доставляемых ко всем тканям и органам тела, осуществляется гуморальный тип регуляции (от латинского humor – жидкость).

Другой путь регуляции, как уже упоминалось выше, осуществляется с помощью нервной системы. Нервные импульсы всегда достигают цели в сотни или тысячи раз быстрее доставки к органам или тканям химических веществ. Нервный и гуморальный способы регуляции функций органов и систем тесно между собой взаимосвязаны. Однако само образование большинства химических веществ и выделение их в кровь находятся под постоянным контролем нервной системы.

Клетка, ткань – это первые уровни организации живых организмов, но и на этих этапах можно выделить общие механизмы регуляции, обеспечивающие жизнедеятельность органов, систем органов и организма в целом.

Строение листа

Внутреннее строение листа

Между верхним и нижним эпидермисом – это паренхима или мезофилл. Эту ткань формируют хлорофиллсинтезирующие клетки, иногда в мякоть листа включены вместилища выделений. У большей части двудольных покрытосеменных растений и папоротников мезофилл разделен на столбчатую (палисадную) и губчатую (рыхлую) ткань. Под слоем верхних покровных клеток находится столбчатая ткань, ниже – губчатая.

Губчатая ткань построена из округлых или неопределенной формы клеток, образующих рыхлую сложную сетчатую систему. Межклетники хорошо развиты. Функция: газообмен и темновая стадия фотосинтеза.

Столбчатая ткань обычно состоит из удлиненных клеток цилиндрической формы, расположенных перпендикулярно к поверхности листа. Межклетники в столбчатой ткани развиты слабо. Содержится большое количество хлоропластов. Функция: световые реакции фотосинтеза.

Скелет листа образован сосудисто-волокнистыми пучками и механической тканью. Через черешок проводящие элементы листа связаны со стеблем.

В зависимости от среды обитания у листьев возникли различные адаптации. У растений засушливых мест адаптации связаны с уменьшением испарения и накоплением запасов влаги. У растений влажных мест обитания адаптации связаны с увеличением транспирации.


Одним из важных органов жизнедеятельности растения является лист. В его основные функции входит фотосинтез и испарение воды. Лист растения состоит из черешка и листовой пластины. Как и другие органы живого организма, он состоит из различных типов тканей и имеет клеточное строение.


Введение

Познакомившись с внутренним миром данного органа растения, можно понять его значение. В этом разделе Вы найдёте ответы на такие вопросы:

  • Из скольких слоёв состоит листовая пластина?
  • Как называются различные ткани внутри пластины? Какие у них функции?
  • Что такое жилки? Их разновидности.

Ткани листа

Строение

Функция

Верхняя кожица образована плотно прижатыми прозрачными клетками неправильной формы. Часто покрыта кутикулой или волосками.

Нижняя кожица обычно имеет устьица. Устьица образованы двумя замыкающими клетками, стенки которых утолщены с одной стороны, между ними расположена устьичная щель. Замыкающие клетки имеют хлоропласты.

Обращена к солнцу, защита от внешних воздействий и испарения.

Расположена с нижней стороны листа. Защита, газообмен и испарение.

Основная ткань:
– столбчатая;

Клетки цилиндрической формы с хлоропластами, расположены перпендикулярно верхней кожице и плотно сомкнуты между собой .

Расположена с верхней стороны листа под кожицей. Служит для фотосинтеза.

Округлые клетки с межклетниками, образующими воздушные полости, содержат меньшее количество хлорофилла.

Расположена ближе к нижней стороне листа. Фотосинтез + водо- и газообмен.

Жилка листа (волокна)

Упругость и прочность

Жилка листа:
– сосуды;

Ток воды и минеральных веществ от корня.

Ток воды и органических веществ к стеблю и корню

Клеточное строение листа

Изучить внутреннее строение можно по таким разделам:

Строение листовой кожицы

Самое первое, что мы можем увидеть и рассмотреть под микроскопом – это кожица. Если использовать иглу или пинцет, её можно легко снять с поверхности листа и рассмотреть под микроскопом.

которые читают вместе с этой






Рис.2. Строение кожицы

На рисунке отчётливо видно, что внешняя оболочка состоит из однослойной покровной ткани. Клетки здесь плотно прилегают друг к другу. Их наружные оболочки покрыты плёнкой в виде жироподобного вещества и имеют большее утолщение, чем внутренние. Это связано с защитной функцией данной ткани. Благодаря такому строению внутренние клетки не высыхают и защищены от повреждения. Также за счёт кожицы происходит связь растения с внешней средой. Клетка кожицы состоит из вакуоли с клеточным соком, цитоплазмы с ядром и бесцветных пластидов. За счёт этого покровная ткань является бесцветной. Но имеются и зелёные клетки в кожице – это устьица.

Что такое устьица?

Кожица на нижней стороне листа содержит устьица. Это две замыкающиеся клетки, как уста, которые содержат хлоропласты. Когда лист содержит излишнюю воду, клетки, которые замыкают устьице, набухают и отходят в стороны друг от друга, а через образовавшуюся щель выделяется излишняя влага в виде водяного пара. Если растение чувствует нехватку влаги, то устьица крепко смыкаются и не дают возможности испаряться воде, находящейся внутри растения.


Большинство растений имеют устьица на нижней части листа, например, капуста. У картофеля и подсолнечника они есть как снизу, так и сверху листовой пластины. А вот ковыль и водяные растения устьица имеют только в верхней части.

Строение мякоти

Клетки мякоти имеют тонкие оболочки и содержат большое количество хлоропластов. Существует два вида тканей мякоти:

  • столбчатая или палисадная ткань – клетки похожи на столбики и в ней мало межклетников;
  • губчатая ткань – клетки имеют неправильную форму, в них меньше хлоропластов и крупные межклетники.

Между клетками тканей расположены межклетники разных размеров, которые заполнены воздухом. Столбчатая и губчатая ткани служат для основной функции зелёного растения – фотосинтеза.

Строение жилок

Если сделать поперечный разрез листовой пластины, то под микроскопом можно увидеть так называемые проводки – это жилки. Они состоят из:

  • волокон – придают прочность;
  • ситовидных трубок – являются проводниками органических веществ;
  • сосудов – по которым перемещаются минеральные вещества и вода.

Жилкование – это прохождение жилок внутри листа. Существует несколько типов жилкования, которые показаны на рисунке ниже.

  • Параллельное жилкование – жилки проходят параллельно друг от друга (зерновые культуры);
  • Дуговое – все жилки, за исключением центральной, проходят дугой (подорожник, ландыш);
  • Сетчатое – толстая жилка проходит по центру, она является основной, а от неё расходятся в стороны более тонкие, боковые (берёза, сирень);
  • Вильчатое – жилки располагаются вдоль, каждая делится на две, не переплетаясь при этом друг с другом (папоротники, древние растения).


Существует классификация листьев в зависимости от среды произрастания. Так, например, если листья произрастают на хорошо освещённом пространстве, у них наблюдается наличие нескольких слоёв столбчатых клеток. За счёт этого пластина становится толще, но имеет светло-зелёный окрас. Растения, которые растут в тени, имеют один слой столбчатой ткани и слабо развитую губчатую ткань. Однако у них крупнее хлоропласты, которые содержат большое количество хлорофилла. Поэтому листья теневых растений тёмно-зелёного цвета.

Что мы узнали?

Лист каждого растения имеет две важные функции – это фотосинтез и испарение влаги. Каждый структурный элемент листовой пластины играет свою роль, в комплексе получаем единый живой организм, который активно реагирует на изменения в окружающей среде.

Читайте также: