В чем сущность горения как проявления химической энергии кратко

Обновлено: 18.05.2024

Горение - сложный химический процесс, основой которого является окислительная реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе тепла.

Отличительные признаки горения - выделение тепла, саморазогрев и свечение веществ при их химическом превращении.

Физическое состояние веществ и физические процессы оказывают большое влияние на скорость и последовательность протекания реакции при окислении веществ, а также на состав продуктов сгорания.

Например: при недостаточном подводе кислорода в зону горения процесс будет протекать медленно, а состав продуктов горения будет отличаться большим содержанием продуктов неполного сгорания, т.е. таких продуктов, которые способны к дальнейшему горению.

При неполном сгорании углеродосодержащих веществ в воздухе образуются двуокись углерода и окись углерода, кроме того в продуктах горения содержатся несгоревшие мелкие частицы углерода, образующие дым.

Газообразный окислитель поступает в зону горения в результате конвекции и диффузии. Исключение составляют случаи, когда окислитель содержится в горючей смеси в количестве, необходимом для реализации процесса горения.

При воздействии внешнего импульса или источника зажигания вещества, содержащие окислитель, практически мгновенно разлагаются и окислитель вступает в реакцию с горючим веществом, которая с большой скоростью распространяется по всему его объему. Реакция сопровождается с выделением большого количества тепла. Горение приобретает форму взрыва.

Окислителем могут служить другие вещества. Например: сера, галогены, сложные кислородосодержащие вещества - перекиси, нитросоединения, азотная кислота, перхлораты.

Однако наиболее часто горение протекает с участием кислорода воздуха (21% О2 в воздухе) О2 входит в состав воды и многих минералов. Например, горение твердых веществ в виде аэрозоля может при горении взрываться, а в виде аэрогеля (сплошного массива) может гореть спокойно или тлеть.

Горение различают: тепловое и автокаталитическое.

Тепловое связано с экзотермической реакцией, когда скорость выделения тепла превышает скорость теплопотерь и создаются условия для прогрессивного самоускорения реакции саморазогрева системы и пространственного распространения горения.

Автокаталитический (или цепное) горение происходит при сравнительно низких температурах, например: белый фосфор (горит на воздухе при

Таким образом, чтобы горение возникло, необходима система: горючее вещество, окислитель, источник зажигания или импульс ускоряющий реакцию окисления.

Горючее вещество может быть в газообразном, жидком, твердом состоянии.

Горение газов и паров в воздухе протекает полностью в газовой фазе и носит объемный характер. Горение сопровождается пламенем или взрывом.

Пламя это светящееся пространство, в котором сгорают газы и пары.

Горение в виде взрыва - это горение за короткий промежуток времени.

Горение жидкости - это пламенное горение ее паров и продуктов разложения.

Горение твердых веществ отличается большим разнообразием происходящих процессов. - Это связано с разнообразием химических и физических свойств и состояний (дисперсностью, пористостью, влажностью, однородностью) и состоянием окружающей среды.

Взрыв пыли (торфа, древесины, муки, сахара).

Горение может возникнуть в двух различных формах:

1. Возгорание (воспламенение)

2. Самовозгорание (самовоспламенение)

Возгорание веществ возможно при воздействии теплового импульса от источника зажигания. Величина его должна быть достаточной, чтобы разогреть вещество до температуры, при которой происходит дальнейший саморазогрев и возникает устойчивое горение после удаления источника зажигания.

Температура при возгорании многих органических твердых веществ является температурой воспламенения паро и газообразных продуктов их термического разложения (например у древесины).




Самовозгорание (самовоспламенение) - процесс возникновения горения при отсутствии источника зажигания. Оно наблюдается при резком увеличении скорости экзотермической реакции в объеме вещества, когда скорость выделения тепла больше скорости рассеивания.

1). Тепловое (масла, жиры). Масла машин, трансформаторов. Окисление происходит при температуре на воздухе и самовозгореться не способны.

Отработанные минеральные масла подвергавшие нагреву до температур склонных к самовозгоранию (т.к. предельные углеводороды переходят в непредельные).

Склонны к самовозгоранию растительные масла.

самовозгорание торфа из-за жизнедеятельности микроорганизмов.

Сено, клевер, листва - сульфиды железа.

3). Химическое: щелочные металлы натрий, калий, при определенных условиях хлор, фтор, бром, йод.

Источники зажигания могут быть для различных веществ разные: открытый огонь; тепловое проявление (химическое, микробиологическое происхождение, силы трения); механические (искры от ударов искрообразующих металлов); электрические (большие переходные сопротивления, короткое замыкание, электросварка); природные (молния, грозовые разряды); носить химическую природу (химические свойства веществ).

Производственные источники зажигания характеризуются воспламеняющей способностью.

В условиях производства существует значительное количество различных источников зажигания, как постоянно действующие (они предусмотрены технологическим регламентом) и потенциально возможные при нарушении технологического процесса.

Условиями необходимыми для предотвращения пожара являются: 1. Исключение окислителя в горючем веществе. 2. Исключение источника зажигания. 3. Исключение горючего вещества.

Горение - сложный химический процесс, основой которого является окислительная реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе тепла.

Отличительные признаки горения - выделение тепла, саморазогрев и свечение веществ при их химическом превращении.

Физическое состояние веществ и физические процессы оказывают большое влияние на скорость и последовательность протекания реакции при окислении веществ, а также на состав продуктов сгорания.

Например: при недостаточном подводе кислорода в зону горения процесс будет протекать медленно, а состав продуктов горения будет отличаться большим содержанием продуктов неполного сгорания, т.е. таких продуктов, которые способны к дальнейшему горению.

При неполном сгорании углеродосодержащих веществ в воздухе образуются двуокись углерода и окись углерода, кроме того в продуктах горения содержатся несгоревшие мелкие частицы углерода, образующие дым.

Газообразный окислитель поступает в зону горения в результате конвекции и диффузии. Исключение составляют случаи, когда окислитель содержится в горючей смеси в количестве, необходимом для реализации процесса горения.

При воздействии внешнего импульса или источника зажигания вещества, содержащие окислитель, практически мгновенно разлагаются и окислитель вступает в реакцию с горючим веществом, которая с большой скоростью распространяется по всему его объему. Реакция сопровождается с выделением большого количества тепла. Горение приобретает форму взрыва.

Окислителем могут служить другие вещества. Например: сера, галогены, сложные кислородосодержащие вещества - перекиси, нитросоединения, азотная кислота, перхлораты.

Однако наиболее часто горение протекает с участием кислорода воздуха (21% О2 в воздухе) О2 входит в состав воды и многих минералов. Например, горение твердых веществ в виде аэрозоля может при горении взрываться, а в виде аэрогеля (сплошного массива) может гореть спокойно или тлеть.

Горение различают: тепловое и автокаталитическое.

Тепловое связано с экзотермической реакцией, когда скорость выделения тепла превышает скорость теплопотерь и создаются условия для прогрессивного самоускорения реакции саморазогрева системы и пространственного распространения горения.

Автокаталитический (или цепное) горение происходит при сравнительно низких температурах, например: белый фосфор (горит на воздухе при

Приручив огонь, человек получил большое количество благ. Благодаря огню мы готовим пищу и обогреваем дома. Человеческая цивилизация начала развиваться — возникла металлургия и энергетика. Появились полезные инструменты, механизмы и изобретения.

Процесс горения топлива подарил нам возможность передвигаться на автомобилях и мотоциклах, летать на самолетах, запускать ракеты в космос и путешествовать по морю на кораблях.

До сих пор горение – это основной источник получения энергии во всем мире. В 2010 году сотрудники международного энергетического агентства IEA подсчитали, что 90 процентов всей энергии человечество получает, сжигая различное топливо.

Во время горения происходят химические превращения одних веществ в другие вещества. Такие превращения называют химическими реакциями.

Два вида химических реакций и энергия

Благодаря химическим реакциям в природе появилось множество различных веществ.

Примечание: Химики сложные вещества, состоящие из атомов различных хим. элементов, называют химическими соединениями.

Химические реакции – это процессы перегруппировки атомов:

  • имеющиеся молекулы разъединяются на отдельные атомы;
  • из этих атомов образуются новые молекулы.

При этом происходит поглощение, или выделение энергии.

Повышая температуру, мы ускоряем химические реакции

Скорость молекул зависит от температуры. Чем быстрее молекулы двигаются, тем чаще они будут сталкиваться. А когда количество столкновений увеличивается, то химические реакции протекают быстрее. Поэтому температура вещества влияет на химические реакции.

Рис. 1. Все химические реакции можно разделить на поглощающие тепловую энергию – эндотермические и, выделяющие энергию — экзотермические

Во время протекания одних химических реакций тепловая энергия поглощается. Такие реакции называются эндотермическими (рис. 1).

Примерами эндотермических процессов могут служить процесс плавления или процесс парообразования.

А во время протекания других реакций, энергия, наоборот – выделяется. Такие химические реакции называют экзотермическими.

Среди экзотермических процессов можно отметить, например, конденсацию или кристаллизацию.

Что такое горение

В процессе горения температура резко повышается и выделяется большое количество тепловой энергии (теплоты). Поэтому, горение – это экзотермический процесс.

В топливе содержатся атомы химического элемента, который называется углеродом. При горении топлива каждый атом углерода объединяется в двумя атомами кислорода и выделяется энергия.

Когда горит какое-либо вещество, мы видим пламя (рис. 2).

Пламя – это поток раскаленных газов, часть пространства, в которой топливо и кислород превращаются в продукты сгорания.

Рис. 2. Горение – это химическая реакция окисления топлива с образованием продуктов горения, пламенем выделением теплоты

Горение – процесс сложный, потому, что во время его протекания происходит цепочка химических превращений. В основном – это реакции окисления между сгорающим топливом и кислородом;

Примечание: В окружающем воздухе содержится кислород. Кислород – это сильный окислитель.

Что нужно, чтобы горение возникло

Только лишь наличия топлива и кислорода в окружающем воздухе недостаточно, чтобы это топливо загорелось. Мы должны сначала нагреть топливо до температуры, при которой произойдет его возгорание. Для предварительного нагрева мы используем источник зажигания. Например, спички, зажигалку и т. п.

Примечание: Чтобы горение возникло, нужно сначала нагреть топливо до температуры, при которой произойдет возгорание.

Например, самостоятельно может загореться бумага, наргетая до 233 градусов Цельсия или дерево, нагретое до 300 градусов Цельсия.

Поэтому, бездумно нагревать горючие вещества опасно. Так как нагретое горючее вещество способно самостоятельно загореться, иногда со взрывом.

Температура самовоспламенения некоторых веществ

  • бумага: 233 (C);
  • дерево: 300 (C);
  • бензин: 250 — 300 (C);
  • спирт этиловый: 400 (C);

Температура горения некоторых веществ

  • сухие дрова: от 800 до 1000 (C);
  • пламя спички: от 750 до 1400 (C);
  • уголь в печи или котле: от 1000 до 2300 градусов Цельсия (зависит от подачи воздуха);
  • бензин: 1300 — 1400 (C);

Температура частей пламени различается

Раскаленные до высокой температуры газы, выделяющиеся при сгорании топлива, светятся. Они образуют светлый ореол около горящего топлива. Этот ореол называют пламенем. Пламя можно условно разделить на слои. Температура таких слоев пламени различается. Чем ярче пламя, чем ближе его цвет к белому цвету, тем выше его температура.

Рис. 3. Раскаленные газы, выделяющиеся при горении, светятся и, образуют пламя, которое по степени нагревания можно разделить на слои

Что такое удельная теплота сгорания

Мы уже знаем, что при горении выделяется теплота (тепловая энергия).

Количество теплоты, которое мы получим при сгорании, будет отличаться для разных видов топлива. Одно топливо будет выделять больше энергии, другое – меньше.

Чтобы сравнивать горючие вещества между собой, удобно сжигать 1 килограмм топлива и измерять выделяемое количество теплоты.

Примечание: Не путайте теплоту и температуру. Теплота – это тепловая энергия. Любую энергию измеряют в Джоулях. А температуру измеряют в градусах.

Тепловая энергия, которая выделяется при полном сгорании 1 кг топлива, называется удельной теплотой сгорания. Ее обозначают маленькой латинской буквой q.

\(\large q \left( \frac>>\right)\) – удельная теплота сгорания.

Примечание: Удельная теплота сгорания — это тепловая энергия, которая выделяется при полном сгорании 1 кг. топлива. Ранее мы уже сталкивались с удельными величинами (ссылка).

Удельную теплоту сгорания некоторых веществ можно найти в справочнике физики.

Как связаны количество теплоты и удельная теплота сгорания — формула

Мы можем посчитать количество теплоты, выделенной при сгорании, когда нам известны:

  • удельная теплота сгорания топлива и
  • количество килограммов вещества.

Для расчетов используем формулу:

\(\large Q \left( \text \right) \) – количество теплоты, т. е. общая тепловая энергия;

\(\large q \left( \frac>> \right) \) – удельная теплота сгорания;

\(\large m \left( \text \right) \) – масса вещества;

Примечание: Если умножить удельную теплоту сгорания \(\large q \) на количество килограммов m сгоревшего вещества, то можно вычислить общее количество теплоты \(\large Q \), выделившейся при сгорании топлива.

Недостатки использования горения

На нашей планете из-за широкого использования горения возникают негативные последствия:

  • истощаются полезные ископаемые – нефть, уголь, горючие сланцы, газ,
  • загрязняется окружающая среда — большинство продуктов горения токсичны,
  • ухудшается экология,
  • проявляется глобальное потепление.

Из-за глобального потепления температура на планете поднялась на несколько градусов, начали таять многовековые льды на северном и южном полюсах, изменяется климат.

Здесь читатель найдет ответ на вопрос о том, что такое горение. В этой статье мы рассмотрим этот процесс, ознакомимся с характеристиками и классификацией, изучим исторические сведения и определим место в природе и жизни человека. Также уделим внимание конкретным параметрам для определенных видов горения.

Введение

Когда человек слышит слово "горение", скорее всего, в его воображении возникает образ пламени, который охватывает что-либо. Этот процесс имеет исторически, даже эволюционно, огромное значение для человека.

горение химический процесс

Горение – химические процесс, в ходе которого исходный ряд веществ преобразуется в продукт сгорания. Это экзотермический тип реакции, при которой интенсивно выделяется тепло. Энергетические ресурсы, запасенные в веществах, участвующих в процессе горения, могут выделяться, принимать вид излучения света.

Общие сведения

Ответив на вопрос о том, что такое горение, человек смог сделать его главным ресурсом, из которого мы до сих пор черпаем энергию. Около 90 % всех энергетических ресурсов, производимых на Земле людьми, выпадают на процессы сжигания ископаемых видов топлива. Однако в обозримом будущем (приблизительно до 2040 года) этот показатель снизится на 10 %. Это связано с истощением ресурсов Земли, которые не подлежат восстановлению, а также загрязнением мира, явлением глобального потепления.

Горение – химический процесс, обычно идущий по пути разветвленно-цепного механизма. Здесь прогрессирует самостоятельное ускорение благодаря теплу, которое выделяется в ходе реакций. Особенностями, которые выделяют горение, можно считать наличие больших показателей выделения тепла и потребность в относительно огромных ресурсах, необходимых для активации реакции. Эти два фактора напрямую влияют на скорость, при которой она будет проходить.

горение разбор слова по составу

Исторические факты

Буркеном и Шуманном в 1928 году была рассмотрена задача о явлении диффузионного пламени. Они показали, что при наличии скорости сгорания веществ, участвующих в реакции, выше скорости подвода реагентов, поставляемых диффузией, зона горения становится тонкой до бесконечности. Это значит, что в такой области процессов происходит автоматическое установление стехиометрического соотношения между веществами, отвечающими за окисление, и горючими материалами. Максимальные температурные показатели приближаются к адиабатическим.

Теория горения в своем современном виде началась с трудов Н.Н. Семенова, который изучал явление теплового взрыва. Это произошло в 1920 году. Через восемнадцать лет, в 1938 году, Д.А. Франком-Каменецким была развита теория тепловых взрывов.

горение проверочное слово

Уже в 1940 году была развита общая теория детонации – ZND. Ее основателем считается Я.Б. Зельдович. Название происходит от имен З. Неймана, Деринга и, собственно, Зельдовича. Это связано с тем, что независимо друг от друга исследователи пришли к схожим итогам и выводам на основе своих экспериментов и вычислений.

Классификационные данные

Сущность процесса горения позволяет классифицировать его в соответствии с определенными параметрами. Например, в зависимости от скорости сгорания веществ, его делят на детонацию и дефлаграцию. Последнее бывает ламинарным и турбулентным. Детонация – только турбулентная.

Если газ – это исходный и основной компонент смеси, которая горит, то реакцию можно назвать гомогенной. Этот процесс характеризуется взаимодействием окислителя и горючего вещества в газофазном горении. Разделение горючих веществ и их постепенное слияние, вызывающее рассматриваемый процесс, называют диффузией. Гетерогенной можно назвать реакцию, в которой окислители и горючее имеют разное положение фазы. Кроме перечисленного выше, выделяют: процесс тления, беспламенное, холоднопламенное и (термо)ядерное горение.

Пламя

Отвечая на вопрос о том, что такое горение, человек смог выделить в нем явление пламени, которое представляет собой зону, излучающую свет и образующуюся в ходе реакций горения. Ее температурные показатели определяются составом смесей и условиями, при которых протекает процесс. Сгорание природных газов позволяет разгонять температуру до двух тысяч кельвинов и выше.

Пламя многих видов топлива, основанных на углеводородах, обладает способностью к взаимодействию с электромагнитными полями. Это обуславливается наличием собственных частиц в заряженном состоянии. Посредством проведения экспериментов было доказано, что количество ионов в пламени может превышать в шесть порядков концентрацию анионов и катионов в процессах чистой термической ионизации. Главный механизм, отвечающий за образование ионов, - хемоионизация. Это сложный физико-химический процесс, который превращает исходные в продукты сгорания. В ходе экзотермической реакции выделяется большое количество тепла.

сущность процесса горения

Теория горения

Суть процесса горения, несмотря на большой практический опыт и применение, исследовалась в течение многих лет и остается одной из самых сложных загадок человечества. Наука, изучающая явление горения, является междисциплинарной и располагается на стыке газодинамики, химической термодинамики, химкинетики, молекулярной и химической физики, а также материаловедения и моделирования с использованием компьютерных технологий.

Рассмотрим следующие положения теории горения: полноту сгорания и его термодинамический механизм. Положение полноты сгорания включает в себя информацию о том, что исходные компоненты горючих смесей характеризуются молярной и массовой долей элемента, а также начальными показателями давления и температуры. Подобрав вещество, способное в ходе сгорания и окисления полностью превратиться в продукт рассматриваемого явления, можно получить стехиометрическую реакцию. Смесь, обладающая избытком горючего вещества, что не может полностью разложиться из-за нехватки окислителей, именуется богатой. Вещество с нехваткой топливного ресурса называют бедным.

Термодинамические данные позволяют нам утверждать, что горение, протекающее адиабатическим путем при наличии постоянного показателя объема, сохранит полную энергию внутренней системы. Если имеется постоянное давление, то наблюдается энтальпия структурных компонентов. Условия, при которых протекает адиабатическое давление, практически применяются и реализуются в пламени, что распространяется свободными путями. При этом расчетом теплопотери пренебрегают.

Гетерогенность

охарактеризовать слово горение

Твердое топливо

Что такое горение твердого топлива? Чаще всего это процесс окисления веществ, используемых в различных снарядах и патронах. Например, это может быть артиллерийский или реактивный снаряд. Другое применение находит себя в конструировании и эксплуатации межконтинентальных ракет баллистического типа. Многоразовые шаттлы выводятся на орбиту Земли посредством применения ускорителей, основанных на твердом топливе.

Те вещества, что используются в качестве топлива для ракет, делятся на две формы: смесевую и баллиститную. В первом случае разделение горючего вещества и окислителя не наблюдается, а сгорание происходит послойным способом. Их именуют гомогенным порохом. Главный компонент – это нитроцеллюлоза, которую добывают путем желатинизации в толще нитроглицерина.

Общие данные о сгорании твердого топлива

Процесс разложения пороха включает в себя несколько этапов, которые отличаются типом экзотермической реакции, а именно проходят в двух фазах газа и конденсации. Проведение опытов с горением баллиститных порохов в пространстве вакуума и при показателе давления ниже двух мм.рт.ст. показало, что экзотермические реакции происходят лишь в приповерхностном уровне фазы конденсации. При диапазоне давления от пяти до двадцати мм.рт.ст. можно увидеть пламя, но заметное только в темноте, а реакции протекают в газовом этапе.

Медленный тип горения

Процессам горения свойственно наличие тления, которое является его медленной формой. Поддержание такого явления осуществляется благодаря теплу, выделяемому в ходе взаимодействия O2 и горячего соединения в конденсированной форме, а реакции протекают на ее поверхности и подвергаются аккумулированию. Типичная ситуация, при которой наблюдается данное явление, - это тление сигареты. Здесь можно наблюдать медленное распространение вдоль материала. Нехватка высоты температуры обуславливает отсутствие газофазного пламени, а в ходе большой потери тепла сигарета начинает гаснуть. Чаще всего тление можно наблюдать в пористом или волокнистом ряде веществ.

что такое горение

Твердофазный тип горения

Существует явление, которое можно наблюдать в порошках неорганической и органической природы. Оно характеризуется автоволновой экзотермической реакцией, в ходе которой заметное выделение газа не наблюдается, но образуются продукты в конденсированной форме. Однако это конечный результат реакции, а в промежутках между фазами отслеживается создание газов или жидкостей.

Самостоятельно распространяющийся высокотемпературный синтез на практике основывается именно на безгазовом или твердопламенном горении. Ниже расскажем о том, как охарактеризовать слово "горение".

Сведения о слове

Разбор слова "горение" по составу показывает нам, что оно образуется с помощью:

  • корня - гор;
  • суффикса - ени;
  • окончания - е.

Это три составных элемента, которые включены в общую структуру термина.

Чтобы ответить на вопрос о том, как пишется слово "горение", достаточно вслух сказать его. Произношение слова совпадает с правописанием. Гласными буквами, образующими эту языковую единицу, являются: "о", "и", "е". Ударение ставим на первую "е". Проверочное слово у "горения" отсутствует, однако можно определить правильность написания путем чередования гласных "а" и "о". Их варьирование подчиняется правилам правописания корней "гор" и "гар".

суть процесса горения

Подводя итоги

Анализируя полученную информацию, скажем, что слово "горение" означает химический процесс, взаимосвязанный с физическими явлениями. Он является главным источником энергии для всего населения планеты и основывается на сжигании различного вида топлив. Включает в себя множество разновидностей и имеет огромное значение для людей. Горение играло немаловажную роль в истории развития человечества, а детальное изучение его позволило стремительно расти технологическому процессу.

Изучением данного процесса занималось огромное множество ученых, а на достижение, систематизацию и обобщение всей информации ушло огромнейшее количество времени. Величайшие умы различных эпох и поколений совершили ценные вклады в общее развитие теории горения. Однокоренные с "горением" слова - это: горько, горы, горе, пригореть и прочее. Чаще всего гласная "о" пишется в корне тогда, когда на нее не падает ударение.

Горение – это совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма. В основе горения лежит взаимодействие горючего вещества с окислителем, преимущественно с кислородом воздуха.

Однако горения может осуществляться без доступа воздуха (кислорода), если в состав горючей массы (среды) входит окислитель в виде примеси или составной части молекулы. В производственных условиях или ракетной технике горения может осуществляться в атмосфере таких окисляющих газов, как фтор, хлор, окислы азота и другие.

Горение

Некоторые вещества (порошкообразные титан и цирконий) способны гореть в атмосфере азота, двуокиси углерода, не относящимся к традиционным окислителям.

Виды горения

В зависимости от способа подвода окислителя различают:

    , когда реагенты (горючее и окислитель) перед началом горения не были перемешаны, а их смешение происходит в процессе горения за счет диффузии;
  • гомогенное горение, когда реагенты перед началом горения были перемешаны без поверхности раздела фаз;
  • гетерогенное горение, когда реагенты находятся в разных агрегатах состояния (твердое + газ, твердое + жидкость) или между ними имеется поверхность раздела (твердое + твердое, несмешивающиеся жидкость + жидкость). Гетерогенное горение часто относят к диффузионному горению.
  • горение, скорость которого лимитирована скоростью химической реакции, называют кинетическим горением. Так как скорость химического взаимодействия, как правило, выше скорости диффузии, кинетическое горение протекает с максимальной для данной системы скоростью (дефлаграция, детонация).

При пожаре отмечается смешанный тип горения. В зависимости от скорости горение может быть медленным (тление), нормальным (дефлаграция) и взрывообразным (взрыв), переходящим в детонационное (детонация).

По внешнему проявлению горение может быть пламенным или беспламенным.


Беспламенное горение может возникнуть в результате дефицита окислителя (тление) или при низком давлении насыщенных паров горючего вещества (горение тугоплавких металлов и кокса).

По механизму развития горение может быть тепловым, при котором причиной самоускорения реакций окисления является повышение температуры, и автокаталитическим (цепным), когда ускорение процесса достигается накоплением промежуточных катализирующих продуктов (активных центров). Автокаталитическое горение осуществляется при сравнительно низких температурах. При достижении определенных концентраций промежуточных каталитических продуктов автокаталитическое горение может переходить в тепловое. При этом температура горения резко возрастает.

Горение может возникать и развиваться спонтанно, стихийно (пожар), но может быть специально организованным, целесообразным: энергетическое горение (в целях получения тепловой или электрической энергии) и технологическое горение (доменный процесс, металлотермия, синтез тугоплавких неорганических соединений и т.д.).

Характеристики горения

Горение характеризуется такими величинами, как: температура, скорость, полнота, состав продуктов. Располагая данными о механизме горения и его характерных особенностях, можно увеличивать скорость и температуру горения (промотирование горения) или снижать их вплоть до прекращения горения (ингибирование горения).

Источники: Основные характеристики горения. Мальцев В.М., Мальцев М.И., Кашпоров Л.Я. —М., 1977; Процессы горения в химической технологии и металлургии. Мержанов А.Г. —Черноголовка, 1975; Физика горения и взрыва. Хитрин Л.Н. —М., 1957.


Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому — детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса — скорость реакции, мощность тепловыделения, температура и состав продуктов — не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).


Процесс возникновения горения подразделяется на несколько видов: вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, взрыв и детонация. Кроме того, существуют и особые виды горения: тление и холоднопламенное горение. Вспышка — процесс мгновенного сгорания паров легковоспламеняющихся и горючих жидкостей, вызванный непосредственным воздействием источника воспламенения. Возгорание — явление возникновения горения под действием источника зажигания. Воспламенение — возгорание, сопровождающееся появлением пламени. При этом вся остальная масса горючего вещества остается относительно холодной. Самовозгорание — явление резкого увеличения скорости экзотермических реакций в веществе, приводящее к возникновению горения при отсутствии источника зажигания. Самовоспламенение — это самовозгорание, сопровождающееся появлением пламени. В производственных условиях могут самовозгораться древесные опилки, промасленная ветошь. Самовоспламеняться может бензин, керосин. Взрыв — быстрое химическое превращение вещества (взрывное горение), сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Содержание

Теория горения

При адиабатическом сжигании горючей смеси могут быть рассчитаны количество выделившегося при горении тепла, температура ТГ, которая была бы достигнута при полном сгорании (адиабатическая температура горения) и состав продуктов, если известны состав исходной смеси и термодинамические функции исходной смеси и продуктов. Если состав продуктов заранее известен, ТГ может быть рассчитана из условия равенства внутренней энергии системы при постоянном объёме или её энтальпии при постоянном давлении в исходном и конечном состояниях с помощью соотношения: ТГ = Т0 + Qr/C, где Т0 — начальная температура смеси, С — средняя в интервале температур от Т0 до ТГ удельная теплоёмкость исходной смеси (с учетом её изменения при возможных фазовых переходах), Qr — удельная теплота сгорания смеси при температуре ТГ. При относительном содержании а0 в смеси компонентов, полностью расходуемых в реакции, QГ = Q*а0 где Q — тепловой эффект реакции горения. Значение ТГ при постоянном объёме больше, чем при постоянном давлении, поскольку в последнем случае часть внутренней энергии системы расходуется на работу расширения. На практике условия адиабатичекого горения обеспечиваются в тех случаях, когда реакция успевает завершиться прежде, чем станет существенным теплообмен между реакционным объёмом и окружающей средой, например в камерах сгорания крупных реактивных двигателей, в больших реакторах, при быстро распространяющихся волнах горения.
Термодинамический расчёт даёт лишь частичную информацию о процессе — равновесный состав и температуру продуктов. Полное описание горения, включающее также определение скорости процесса и критических условий при наличии тепло- и массообмена с окружающей средой, можно провести только в рамках макрокинетического подхода, рассматривающего химическую реакцию во взаимосвязи с процессами переноса энергии и вещества.
В случае заранее перемешанной смеси горючего и окислителя реакция горения может происходить во всём пространстве, занятом горючей смесью (объёмное горение), или в сравнительно узком слое, разделяющем исходную смесь и продукты и распространяющемся по горючей смеси в виде так называемой волны горения. В неперемешанных системах возможно диффузионное горение, при котором реакция локализуется в относительно тонкой зоне, отделяющей горючее от окислителя, и определяется скоростью диффузии реагентов в эту зону.

Описание процессов горения

Важность процесса горения в технических устройствах способствовала созданию различных моделей, позволяющих с необходимой точностью его описывать. Так называемое нулевое приближение включает описание химических реакций, изменение температуры, давления и состава реагентов во времени без изменения их массы. Оно соответствует процессам происходящим в закрытом объёме, в который была помещена горючая смесь и нагрета выше температуры воспламенения. Одно-, двух- и трёхмерные модели уже включает в себя перемещение реагентов в пространстве. Количество измерений соответствует количеству пространственных координат в модели. Режим горения бывает как и газодинамическое течение: ламинарным или турбулентным. Одномерное описанное ламинарного горения позволяет получить аналитически важные выводы о фронте горения, которые затем используются в более сложных турбулентных моделях.

Объёмное горение

Объемное горение происходит, например, в теплоизолированном реакторе идеального перемешивания, в который поступает при температуре Т0 исходная смесь с относительным содержанием горючего а0; при другой температуре горения реактор покидает смесь с иным относительным содержанием горючего а. При полном расходе G через реактор условия баланса энтальпии смеси и содержания горючего при стационарном режиме горения могут быть записаны уравнениями:

где w(а, Т) — скорость реакции горения, V — объём реактора. Используя выражение для термодинамической температуры ТГ, можно из (1) получить:

и записать (2) в виде:

где q-T = GC(T — Т0) — скорость отвода тепла из реактора с продуктами сгорания, q+T = Qw(a, Т)V — скорость выделения тепла при реакции. Для реакции n-ного порядка с энергией активации:

Диффузионное горение

Характеризуется раздельным подачей в зону горения горючего и окислителя. Перемешивание компонентов происходит в зоне горения. Пример: горение водорода и кислорода в ракетном двигателе, горение газа в бытовой газовой плите.

Горение предварительно смешанной среды

Как следует из названия, горение происходит в смеси, в которой одновременно присутствуют горючее и окислитель. Пример: горение в цилиндре двигателя внутреннего сгорания бензиново-воздушной смеси после инициализации процесса свечой зажигания.

Особенности горения в различных средах

Согласно замыслу одного из участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел.

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Твердофазное горение

Это автоволновые экзотермические процессы в смесях неорганических и органических порошков, не сопровождающиеся заметным газовыделением, и приводящие к получению исключительно конденсированных продуктов. В качестве промежуточных веществ, обеспечивающих массо-перенос, образуются газовые и жидкие фазы, не покидающие, однако, горящую систему. Известны примеры реагирующих порошков, в которых образование таких фаз не доказано (тантал-углерод).

Примером таких процессов служит СВС (самораспространяющийся высокотемпературный синтез) в неорганических и органических смесях.

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями.

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов. Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонентов: влаги и золы. На основе многолетних исследований шведский учёный Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25 %, влаги менее 50 %, золы менее 60 %.

Читайте также: