Что представляет собой редукционное деление кратко

Обновлено: 30.06.2024

Мейоз (от греч. meiosis – уменьшение) наблюдается только у эукариот, обладающих половым процессом. Путем мейоза образуются половые клетки (гаметы). В результате мейоза из одной клетки с полным набором хромосом (обычно это диплоидный набор – 2n) образуются четыре клетки с половинным – одинарным, или гаплоидным, набором хромосом (1n). Таким образом, мейоз – способ деления клетки, обеспечивающий редукцию (уменьшение) числа хромосом (от 2n до 1n) и увеличение числа клеток.

Перед началом мейоза, то есть в период интерфазы, происходят рост клетки, увеличение ее массы, удвоение органоидов, удвоение (репликация) ДНК, а следовательно, хромосом. Хромосомы представлены двумя сестринскими хроматидами, соединенными центромерой.

У всех организмов мейоз совершается сходным образом в виде двух делений, идущих без перерыва друг за другом, условно называемых мейоз I (или редукционное деление) и мейоз II (или эквационное деление). Каждое из этих двух делений ядра имеет несколько фаз, напоминающих фазы митоза: профазу, метафазу, анафазу и телофазу. Но удвоение ДНК происходит только перед первым делением в S-периоде интерфазы, предшествующей мейозу I. Схема изменений, протекающих в ядре при первом и втором делениях мейоза, представлена на рисунке.


Схема фаз мейоза

Рассмотрим особенности фаз мейоза.

Первое деление мейоза

В первом мейотическом делении количество хромосом уменьшается вдвое, поэтому оно получило название редукционного.

В мейоз I вступают клетки, ядра которых диплоидны (2n), то есть каждая хромосома имеет парную, идентичную по форме и размерам хромосому. Одна хромосома из каждой пары происходит от одного родителя. Эти две хромосомы называют гомологичными (от греч. homoios – подобный, одинаковый). В профазе I мейоза гомологичные хромосомы, каждая из которых состоит из двух хроматид, точно сближаются и объединяются друг с другом. Этот процесс называют конъюгацией (от лат. conjugatio – соединение), а соединенные гомологичные хромосомы – бивалентами (от лат. bi – двойной и valens – сильный).


Строение бивалента: a1 и a2, A1 и A2 – сестринские хроматиды; 1 – плоскость расхождения хроматид в первом делении, 2 – то же во втором делении

Гомологичные хромосомы тесно переплетаются, образуя между собой мостики (хиазмы).


Спаренные гомологичные хромосомы: A1 и A2, a1 и a2 – сестринские хроматиды; ц – центромеры; х – хиазмы

В это время благодаря разрывам, появляющимся в цепочках ДНК одновременно в двух хроматидах, между гомологичными хромосомами может происходить взаимный обмен идентичными по набору генов участками – кроссинговер (от англ. crossingover – перекрест), или рекомбинация. В результате хромосомы, поступившие от материнского и отцовского организмов, получают часть генов, ранее принадлежащих противоположному полу, то есть в них появляются новые комбинации наследственных признаков.


Схемы возможных рекомбинаций между гомологичными хромосомами

После кроссинговера хромосомы остаются прочно связанными вплоть до начала анафазы. При этом сестринские хроматиды соединены центромерой, а несестринские хроматиды, претерпевшие кроссинговер, связаны хиазмами.

В метафазе мейоза I биваленты располагаются в экваториальной части клетки. В анафазе I каждый бивалент распадается на две хромосомы, которые расходятся к противоположным полюсам клетки. Каждая хромосома состоит из двух хроматид, которые в результате кроссинговера не идентичны друг другу. Завершается первое деление мейоза телофазой I. Однако дочерние клетки, каждая хромосома которых состоит из двух сестринских хроматид, отличаются от родительских диплоидных клеток: 1) обе копии их ДНК происходят лишь от одной из двух гомологичных хромосом, имевшихся в исходной клетке, – либо от отцовской, либо от материнской; 2) эти копии дочерние клетки получают в виде тесно связанных, составляющих единую хромосому сестринских хроматид, в которых уже произвел перекрестный обмен отдельными участками ДНК.


Обмен участками хромосом (кроссинговер) при мейозе

Вслед за телофазой I наступает вторая интерфаза, называемая интеркинезом (от лат. inter – между и греч. kinesis – движение). Обычно интеркинез длится очень недолго, так как репликации ДНК в этот период не происходит.

Второе деление мейоза

Сразу за интеркинезом начинается второе деление мейоза (мейоз II). В профазе II две дочерние клетки, образовавшиеся в телофазе I, начинают деление, подобное митозу. Появляются нити веретена, одним своим концом прикрепляющиеся к ценромерами. В метафазе II качественно измененные в мейозе I хромосомы выстраиваются по экватору нового веретена. В анафазе II центромеры делятся, и хроматиды хромосом в обеих дочерних шестках расходятся к их полюсам. В результате из каждой удвоенной хромосомы получаются две отдельные хромосомы, расходящиеся к противоположным полюсам клетки, где из них формируются ядра.

В телофазе II вокруг ядер, содержащих одинарный (гаплоидный) набор хромосом, образуется ядерная мембрана и происходит разделение цитоплазмы. Редукционный процесс образования половых клеток, содержащих гаплоидный набор хромосом, завершается.
Таким образом, в процессе мейоза удвоение хромосом происходит только однажды перед первым делением клетки.

Каждое из двух делений мейоза (I и II) имеет свои отличительные черты. Особенность первого деления мейоза состоит в сложном и длительном прохождении клеткой профазы I. Например, у человека при развитии сперматозоидов профаза I может длиться несколько суток, а при развитии яйцеклеток (оогенез) – даже в течение многих лет.

Особенность второго деления митоза заключается в том, что в интерфазе II (интеркинезе) ДНК не реплицируется, профаза II – не длительная и не происходит кроссинговер. В итоге все четыре образовавшиеся клетки (гаметы) содержат ядра с гаплоидным (1n) набором хромосом.

Сравнение митоза и мейоза

При митозе, как отмечалось ранее, из каждой родительской клетки образуются две идентичные дочерние клетки с неизменным набором хромосом (2n), а при мейозе – четыре клетки с вдвое уменьшенным набором хромосом (1n) и новым сочетанием генов в каждой из них. Деление клеток эукариот может осуществляться путем митоза и мейоза. Эти процессы имеют много общего, но есть и существенные различия. Сравнение двух типов деления клетки подводит к выводу о том, что митоз – более древний способ, и в процессе эволюции он, видимо, предшествовал мейозу.


Сравнение митоза и мейоза

Значение мейоза

Биологическое значение мейоза состоит в том, что благодаря редукции числа хромосом и образованию половых гаплоидных клеток при оплодотворении из поколения в поколение обеспечивается поддержание постоянства состава хромосом вида. Кроме того, благодаря конъюгации и кроссинговеру мейоз является источником комбинативной изменчивости. Поскольку хромосомы разных бивалентов в анафазе I расходятся независимо друг от друга, происходит рекомбинация родительских наборов хромосом или их участков.

При половом процессе гаплоидные ядра двух гамет (половых клеток), образовавшихся в мейозе, сливаются в диплоидное ядро зиготы. Он характерен для многих одноклеточных и типичен для многоклеточных организмов. Последующее деление зиготы всегда осуществляется путем митоза.

Мейоз — это процесс деления клеточных ядер, приводящий к уменьшению числа хромосом вдвое. Мейоз состоит из двух последовательных делений (редукционного и эквационного), которым предшествует однократная репликация ДНК. Интерфаза мейоза аналогична интерфазе митоза.

Редукционное деление

Профаза I — состоит из пяти стадий: лептотены, зиготе-ны, пахитены, диплотены, диакинеза.

Лептотена — реплицированные хромосомы конденсируются.

Зиготена — начинается конъюгация гомологичных хромосом. Образуются биваленты, или тетрады, состоящие из четырех сестринских хроматид.

Пахитена — стадия, на которой происходит кроссинго-вер.

Диплотена — конъюгировавшие хромосомы разделяются, хромосомы бивалента отодвигаются друг от друга, но продолжают быть связанными хиазмами — местами, где произошел кроссинговер.

Диакинез — ядерная оболочка и ядрышки исчезают. Отчетливо видно, что каждый бивалент состоит из четырех хроматид. Сестринские хроматиды соединены центромерой, несестринские — хиазмами. По этим точкам можно определить только факт произошедшего кроссинговера, ибо наблюдать его нельзя.

Метафаза I — хромосомы выстраиваются по экватору веретена деления. Центромеры обращены к полюсам.

Анафаза I — нити веретена сокращаются, гомологичные хромосомы расходятся к полюсам клетки, где формируются гаплоидные наборы хромосом (два набора на клетку). На этой стадии возникают хромосомные рекомбинации, повышающие степень изменчивости потомков.

Телофаза I — формируются клетки с гаплоидным набором хромосом и удвоенным количеством ДНК. Формируется ядерная оболочка. Веретено разрушается. В конце телофазы I в результате цитокинеза формируется диада. В каждую клетку попадает две сестринские хроматиды, соединенные центромерой.

Эквационное деление состоит из профазы II, метафазы II, анафазы II, телофазы II и цитокинеза.

Клетки, содержащие гаплоидный набор хромосом, состоящих из двух хроматид, образуют клетки с гаплоидным набором хромосом, состоящих из одной хроматиды. Таким образом, из одной диплоидной клетки (овогония, или спер-матогония) образуются четыре клетки с гаплоидным набором хромосом.

Биологическое значение мейоза заключается в образовании клеток, участвующих в половом размножении, в поддержании генетического постоянства видов. Мейоз служит основой комбинативной изменчивости организмов. Нарушения мейоза у человека могут привести к таким патологиям, как болезнь Дауна, идиотия и др.


Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.


Что такое мейоз?

Редукционное деление клетки, другими словами – мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз означает упрощение, приведение обратно. Дело в том, что после процесса оплодотворения (слияния половых клеток) число хромосом в клетке увеличивается в 2 раза. А благодаря мейозу, наоборот, их количество уменьшается, и половые клетки содержат, как правило, только один набор хромосом. Таким образом, набор хромосом у организмов одного вида из поколения в поколение сохраняется неизменным!

Мейоз происходит в два этапа:

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое и из диплоидной клетки образуется две гаплоидные клетки.

В ходе второго деления гаплоидность клеток сохраняется, так как происходят процессы такие как в митозе и число хромосом в дочерних клетках не изменяется.

которые читают вместе с этой





Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках (имеющих 4, 6, 8 и т.д наборов хромосом).

Фазы мейоза

Деление на первом и втором этапе мейоза происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы. Первому делению предшествует интерфаза, в ходе которой происходит важный процесс самоудвоения молекул ДНК. Перед вторым делением мейоза интерфаза очень короткая, так как редупликация ДНК не осуществляется. интерфаза.

Первое редукционное деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Гомологичные хромосомы соединяются в пары (биваленты). Данный процесс называется конъюгация.

По длительности самая длинная фаза, в ходе которой гомологичные хромосомы плотно присоединяются друг к другу в отдельных местах. В результате чего может происходить обмен некоторыми участками. Данный процесс называется кроссинговер.

Хромосомы частично деспирализуются, при этом хромосомы ещё соединены между собой.

Снова происходит спирализация хромосом, ядерная оболочка исчезает, центриоли перемещаются к полюсам клетки, начинает образовываться веретено деления.

Метафаза первого деления знаменательна тем, что пары гомологичных хромосом (биваленты) выстраиваются в экваториальной плоскости клетки.

Во время анафазы 1 сокращаются микротрубочки веретена деления, биваленты разделяются и гомологичные хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам перемещаются целые двухроматидные хромосомы, а не отдельные хроматиды.

На этапе телофазы 1 хромосомы деспирализуются и на полюсах образуются ядра.


Рис. 1. Схема мейоза первого этапа деления

Второе эквационное деление включает в себя процессы тождественные митозу:

  • Для профазы 2 характерна спирализация хромосом. Ядерная оболочка разрушается, на полюсах клетки образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы 2 хромосомы вновь располагаются в плоскости экватора, но по одной, а не парами как в метафазе 2.
  • Во время анафазы 2центромеры хромосом делятся и хроматиды (сестринские хромосомы) перемещаются к разным полюсам клетки.
  • Телофаза 2характеризуется деспирализацией хромосом и появлением новой ядерной оболочки.

В результате из одной диплоидной клетки путём мейоза образуется четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз – это форма деления клетки, в результате которого в дочерних клетках уменьшается вдвое число хромосом, при этом дочерние клетки генетически разные, так как разделили между собой наследственный материал материнской клетки.

Значение мейоза

В ходе мейоза на этапе профазы 1 может происходить процесс кроссинговера – перекомбинации генетического материала. Помимо этого во время анафазы первого деления гомологичные хромосомы каждой пары расходятся к разным полюсам в случайном порядке, независимо от других пар хромосом. Это объясняет комбинативную изменчивость дочерних клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза у животных;
  • Получаемые дочерние клетки (гаметы) генетически разные, что приводит к комбинативной изменчивости среди потомков при половом размножении

Мейоз очень важен для поддержания постоянства числа хромосом у потомков при размножении. Если бы в половых клетках благодаря мейозу не уменьшалось количество хромосом вдвое, то после слияния таких клеток в процессе оплодотворения набор хромосом у организмов из поколения в поколение увеличивалось бы каждый раз вдвое.

Что мы узнали?

Мейоз – это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа – редукционного и эквационного, каждый из которых состоит из четырёх фаз – профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы у животных, для перекомбинации генетического материала и сохранения постоянства числа хромосом при половом размножении.

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

Фазы клеточного цикла

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где "n" - число хромосом, а "c" - число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Генетическая формула клетки

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу - подготовку к делению клетки.

    Пресинтетический (постмитотический) период G1 - 2n2c

Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.

Длится 6-10 часов. Важнейшее событие этого периода - удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Активно синтезируются структурные белки ДНК - гистоны.

Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу - делению клетки, синтезируются белки и АТФ, удваиваются центриоли, делятся митохондрии и хлоропласты.

Жизненный цикл клетки

Митоз (греч. μίτος - нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры - хромосомы - происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
  • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
  • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления

Профаза митоза

ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

Метафаза митоза

Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним - дочерние хромосомы) к полюсам клетки.

Анафаза митоза

  • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
  • Появляется ядерная оболочка, формируется ядро
  • Разрушаются нити веретена деления

В телофазе происходит деление цитоплазмы - цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений - формированием плотной клеточной стенки (которая растет изнутри кнаружи).

Телофаза митоза

Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид - 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

  • В результате митоза образуются дочерние клетки - генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Фазы митоза

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки - способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

Мейоз

Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio - уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление - эквационное (лат. aequatio — уравнивание) очень похоже на митоз.

    Профаза мейоза I

Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

Профаза мейоза I

Конъюгация (лат. conjugatio — соединение) - сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом - биваленты (лат. bi - двойной и valens - сильный).

После конъюгации становится возможен следующий процесс - кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

Кроссинговер

Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

Метафаза мейоза I

Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки - n2c, за счет чего мейоз I и называется редукционным делением.

Анафаза мейоза I

Происходит цитокинез - деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением - мейозом II.

Телофаза мейоза I

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

Мейоз II

В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку - nc. В этом и состоит сущность мейоза - образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки - половые клетки (гаметы).

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число - 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) ;)

Мейоз

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками - материал для эволюции, который проходит естественный отбор
Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам - бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.

Бинарное деление надвое

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Амитоз (от греч. ἀ - частица отрицания и μίτος - нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется "как кому повезет" - случайным образом.

Амитоз

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: