Что такое электризация трением кратко

Обновлено: 05.07.2024

Электростатика — раздел физики, изучающий неподвижные заряды и не изменяющиеся во времени электрические поля.

Электрические явления известны человеку с давних времен. Это электризация тел при трении, молния. Систематическое изучение электрических явлений начато в XVIII в. В России этим занимались М. В. Ломоносов и Г. Рихман, в Америке — Б. Франклин. М. В. Ломоносов установил природу молнии, Б. Франклин — два рода электричества. Франклин предложил считать, что стекло, натертое кожей, заряжается положительно, а янтарь, натертый шерстью, — отрицательно. С точки зрения современной науки, отрицательно заряженное тело содержит избыток электронов. Если у тела забрать часть электронов, то оно заряжается положительно. Следовательно, отрицательный знак заряда электрона — условное понятие, связанное с произвольным выбором Б. Франклина.

Электризация тел

В наше время, в век господства синтетических материалов, мы повседневно сталкиваемся с проявлением статического электричества: трение одежды из синтетики о кожу человека сопровождается треском искр, видимых в темноте.

Чтобы обнаружить заряд какого-либо тела, нужно воспользоваться пробным зарядом — другим заряженным телом малых размеров (точечным зарядом). На пробный заряд со стороны нашего тела будет действовать сила. Если источник пробного заряда и тела один и тот же (янтарь или стекло), это будет отталкивающая сила, если же их источники разные (у одного янтарь, а у другого стекло), то пробный заряд будет притягиваться к нему.

Электризация тел

Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными, а явление приобретения телами электрического заряда называют — электризация.

Явления, связанные с электричеством, довольно распространены в природе. Одним из самых наблюдаемых явлений является электризация тел. Так или иначе с электризацией приходилось сталкиваться каждому человеку. Иногда мы не замечаем статического электричества вокруг нас, а иногда его проявление ярко выражено и довольно ощутимо.

Определение

В физике электризацией называют процесс, при котором происходит перераспределения зарядов, на поверхностях разнородных тел. При этом на телах скапливаются заряженные частицы противоположных знаков. Наэлектризованные тела могут передавать часть накопленных заряженных частиц другим предметам или окружающей среде, контактирующей с ними.

Заряженное тело передаёт заряды при непосредственном контакте с ним нейтральных или противоположно заряженных предметов, либо через проводник. По мере перераспределения взаимодействие электрических зарядов уравновешивается, и процесс перетекания прекращается.

Важно помнить, что при электризации тел новые электрические частицы не возникают, а лишь перераспределяются уже существующие. При электризации действует закон сохранения заряда, согласно которому алгебраическая сумма отрицательных и положительных зарядов всегда равна нулю. Другими словами – количество отрицательных зарядов переданных другому телу при электризации равняется количеству оставшихся заряженных протонов противоположного знака.

Известно, что носителем элементарного отрицательного заряда является электрон. Протоны же обладают положительными знаками, но эти частицы прочно связаны ядерными силами и не могут свободно перемещаться при электризации (за исключением кратковременного высвобождения протонов в процессе разрушения атомных ядер, например, в различных ускорителях). В целом атом, обычно, электрически нейтрален. Его нейтральность может нарушить электризация.

Однако, отдельные электроны из облака, окружающего многопротонные ядра, могут покидать свои отдалённые орбиты и свободно перемещаться между атомов. В таких случаях образуются ионы (иногда называемые дырками), имеющие положительные заряды. См. схему на рис. 1.

Два рода зарядов

Рис. 1. Два рода зарядов

В твёрдых телах ионы связаны атомными силами и, в отличие от электронов, не могут изменить своё расположение. Поэтому только электроны являются переносчиками заряда в твёрдых телах. Для наглядности мы будем считать ионы просто заряженными частицами (абстрактными точечными зарядами), которые ведут себя так же, как и частицы с противоположным знаком – электроны.

Модель атома

Рис. 2. Модель атома

Физические тела в естественных условиях электрически нейтральные. Это значит, что их взаимодействия уравновешены, то есть, количество ионов заряженных положительно равно количеству отрицательно заряженных частиц. Однако, электризация тела нарушает это равновесие. В таких случаях электризация является причиной изменения баланса кулоновских сил.

Условия возникновения электризации тел

Прежде чем перейти к определению условий электризации тел, заострим ваше внимание на взаимодействии точечных зарядов. На рисунке 3 изображена схема такого взаимодействия.

Взаимодействие заряженных частиц

Рис. 3. Взаимодействие заряженных частиц

На рисунке видно, что одноимённые точечные заряды отталкиваются, тогда как разноимённые – притягиваются. В 1785 г. силы этих взаимодействий исследовал французский физик О. Кулон. Знаменитый закон Кулона гласит: два неподвижных точечных заряда q1 и q2, расстояние между которыми равно r, действуют друг на друга с силой:

Коэффициент k зависит от выбора системы измерений и свойств среды.

Исходя из того, что на точечные заряды действуют кулоновские силы, имеющие обратно пропорциональную зависимость от квадрата расстояния между ними, проявление этих сил может наблюдаться только на очень небольших расстояниях. Практически, эти взаимодействия проявляются на уровне атомных измерений.

Таким образом, для того чтобы электризация тела произошла, необходимо максимально приблизить его к другому заряженному телу, то есть, прикоснуться к нему. Тогда под действием кулоновских сил часть заряженных частиц переместится на поверхность заряжаемого предмета.

Строго говоря, при электризации перемещаются только электроны, которые распределяются по поверхности заряжаемого тела. Избыток электронов образует определённый отрицательный заряд. Создание положительного заряда на поверхности реципиента, электроны с которого перетекли на заряжаемый объект, возложено на ионы. При этом модули величин зарядов на каждой из поверхностей равны, но знаки их противоположны.

Электризация нейтральных тел из разнородных веществ возможна только в том случае, если у одного из них электронные связи с ядром очень слабые, а у другого, наоборот – очень сильные. На практике это означает, что в веществах, у которых электроны вращаются на удалённых орбитах, часть электронов теряют свои связи с ядрами и слабо взаимодействуют с атомами. Поэтому, при электризации (тесном контакте с веществами), у которых проявляются более сильные электронные связи с ядрами, происходит перетекание свободных электронов. Таким образом, наличие слабых и сильных электронных связей является главным условием электризации тел.

Поскольку в кислотных и щелочных электролитах могут перемещаться и ионы, то электризация жидкости возможна путём перераспределения собственных ионов, как это имеет место при электролизе.

Способы электризации тел

Существует несколько способов электризации, которые условно можно разделить на две группы:

  1. Механическое воздействие:
    • электризация соприкосновением;
    • электризация трением;
    • электризация при ударе.
  2. Влияние внешних сил:
    • электрическое поле;
    • воздействие света (фотоэффект);
    • влияние тепла (термопары);
    • химические реакции;
    • давление (пьезоэффект).

Наиболее распространённым способом электризации тел в природе является трение. Чаще всего происходит трение воздуха при контакте его с твёрдыми или жидкими веществами. В частности, в результате такой электризации происходят грозовые разряды.

Электризация трением нам известна ещё со школьной скамьи. Мы могли наблюдать наэлектризованные трением небольшие эбонитовые палочки. Отрицательный заряд потёртых об шерсть палочек определяется избытком электронов. Шерстяная ткань при этом заряжается положительным электричеством.

Подобный опыт можно провести со стеклянными палочками, но натирать их необходимо шёлком или синтетическими тканями. При этом, в результате трения стеклянные наэлектризованные палочки заряжаются положительно, а ткань – отрицательно. В остальном между стеклянным электричеством и зарядом эбонита различий нет.

Чтобы наэлектризовать проводник (например, металлический стержень), необходимо:

  1. Изолировать металлический предмет.
  2. Прикоснуться к нему положительно заряженным телом, например стеклянной палочкой.
  3. Отвести часть заряда на землю (кратковременно заземлить один конец стержня).
  4. Убрать заряженную палочку.

При этом заряд на стержне равномерно распределится по его поверхности. Если металлический предмет неправильной формы, заряды распределятся неравномерно – концентрация электронов будет больше на выпуклостях и меньше на впадинах. При разделении тел происходит перераспределение заряженных частиц.

Свойства наэлектризованных тел

  • Притягивание (отталкивание) мелких предметов – признак наэлектризованности. Два тела, заряженных одноимённо, противодействуют (отталкиваются), а разнознаковые – притягиваются. На этом принципе основана работа электроскопа – прибора для измерения величины заряда (см. рис. 5).
  • Избыток зарядов нарушает равновесие во взаимодействии элементарных частиц. Поэтому каждое заряженное тело стремится избавиться от своего заряда. Часто такое избавление сопровождается молниеносным разрядом.

Применение на практике

  • очистка воздуха с помощью электростатических фильтров;
  • электростатическая окраска металлических поверхностей;
  • производство синтетического меха, путём притягивания наэлектризованного ворса к тканевой основе, и др.

Вредное воздействие:

  • влияние статических разрядов на чувствительные электронные изделия;
  • воспламенение паров ГСМ от разрядов статического электричества.

Способы борьбы: заземление ёмкостей с горючим, работа в антистатической одежде, заземление инструментов и т.п.

Электрический заряд является величиной, определяющей способность тела к электрическому взаимодействию и интенсивность этого взаимодействия.

Заряд обозначают латинской буквой q и измеряют в кулонах (Кл).

Два вида электрических зарядов

В природе существуют два вида электрических зарядов, которые условно названы положительным и отрицательным. Носителем положительного заряда является протон, а отрицательного — электрон. Обычно атомы находится в равновесном состоянии благодаря одинаковому числу входящих в них положительных и отрицательных частиц.

Электрический заряд электрона отрицателен и равен - 1 , 6 · 10 - 19 К л , заряд протона положителен и по модулю равен заряду электрона.

Электроны и протоны взаимодействуют по определенным законам:

  • одноименные заряды взаимно отталкиваются;
  • разноименные заряды взаимно притягиваются.

Определить заряжено ли тело и величину его заряда можно с помощью электроскопа и электрометра.

Электроскоп — устройство, определяющее наличие электрического заряда. Простейший электроскоп можно собрать из подручных материалов: банки, металлической проволоки, алюминиевой фольги и картона. Если поднести к электроскопу электрически заряженный предмет, то его лепестки раздвинутся.

Электрометр работает по такому же принципу, но дополнительно имеет шкалу. Степень отклонения стрелки электрометра от стержня позволяет измерить заряд.

Явление электризации тел

Электризация — процесс перераспределения зарядов, при котором электроны от одного тела переходят к другому и электрически нейтральные тела становятся заряженными.

Электроны могут перемещаться от одного атома к другому. При этом они формируют положительные (где отсутствует электрон) или отрицательные (одиночный электрон или атом с дополнительным электроном) ионы. Если электроны переходят к нейтрально заряженному телу, то в этой области их количество становится большим, чем количество положительных протонов.

Таким образом появляется некомпенсированный отрицательный заряд. И наоборот, в области, откуда они уходят, появляется нехватка отрицательных зарядов, необходимых для компенсации положительных, и область заряжается положительно.

  • электризация происходит при взаимодействии;
  • в электризации участвуют два тела или более;
  • электризуются оба тела.

Условие возникновения электризации тел

Электризация нейтральных тел, состоящих из разных веществ, возможна, если в атомах одного из них есть электроны со слабой связью с ядром, а у другого, наоборот присутствуют очень сильные связи. Электроны, которые вращаются на удаленных орбитах, слабо взаимодействуют с ядрами, и часть таких электронов легко теряет свои связи с ними.

Поэтому, при тесном контакте с веществами, имеющими более сильные электронные связи с ядрами, происходит окончательный разрыв слабой связи и перемещение свободных электронов.

Главным условием электризации тел является наличие слабых и сильных электронных связей.

Способы электризации

Существующие способы электризации можно разделить на две группы:

Электризация с помощью механического воздействия

Электризация трением

При трении тела тесно контактируют друг с другом, и часть электронов с поверхности одного переходит на поверхность второго. Если стеклянную палочку натереть о бумагу, то палочка получит положительный заряд, а бумага — отрицательный.

При трении о мех или шерстяную ткань эбонит приобретает отрицательный заряд, а мех и шерсть — положительный.

В результате трения при контакте воздуха с твердыми или жидкими веществами, например, водной поверхностью, воздух электризуется, и происходят разряды молний.

Электризация при соприкосновении или ударе

Электризация трением возможна, даже если тела имели нейтральный заряд. Для электризации соприкосновением или ударом необходимо, чтобы хотя бы одно из тел имело отличный от нуля заряд, так как кратковременного взаимодействия недостаточно для электризации незаряженных тел. Соприкасаясь с нейтральным предметом, заряженное тело передает ему часть своего заряда.

Электризация под влиянием внешних сил

Электризация индукцией (наведением)

Электризация наведением схематически показана на изображении.

Если к двум соприкасающимся незаряженным электрометрам (рис. а) поднести положительно заряженную стеклянную палочку, то электроны, притягиваясь к предмету с положительным зарядом, сосредоточатся в ближайшем к стеклянной палочке электрометре и на нем образуется отрицательный заряд (рис. б). Если в этот момент разделить электрометры (рис. в) и затем убрать стеклянную палочку, то они так и останутся разноименно заряженными (рис. г).

Другие способы электризации:

  • воздействие света (фотоэффект);
  • влияние тепла (термопары);
  • химические реакции;
  • давление (пьезоэффект).

Распределение заряда

При электризации тела с ровной поверхностью заряд равномерно распределится по ней. Если предмет неправильной формы, заряд распределится неравномерно. Наибольшая концентрация электронов будет на выпуклых частях, меньшая — на впадинах.

Законы Кулона и сохранения заряда

Закон Кулона

Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними. Сила направлена по прямой, соединяющей эти заряды.

F 12 = k q 1 · q 2 r 2

где F — сила Кулона между телами с зарядами q 1 и q 2 (точечными зарядами),

q 1 и q 2 — заряды взаимодействующих тел,

r — расстояние между зарядами,

k — коэффициент, постоянная величина.

Коэффициент k равен силе взаимодействия двух точечных зарядов по 1 Кл на расстоянии 1 м. Его значение зависит от выбранной системы измерений и свойств среды.

В СИ k = 9 · 10 9 Н · м 2 К л 2 .

Сила Кулона имеет обратно пропорциональную зависимость от квадрата расстояния между зарядами, и поэтому ее проявление можно наблюдать только на очень небольших расстояниях — на уровне атомных измерений. Для того чтобы произошло перераспределение электрических зарядов, нужно, чтобы тела максимально сблизились, то есть соприкоснулись.

Тогда под действием кулоновских сил часть заряженных частиц переместится с поверхности одного предмета на поверхность другого. Избыток электронов образует определенный отрицательный заряд. На поверхности предмета, потерявшего часть электронов и имеющего поэтому избыток положительно заряженных ионов, создается положительный заряд. При этом модули величин зарядов на каждой из поверхностей равны, но знаки их противоположны.

Закон сохранения заряда

В изолированной системе алгебраическая сумма электрических зарядов всех тел остается постоянной при любых взаимодействиях зарядов внутри этой системы.

q 1 + q 2 + q 3 + . . . + q n = c o n s t

Изолированная или замкнутая система — это система тел, в которой заряды не уходят и не приходят извне.

Свойства статического электричества

Статическое электричество — это комплекс явлений, связанных с электризацией тел.

Основные причины появления статического электричества

  1. Контакт между двумя телами и их разделение (включая трение, намотку/размотку и пр.).
  2. Быстрый температурный перепад (например, в момент помещения материала в духовой шкаф).
  3. Радиация с высокими значениями энергии, ультрафиолетовое излучение, рентгеновские X-лучи, сильные электрические поля.
  4. Резательные операции, то есть трение (например, на раскроечных станках или бумагорезальных машинах).
  5. Индукция (статический заряд вызывает возникновение электрического поля).

Контакт между предметами с последующим отделением их друг от друга является самой распространенной причиной возникновения статического электричества на производствах. Статический заряд генерируется при разматывании или наматывании рулонных материалов, при перемещении относительно друг друга их слоев. В быту также наиболее частые причины появления статического электричества — трение и наведение.


Рис. 11. Возникновение двойного электрического слоя при тесном соприкосновении двух различных тел


Рис. 12. После раздвигания тел каждое из них оказывается заряженным

В том, что дело обстоит именно так и что возникновение электрических зарядов при тесном соприкосновении различных тел происходит и тогда, когда трения между этими телами в обычном смысле слова нет, нас убеждает опыт, изображенный на рис. 13. Возьмем два электроскопа и укрепим на стержне каждого из них высокий металлический стакан, как на рис. 9. В один из этих стаканов нальем дистиллированную воду и погрузим в нее шарик из парафина, укрепленный на изолирующей ручке (рис. 13,а). Вынув этот шарик из воды, мы увидим, что листки электроскопа разойдутся (рис. 13,б справа). Опыт удается независимо от того, погрузим мы шарик в воду на малую или на большую глубину и будем ли мы вынимать его из воды медленно или быстро. Это показывает, что заряды разделяются при соприкосновении шарика и жидкости и что трение, как таковое, здесь роли не играет. Перенеся шарик во второй стакан (рис. 13,б слева), мы увидим, что листки второго электроскопа расходятся, т. е. шарик приобрел электрический заряд при соприкосновении с водой. Соединим теперь электроскопы проволокой (рис. 13,в); листки обоих электроскопов опадают, и это показывает, что заряды, приобретенные водой и шариком, равны по модулю и противоположны по знаку.


Рис. 13. Электризация воды и парафинового шарика, погруженного в нее

7.2. Прижмите к теплой кафельной печи лист бумаги и потрите его ладонями. Лист пристанет к поверхности печи. При отрывании слышен треск, и в темноте видны искры между бумагой и печью. Объясните явление. Почему опыт обычно не удается с холодной, нетопленной печью? Обратите внимание на сказанное в § 2.

Читайте также: