Что такое электростанция кратко

Обновлено: 04.07.2024

электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (См. Тепловая электростанция), гидроэлектрические станции (См. Гидроэлектрическая станция), гидроаккумулирующие электростанции (См. Гидроаккумулирующая электростанция), атомные электростанции (См. Атомная электростанция), а также приливные электростанции (См. Приливная электростанция), ветроэлектростанции (См. Ветроэлектрическая станция), геотермические электростанции (См. Геотермическая электростанция) и Э. с магнитогидродинамическим генератором (См. Магнитогидродинамический генератор).

Тепловые Э. (ТЭС) являются основой электроэнергетики (См. Электроэнергетика); они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют Котлоагрегаты, паровые турбины (См. Паровая турбина), Турбогенераторы, а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, Конденсаторы, воздухоподогреватели, электрические распределительные устройства (См. Распределительное устройство). Паротурбинные Э. подразделяются на конденсационные электростанции (См. Конденсационная электростанция) и теплоэлектроцентрали (См. Теплоэлектроцентраль) (теплофикационные Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в конденсационную турбину (См. Конденсационная турбина), внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в Электрический ток. Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также ГРЭС.

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт·ч вырабатываемой ими электроэнергии.

Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от дизелей (См. Дизель). На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и Энергопоезда (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25—150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения (Плотина, водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание Напора, и энергетическое оборудование (гидротурбины (См. Гидротурбина), Гидрогенераторы, распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу (деривации (См. Деривация)), имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение — покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит Ядерный реактор, где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции — ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

Геотермическая Э. — паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) — установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

В каждом развитом государстве существует собственная энергетика. Данная область включает в себя разные виды электростанций. Они могут использовать традиционные и нетрадиционные источники энергии. В первом случае – это природные ресурсы в виде угля, газа, продуктов переработки нефти, ядерное топливо и т.д. Второй вариант предполагает использование энергии природных явлений – солнца, ветра, приливов-отливов, подземных источников тепла. Независимо от формы использования, каждая электростанция требует много дополнительного оборудования для передачи потребителям полученной энергии.

Что такое электростанция

Виды электростанций

Любая электростанция представляет собой целый энергетический комплекс, включающий в себя различные установки, аппаратуру и оборудование, необходимые для получения, преобразования и транспортировки электроэнергии. Все эти компоненты размещаются в специальных зданиях и сооружениях, расположенных компактно на общей территории. Независимо от типа, они входят в состав Единой энергосистемы, созданной с целью эффективно использовать мощность электростанции, обеспечивая бесперебойное энергоснабжение потребителей.

Принцип работы электростанций и их сопутствующих объектов основан на вращении вала генератора, который является основным элементом системы. Его основные функции заключаются в следующем:

  • Обеспечение стабильной продолжительной работы параллельно с другими энергетическими системами, снабжение энергией собственных автономных нагрузок.
  • Возможность мгновенного реагирование на наличие или отсутствие нагрузки, соответствующей его номиналу.
  • Выполняет запуск двигателя, обеспечивающего работу всей станции.
  • Вместе со специальными устройствами осуществляет функцию защиты.

Отличительными чертами каждого генератора являются формы и размеры, а также источник энергии, используемый для вращения вала. Кроме генератора, электростанция состоит из турбин и котлов, трансформаторов и распределительных устройств, средств коммутации, автоматики и релейной защиты.

В настоящее время получило развитие направления в области компактных установок. Они позволяют обеспечить энергией не только отдельные объекты, но и целые поселки, находящиеся на значительном удалении от стационарных линий электропередачи. В основном, это полярные станции и предприятия по добыче полезных ископаемых. Теперь рассмотрим какие типы установок используются в российской энергетике.

Основные типы электростанций

Все электрические станции таблица ниже классифицирует в первую очередь по источникам используемой энергии.


Среди них можно выделить следующие:

    . Работают на природном топливе, а основные типы электростанций могут быть конденсационными (КЭС) и теплофикационными (ТЭЦ). Первые вырабатывают только электричество, а вторые – электроэнергию и теплоту.
  • Гидравлические – ГЭС и гидроаккумулирующие – ГАЭС, функционирующие за счет энергии воды, падающей высоты. , работающие на ядерном топливе. . Бывают стационарными или мобильными. Существуют мини-электростанции малой мощности, используемые в частном секторе. , ветровые, приливные и геотермальные электростанции известны как альтернативные источники электроэнергии, работающим с естественными силами природы. Они имеют ряд недостатков, связанных с климатическими условиями и другими факторами.

Каждая перечисленная электростанция представляет собой традиционные или альтернативные виды энергетики. В первом случае электричество вырабатывается на тепловых, гидро- и атомных установках. На ТЭС вырабатывается примерно 70-75% всей электроэнергии, поэтому они размещаются в местах с высоким энергопотреблением и большим количеством природных ресурсов.

ГЭС привязаны к полноводным рекам, протекающим в равнинной или горной местности. АЭС строятся в местах с большим потреблением электроэнергии, при недостатке других видов энергоресурсов. Для того чтобы понять их роль и место в общей энергетической системе, следует рассмотреть более подробно типы электростанций, используемых в России.

Тепловые электрические станции – ТЭС

На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.

Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.


Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.

Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.

Преимущества и недостатки гидроэлектростанций

По своей значимости, ГЭС находятся на втором месте после тепловых электростанций. В своей работе они используют энергию воды, преобразующейся в электрический ток, и относящейся к возобновляемым ресурсам. Простое управление такими станциями не требует большого количества персонала. Коэффициент полезного действия доходит до 85%.

Электричество, производимое на ГЭС считается самым дешевым, его цена примерно в 5-6 раз меньше, чем на тепловых электроустановках. Гидроэлектростанции отличаются высокой маневренностью и могут быть запущены в работу в течение 3-5 минут, тогда как на ТЭС для этого требуется несколько часов. Это качество особенно важно при перекрытии пиковых нагрузок в суточном графике электроснабжения.


Основными недостатками подобных сооружений являются:

  • Значительные капиталовложения на их возведение.
  • Привязка к определенной территории или местности с гидроресурсами.
  • В процессе строительства затапливаются огромные территории, большие сельскохозяйственные площади выводятся из пользования, наносится ущерб рыбному хозяйству, нарушается экологическое равновесие.
  • Полная мощность электростанции реализуется лишь в определенное время года, в период максимального подъема воды.

На российских реках сооружаются целые каскады гидроэлектростанций. Наиболее крупными считаются Ангаро-Енисейский каскад, включающий Братскую, Красноярскую, Саяно-Шушенскую, Усть-Илимскую ГЭС, а также Волжский каскад с Рыбинской, Угличской, Иваньковской, Саратовской, Волжской и другими ГЭС.

Достаточно перспективным направлением считается гидроаккумулирующая электростанция – ГАЭС. В основе их работы заложен принцип действия, связанный с цикличным перемещением одинакового объема воды между верхним и нижним бассейнами. Ночью за счет излишков электроэнергии вода подается снизу-вверх, а в дневное время при резком росте энергопотребления она сбрасывается вниз и вращает турбины, производя электричество. Эти станции совершенно не зависят от естественных колебаний речного стока, а под водохранилища требуется гораздо меньше затапливаемых площадей.

Атомные электростанции

На третьем месте по количеству производимой электроэнергии находятся атомные электростанции. В России их доля в энергетике составляет чуть выше 10%. В США этот показатель равен 20%, в Германии – более 30%, во Франции – свыше 75%. Сокращение программ в области атомной энергетики произошло вследствие аварии на Чернобыльской АЭС.

Рассматривая виды электростанций в России, следует отметить, что наиболее известными АЭС считаются Ленинградская, Курская, Смоленская, Нововоронежская, Белоярская и другие. Новым направлением является создание АТЭЦ – атомных теплоэлектроцентралей, вырабатывающих электрическую и тепловую энергию. Подобный объект построен на Чукотке в поселке Билибино. Еще одно направление – строительство АСТ – атомных станций теплоснабжения, предназначенных для производства тепла. Такие установки успешно функционируют в Нижнем Новгороде и Воронеже.


Основные плюсы АЭС заключаются в следующем:

  • Возможность строительства в любых районах, без привязки к энергетическим ресурсам. Транспортировка атомного топлива не отнимает много средств, поскольку 1 кг урана эквивалентен 2500 т угля.
  • При отсутствии нарушений эксплуатации, АЭС являются самыми экологичными установками. Выбросы в атмосферу минимальны, кислород не поглощается, отсутствует парниковый эффект.

Рассматривая вопрос как работает АЭС, нужно в первую очередь остановиться на тяжелых последствиях в случае аварий. Кроме того, серьезные проблемы возникают с радиоактивными отходами в процессе их захоронения. Водоемы, используемые для технических целей АЭС, подвержены тепловому загрязнению.

Дизельные электростанции

Для работы дизельных электростанций, которые называют ДЭС, используются различные виды жидкого топлива. Основой системы является дизель-генератор, включающий в себя дизельный двигатель, электрический генератор, системы смазки и охлаждения, пульт управления.

Данные установки применяются как альтернативные в отдаленных районах, где являются основными источниками электроэнергии. Как правило, подведение стационарных ЛЭП в такие места экономически не выгодно. Кроме того, дизельные электростанции служат аварийными или резервными источниками питания, когда потребители не должны отключаться от электроснабжения.


Виды дизельных электростанций могут быть стационарными (4-5 тысяч кВт) и мобильными (12-1000 кВт). Благодаря небольшим размерам, они могут размещаться в небольших зданиях и помещениях. Эти станции постоянно готовы к пуску, а сам процесс запуска не занимает много времени. Большинство функций установок автоматизировано, а остальные легко переводятся в автоматический режим. Основным недостатком дизельных станций является привозное горючее и все мероприятия, связанные с его доставкой и хранением.

Нетрадиционные источники электроэнергии

Нетрадиционные источники представлены геотермальными электростанциями (рис. 1), работающими на тепловой энергии, поступающей из земных недр. Чем глубже от поверхности земли, тем выше температура данного слоя. В России такие установки построены на Камчатке и на Курильских островах.


Существуют конструкции приливных электростанций (рис. 2), которые функционируют от энергии, создаваемой приливами и отливами в самом узком месте искусственного залива, отсеченного от моря. В качестве примера можно привести опытную Кислогубскую ПЭС, возведенную на Кольском полуострове.

Классификация электростанций включает в себя солнечные и ветровые альтернативные установки (рис. 3). Все виды таких систем обеспечивают электроэнергией небольшие предприятия и производства, используются в частном секторе для удовлетворения бытовых потребностей. В основном, это районы и места, где отсутствует централизованное электроснабжение и нет возможности подключиться к обычным ЛЭП.


Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Электроста́нция — электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

ЭЛЕКТРОСТА'НЦИЯ, и, ж. Электрическая станция, предприятие, вырабатывающее электрическую энергию. См. [электро].

электроста́нция

Фразеологизмы и устойчивые сочетания

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова каузальность (существительное):

Ассоциации к слову «электростанция»

Синонимы к слову «электростанция»

Предложения со словом «электростанция»

  • Вот огромные машины ведут лесозаготовки, вот на недавно расчищенном поле сеют кражь, а вот идёт строительство атомной электростанции.

Сочетаемость слова «электростанция»

Теплова́я электроста́нция (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счёт преобразования химической энергии топлива в процессе сжигания в тепловую, а затем в механическую энергию вращения вала электрогенератора. В качестве топлива широко используются различные горючие ископаемые топлива: уголь, природный газ, реже — мазут, ранее — торф и горючие сланцы. Многие крупные тепловые станции вырабатывают лишь электричество — традиционно ГРЭС, в настоящее.

Газотурбинная электростанция — современная высокотехнологичная установка, генерирующая электричество и тепловую энергию.

Электроста́нция — электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Солнечная электростанция (СЭС) — инженерное сооружение, преобразующее солнечную радиацию в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

Ветряная электростанция — это несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов.

генерация электроэнергии. Электростанция. Что такое электростанция. Оборудование электростанций. Энергетика. Энергосистема

Электрическая станция - совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Существует множество типов электростанций. Отличия заключаются в технических особенностях и исполнении, а также в виде используемого источника энергии. Но несмотря на все различия большинство электростанций используют для своей работы энергию вращения вала генератора.

Станции разных типов объединены в Единую энергетическую систему, позволяющую рационально использовать их мощности, снабжать всех потребителей.

Основное оборудование электростанций

К основному оборудованию электростанций можно отнести:

  • генераторы;
  • турбины;
  • котлы;
  • трансформаторы;
  • распределительные устройства;
  • двигатели;
  • выключатели;
  • разъединители;
  • линии электропередач;
  • средства автоматики и релейной защиты

Энергосистемы

Энергосистемы - совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Энергетика

Энергетика - область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

  • получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;
  • передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;
  • преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;
  • передача вторичной энергии потребителям, например по линиям электропередачи.

Энергетика как наука, в соответствии с номенклатурой специальностей научных работников, утверждённой Министерством образования и науки Российской Федерации, включает следующие научные специальности:

  • Энергетические системы и комплексы;
  • Электрические станции и электроэнергетические системы;
  • Ядерные энергетические установки;
  • Промышленная теплоэнергетика;
  • Энергоустановки на основе возобновляемых видов энергии;
  • Техника высоких напряжений;
  • Тепловые электрические станции, их энергетические системы и агрегаты.

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов.

Электроэнергетику принято делить натрадиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единична электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

Тепловая энергетика (теплоэнергетика)

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива.

Тепловые электростанции делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39% всей электроэнергии мира, на базе угля - 27%, газа - 24%, то есть всего 90% от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов - газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика (Альтернативная энергетика)

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность.

Направления нетрадиционной энергетики:

  • Малые гидроэлектростанции
  • Ветровая энергетика
  • Геотермальная энергетика
  • Солнечная энергетика
  • Биоэнергетика
  • Установки на топливных элементах
  • Водородная энергетика
  • Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами. Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90°C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа.

В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.).

Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;
  • Котельные, которые делятся на:
    • Водогрейные;
    • Паровые.

    Децентрализованное теплоснабжение

    Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев.

    Виды децентрализованного отопления:

    • Малыми котельными;
    • Электрическое, которое делится на:
      • Прямое;
      • Аккумуляционное;

      Тепловые сети

      Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

      От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей.

      Энергетическое топливо

      Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

      Органическое топливо

      Газообразное

      Естественным топливом является природный газ, искусственным:

      • Генераторный газ;
      • Коксовый газ;
      • Доменный газ;
      • Продукты перегонки нефти;
      • Газ подземной газификации;
      • Синтез-газ.

      Жидкое

      Естественным топливом является нефть, искусственным называют продукты его перегонки:

      • Бензин;
      • Керосин;
      • Соляровое масло;
      • Мазут.

      Твёрдое

      Естественным топливом являются:

      • Торф;
      • Бурый уголь;
      • Каменный уголь;
      • Антрацит;
      • Горючий сланец;
      • Дрова;
      • Древесные отходы;
      • Топливные брикеты;
      • Топливные гранулы.

      Искусственным твёрдым топливом являются:

      • Древесный уголь;
      • Кокс и полукокс;
      • Углебрикеты;
      • Отходы углеобогащения.

      Ядерное топливо

      В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС.

      Ядерное топливо получают из природного урана, который добывают:

      • В шахтах (Франция, Нигер, ЮАР);
      • В открытых карьерах (Австралия, Намибия);
      • Способом подземного выщелачивания (США, Канада, Россия).

      Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90% побочного обеднённого урана направляется на хранение, а 10% обогащается до нескольких процентов (3—5% для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.

      Читайте также: