Что такое делитель в математике 5 класс определение кратко

Обновлено: 05.07.2024

Если одно натуральное число нацело делится на другое натуральное число, то первое число называют кратным второму числу, а второе число называют делителем первого числа.

Делитель числа

Если число a делится на число b, то число b называют делителем числа a.

Два делителя числа 24 очевидны. Это 1 и 24. Далее будем проверять все числа подряд начиная с 2. Получим еще шесть делителей: 2, 3, 4, 6, 8, 12. Таким образом, число 24 имеет 8 делителей: 1, 2, 3, 4, 6, 8, 12, 24.

Этот перебор можно сократить, если отыскав один делитель, записать сразу же и другой, являющийся частным от деления числа 24 на найденный делитель. Такие пары делителей удобно записывать друг под другом

Часто при решении задач приходится находить общие делители двух и более чисел. Возьмем какие-нибудь два числа, например, 30 и 45. Найдем все делители каждого из них и подчеркнем их общие делители

Видим, что у чисел 30 и 45 есть общие делетели% 1, 3, 5, 15. Самый большой из них — чило 15. Его называют наибольшим общим делителем этих чисел.

С помощью перебора мы устновили, что НОД(30;45) = 15.

Наибольший общий делитель чисел a и b обозначают так: НОД(a;b).

Кратные числа

Если число a делится на число b, то говорят, что число a — кратное числа b (или число a кратно числу b).

Например, число 45 делится на 9. Можно сказать, что число 9 является делителем 45 или что число 45 — кратное числа 9.

С помощью перебора можно найти все делители числа. А как обстоит дело с кратным?

Рассмотрим, к примеру, числа, кратные 10. Для этого будем последовательно умножать 10 на 1, 2, 3, 4, 5 и т.д. Получим следующую последовательность: 10, 20, 30, 40, 50, … .

Эта последовательность, как и натуральный ряд, бесконечна, и все числа, кратные 10, выписать нельзя. Обратите внимание на то, как строится эта послдовательность: в ней первым идет число 10 и каждое следующее число на 10 больше предыдущего.

  • Любое натуральное число имеет бесконечно много кратных.
  • Наименьшим из кратных натурального числа является само это число.

Возьмём какие-нибудь два числа, например 8 и 6. Любое число, делящееся на 8, и на 6, является их общим кратным, и таких чисел бесконечного много. Это, например, произведение чисел 8 и 6, равное 48, числа 96, 192, 240. Однако при решении многих задач важно знать наименьшее общее кратное рассматриваемых чисел.

Найдем наименьшее общее кратное 6 и 8. Будем перебирать числа, кратные большему из них, т.е. числу 8, и в кадом случае проверять, делится ли это кратное на 6. Число 8 на 6 не делится, число 16 также не делится, а вот число 24 уже делится на 6. На этом перебор можно закончить, так как число 24 — первое число в натуральнм ряду, которое делтся на 8 и на 6. Итак, НОК(6, 8) = 24.

Далее найдем числа кратные 8. Для этого будем последовательно умножать 8 на 1, 2, 3, 4, 5 и т.д. Получим следующую последовательность: 8, 16, 24, 32, 40, … — все эти числа являются кратными 8.

Далее найдем числа кратные 36. Для этого будем последовательно умножать 36 на 1, 2, 3, 4, 5 и т.д. Получим следующую последовательность: 36, 72, 108, 144, 180, … — все эти числа кратны 36.

Далее найдем числа кратные 9. Для этого будем последовательно умножать 9 на 1, 2, 3, 4, 5 и т.д. Получим следующую последовательность: 9, 18, 27, 36, 45, … — все эти числа кратны 9.

Далее найдем числа кратные 2. Для этого будем последовательно умножать 2 на 1, 2, 3, 4, 5 и т.д. Получим следующую последовательность: 2, 4, 6, 8, 10, … — все эти числа кратны 2.

Решение:
Два делителя числа 5 очевидны. Это 1 и 5. Больше делителей у числа 5 нет. Таким образом, число 5 имеет 2 делителя: 1, 5.

Далее найдем числа кратные 5. Для этого будем последовательно умножать 5 на 1, 2, 3, 4, 5 и т.д. Получим следующую последовательность: 5, 10, 15, 20, 25, … — все эти числа кратны 5.

Решение:
Вспомним таблицу умножения на 5
Из представленных числе кратно 5 следующие: 5, 10 ,15, 50, 55.

Итак мы рассмотрели как находить делители и кратные для числа. Если у вас остались вопросы — задавайте их в комментария.

Решение:
Вспомним таблицу умножения на 10. Из представленных числу 10 кратны следующие: 10, 50, 70.

Итак мы рассмотрели как находить делители и кратные для числа. Если у вас остались вопросы — задавайте их в комментария.

Итак мы рассмотрели как находить делители и кратные для числа. Если у вас остались вопросы — задавайте их в комментария.

Если одно натуральное число делится без остатка на другое натуральное число, то первое называется кратным второго, а второе — делителем первого.

Натуральные числа, делитель, кратное

Кратное числа — это делимое, которое делится на данный делитель без остатка.

Делитель числа — это делитель, на который делимое делится без остатка.

Пример. Возьмём, например, такое деление:

Число 6 делится на число 3 без остатка. Следовательно, число 6 — кратное числа 3, а число 3 — делитель числа 6.

Пусть m и n — натуральные числа, если число m является кратным числа n, то говорят: m кратно n или m делится на n

Пример. 6 кратно 3 (шесть кратно трём) или 6 делится на 3 (шесть делится на три).

Самым маленьким кратным любого натурального числа является само это число, так как любое натуральное число можно разделить само на себя без остатка (в частном всегда будет единица).

Пример. Для числа 7 наименьшим кратным является число 7, для числа 2 — число 2:

7 : 7 = 1 (семь кратно семи);

2 : 2 = 1 (два кратно двум).

Для любого натурального числа существует бесконечно много кратных. Получить кратное для данного числа достаточно легко, можно просто умножить его на любое натуральное число, полученное произведение и будет его кратным.

Пример. Получим кратное числа 5, умножив его, например, на 2:

Число 10 — кратное числа 5:

Так как на единицу делится любое натуральное число, то число 1 является делителем любого натурального числа.

Деление — математическое действие, которое определяет, сколько раз одно число содержится в другом. Обратной операцией является умножение.

Выделяют следующие компоненты деления:

Делимое — число, которое делят на несколько частей.

Делитель — число, которое показывает, на сколько частей нужно разделить делимое.

Частное — число, которое является результатом деления.

a : b = c , где a — делимое, b — делитель, c — частное.

Умножение частного на делитель дает делимое.

Чтобы получить делитель, нужно делимое разделить на частное.

Д е л и м о е = ч а с т н о е * д е л и т е л ь Д е л и т е л ь = д е л и м о е / ч а с т н о е

Например, нужно поровну разделить 16 мандаринов между двумя детьми. Для этого 16:2=8. Таким образом, каждый ребенок получит по 8 мандаринов.

16 в этом примере является делимым, 2 — делителем, 8 — частным. Шестнадцать поделили на две части, по восемь в каждой. Или восемь содержится в 16 два раза. Или 2 содержится в 16 восемь раз. Деление прошло без остатка — нацело. Тогда число 2 является делителем числа 16.

Делителем числа a называется такое число b, на которое a делится нацело.

Например, 9 : 4 = 2 (остаток 5 ).

В примере 9 — делимое, 4 — делитель, 2 — неполное частное, 5 — остаток.

Остаток от деления — число, которое меньше делителя. Образуется при делении с остатком. Значит, в примере 9 : 4 = 2 (остаток 5 ) — число 4 не является делителем числа 9.

Задание: найдите такую пару делителей числа 144, если один из делителей равен 2.

Пусть неизвестный делитель равен x. Чтобы найти еще один делитель, если какой-то известен, нужно данное нам число разделить на известный делитель.

Тогда представим решение данной задачи в виде уравнения:

144 : x = 2 ; x = 144 : 2 ; x = 72 .

72 — целое число, без остатка.

Произведение делителей должно дать в результате 144:

72 * 2 = 144 — верно, значит, 72 — корень уравнения и делитель 144.

Ответ: числа 2 и 72 — делители 144.

Число называют кратным, если оно делится на данное число нацело, без остатка.

Например, 15:3 нацело.

Тогда число 15 является кратным 3.

Пишут: 15 кратно 3.

15 д е л и т с я н а к р а т н о 3 .

Основные понятия и определения

Делитель — это число, на которое данное число делится нацело. Делитель всегда меньше или равен числу.

Делится нацело = без остатка.

Наименьшим делителем любого числа является единица.

Наибольшим делителем числа является само число.

Делителем нуля будет любое число, но сам 0 делителем не будет.

При делении нуля на любое число получаем 0. А делить на ноль нельзя.

У единицы только один делитель — единица.

Другие числа, кроме 1, имеют не меньше двух делителей.

Кратное — число, которое делится на данное число нацело. Всегда больше или равно числу.

Наименьшее кратное числа является равным самому числу.

Наибольшее кратное подобрать нельзя, потому что ряд натуральных чисел бесконечен. У любого натурального числа бесконечное множество кратных.

Ноль является кратным для любого числа. При умножении на ноль всегда получается ноль.

Когда одно число делится нацело на другое, то первое число — кратное второго, а второе — делитель первого.

a : b = c , г д е a - к р а т н о е b и b - д е л и т е л ь a .

Чем отличаются друг от друга, как найти

Делитель отличается от кратного тем, что:

  • делитель — это число, НА которое делится заданное число;
  • кратное — это число, которое само ДЕЛИТСЯ НА заданное число.

Чтобы найти делители числа, нужно данное число разложить на множители.

Разложить на множители — представить число в виде произведения целых чисел.

Чтобы проверить, является ли одно число делителем другого, нужно разделить число на данное нам.

Для нахождения кратного числа заданному числу, нужно это число последовательно умножать на натуральные числа. Каждое полученное число будет кратно — будет делиться — заданному.

Делители и кратные связаны между собой. Например, делителем числа 15 является 3 и число, кратное 3, равно 15.

Примеры решения задач

Необходимо найти делители числа 14.

Решить задание можно двумя способами.

Последовательно делим 14 на натуральные числа от 1 до 14. Помним, что делитель всегда меньше или равен заданному числу.

14 : 1 = 14 ; 14 : 2 = 7 ; 14 : 3 = 4 ( о с т а т о к 2 ) ; 14 : 4 = 3 ( о с т а т о к 2 ) ; 14 : 5 = 2 ( о с т а т о к 4 ) ; 14 : 6 = 2 ( о с т а т о к 2 ) ; 14 : 7 = 2 ; 14 : 8 = 1 ( о с т а т о к 6 ) ; 14 : 9 = 1 ( о с т а т о к 5 ) ; 14 : 10 = 1 ( о с т а т о к 4 ; ) 14 : 11 = 1 ( о с т а т о к 3 ) ; 14 : 12 = 1 ( о с т а т о к 2 ) ; 14 : 13 = 1 ( о с т а т о к 1 ) ; 14 : 14 = 1 .

Выбираем такие числа в качестве делителя, при делении на которые мы не получили остаток: 1, 2, 7, 14.

Ответ: делители числа 14: 1, 2, 7, 14.

Представим 14 в виде произведения чисел:

14 = 14 * 1 = 2 * 7

Делителями будут множители, так как можем разделить 14 нацело на каждый из них.

Ответ: делители 14: 1, 2, 7, 14.

Найдите три числа, кратных 7.

Чтобы найти число, кратное данному, нужно это число умножить на любое натуральное число.

7 * 1 = 7 — семь кратно семи;

7 * 2 = 14 — 14 кратно 7;

7 * 3 = 21 — 21 кратно 7.

Ответ: числа, кратные 7: 7, 14, 21.

Самостоятельно проверьте, 225 кратно 3 или нет.

Чтобы проверить, кратно ли одно число другому, нужно разделить числа друг на друга.

75 — целое число, при делении нет остатка. Тогда 225 кратно 3.

Найдите любое число, делителями которого являются числа 7 и 8.

Самый простой способ, если в задании не оговорены еще какие-либо условия, просто перемножить эти делители:

Эта статья посвящена делителям и кратным. Здесь мы объясним данные понятия, сформулируем определения, приведем примеры делителей и различных кратных чисел (рассмотрим пока только целые числа). Отдельно остановимся на делителях 1 и - 1 , а также делителях и кратных 0 .

Основные определения

Для начала сформулируем определения для целого числа.

Делитель целого числа a есть такое число b , на которое можно разделить a без остатка.

Если вспомнить такое понятие, как делимость, то данную формулировку можно слегка изменить.

Делитель целого числа a – это такое число b , которое в сочетании с некоторым числом q делает справедливым равенство a = b · q .

Когда мы говорим о числе b , являющимся делителем целого числа a , это значит, что b делит a , что можно записать кратко как b | a или b \ a .

Согласно определению целых чисел, а также свойствам умножения целых чисел, любое целое число можно разделить на единицу и на себя, то есть a = a · 1 и a = 1 · a . Зная свойства умножения, мы можем также вывести равенства a = ( − a ) · ( − 1 ) и a = ( − 1 ) · ( − a ) . Из них следует, что у a будет еще два делителя, равных − a и − 1 . Следовательно, целое число a мы всегда можем разделить на a , − a , 1 и − 1 . К примеру, число 12 делится на 12 , - 12 , 1 и - 1 .

Остановимся на делителях таких чисел, как нуль, единица и минус единица. Поскольку нам знакомы свойства делимости, то мы можем заключить, что делителем 0 может стать любое целое число (включая сам 0 ), а единица и минус единица имеют только делители, равные 1 и − 1 соответственно.

Таким образом, 0 всегда будет иметь бесконечно большое число делителей в виде целых чисел (сюда входит и нуль), а у 1 и − 1 будут только 2 делителя – единица и минус единица. Минимальное количество делителей для любого целого числа a равно четырем. В их число входят a , − a , 1 и − 1 .

Какие еще можно привести примеры делителей в случае с целыми числами?

Так, 8 можно разделить на - 2 , поскольку равенство 8 = ( − 2 ) · ( − 4 ) верное (если нужно, повторите материал об умножении целых чисел). Восьмерку мы также можем разделить на − 8 , − 4 , − 1 , 1 , 2 , 4 , 8 , а вот - 3 не входит в состав делителей, поскольку числа q , при котором равенство 8 = ( − 3 ) · q было бы верным, не существует. То есть разделить 8 на - 3 мы можем только с остатком. Кроме указанных делителей, мы не можем разделить восьмерку ни на какие целые числа без остатка.

Рассмотренные выше примеры говорят нам о том, что в качестве делителей целого числа могут выступать не только положительные, но и отрицательные целые числа. Эта возможность обоснована одним из свойств делимости: если b – делитель целого числа a , то и противоположное число - b тоже будет его делителем. Следовательно, можно разбирать только случаи с положительными делителями и просто распространять полученные результаты на отрицательные.

Вспомним также и другое свойство делимости, которое гласит, что если целое число b будет делителем a , то a можно разделить и на - b , следовательно, множества делителей для положительного и отрицательного a будут совпадать. Это правило опять же подтверждает возможность работы только с положительными числами для простоты и краткости вычислений.

Далее мы будем говорить лишь о положительных делителях целых положительных (натуральных) чисел.

У единицы есть только один положительный делитель – сама единица. Этим 1 отличается от остальных натуральных чисел, поскольку другие имеют не меньше 2 делителей: кроме единицы их можно разделить на числа, равные им самим. В зависимости от того, имеются ли делители, отличные от самого числа и единицы, различают числа простые и составные.

Наименьший положительный делитель числа a – это единица (если само число a не равно 1 ),
а число a – наибольший положительный делитель самого себя (подробнее о сравнении трех и более натуральных чисел мы писали в отдельной статье). Таким образом, для любого натурального a положительный делитель b будет соответствовать условию 1 ≤ b ≤ a . Важную роль здесь также играет наибольший общий делитель (НОД), о котором мы поговорим отдельно.

Понятие кратных чисел

Начнем, как всегда, с определения.

Число a называется кратным b , если его можно разделить на b без остатка.

Другими словами, кратное b число является некоторым числом a , для которого будет верным равенство a = b · q (здесь q – некоторое целое число). Если у нас есть a , которое по отношению к b является кратным, мы говорим, что a кратно b . Записать это можно так: a ⋮ b .

Между кратным и делимым существует вполне определенная связь. На самом деле, если a является кратным b , то b будет делителем данного числа, и наоборот.

Возьмем несколько примеров кратных чисел.

Так, - 12 будет кратно трем, поскольку − 12 = 3 · ( − 4 ) . У тройки есть много других кратных, например, 0 , 3 , − 3 , 6 , − 6 , 9 , − 9 и др. А 5 не будет кратным 3 , поскольку нет такого q , при котором было бы верным равенство 5 = 3 · q .

Согласно определению кратных чисел, 0 будет кратным по отношению к любому b , в том числе и нулевому. Доказательством является равенство 0 = b · 0 , ведь умножение любого числа на нуль дает в итоге нуль.

Также уточним, что для любого целого числа b существует бесконечно много кратных, и любое целое число, соответствующее произведению b · q , где q – любое целое число, будет кратным b .

Наименьшее положительное кратное положительного числа есть само это число. Обратите внимание, что наименьшее кратное в этом случае не нужно путать с наименьшим общим кратным для нескольких чисел (НОК).

Далее будут рассмотрены другие случаи с натуральными кратными целых положительных чисел.

Кратное число – это число, делящееся на данное целое число без остатка.

Простое число – это такое натуральное число, которое больше 1 и делится только на 1 и само на себя.

Составные числа – это непростые натуральные числа больше 1.

Обязательная литература

1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. ФГОС// С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

Дополнительная литература

1. Чулков П. В. Математика: тематические тесты. 5 кл.// П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Выясним, что называют делителем.

Если натуральное число а можно разделить на натуральное число b, то это число b и будет делителем натурального числа а.

Мы уже знаем, что натуральные числа бывают простыми и составными.

Рассмотрим делители простых и составных чисел.

У простых чисел только два делителя –единица и само это число.

У составных чисел делителей больше.

Например, 3 – простое число, его делители 1 и 3.

14 – составное число, его делители 1, 2, 7 и 14.

Если делитель – простое число, то его называют простым делителем. Так, в наших примерах простыми делителями являются числа 2, 3, 7.

Можно ли представить любое составное число в виде произведения простых множителей? Ответ однозначный – да. Такое действие в математике называют разложение на простые множители.

Например, 36 – это произведение простых множителей:

36 = 2 · 2 · 3 · 3 = 2 2 · 3 2

Есть и другая форма записи разложения на простые множители любого числа.

Она представляет собой таблицу из двух колонок. В левую часть вначале записывается число, которое нужно разложить на простые множители, а в правую – простые делители этого числа. При этом следующим слева после исходного числа записывается число, которое является частным от деления на простое число справа. Так запись продолжается до тех пор, пока частное от деления не будет единицей.


Например, разложим число 100 на простые множители.

Разделим 100 на 2, частное равно 50;

50 разделим на 2, частное равно 25;

25 разделим на 5, частное равно 5;

5 разделим само на себя, получаем 1.


То есть простые множители числа 100:

100 = 2 · 2 · 5 · 5 = 2 2 · 5 2

Эти множители числа 100 и есть делители этого числа, только добавим ещё единицу и всевозможные произведения простых множителей.

Таким образом, делители числа 100 – это числа 1, 2, 4, 5, 10, 20, 25,100. Других делителей у числа 100 нет.

В дальнейшем нам понадобится ещё одно математическое понятие – кратное.

Кратное число – это число, делящееся на данное целое число без остатка. Иначе говоря, это исходное число, увеличенное в несколько раз.

Например, кратное числа 3 – это числа: 3, т. к. оно больше исходного числа 3 в один раз; 6, т. к. оно больше исходного числа 3 в 2 раза; 9, т. к. оно больше исходного числа 3 в 3 раза и т. д.

Если находить все делители натуральных чисел, то получится интересное свойство, о котором сейчас вы узнаете.

Например, найдём все делители числа 32.

Это будут числа:

Начиная с середины, все пары чисел при умножении будут давать 32.

У нас середина – это числа 4 и 8.

Найдём следующие делители:

Тренировочные задания

№ 1. Какую из цифр 2, 3, 4 нужно подставить в число 5_ вместо пропуска, чтобы получить кратное числа 3?

Варианты ответа: 2, 3, 4.

Решение. Вспомним признак делимости на 3.Чтобы число делилось на 3, необходимо, чтобы сумма его цифр делилась на 3. Из представленных цифр подходит только 4, т.к. 5 + 2 = 7 – не делится на 3; 5 + 3 = 8 – не делится на 3; а 5 + 4 = 9 – делится на 3.

№ 2. Разложите произведение на простые множители 25 и 24.

Решение. Разложим отдельно числа 25 и 24 на простые множители, а затем найдём произведение всех полученных простых множителей от 24 и 25.

Читайте также: