Что понимают в генетике под чистой линией кратко

Обновлено: 02.07.2024

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Другие материалы по теме:

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

( А — желтый цвет горошин, а — зеленый цвет горошин)

Р ♀ AA
желтые
× ♂ аа
зеленые
Типы гамет А а
F1
желтые
100%

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

( А — желтый цвет горошин, а — зеленый цвет горошин):

P ♀ Aa
желтые
× ♂ Aa
желтые
Типы гамет A a A a
F2 AA
желтые
Aa
желтые
75%
Aa
желтые
aa
зеленые
25%

Закон чистоты гамет

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Р ♀ Аа
желтые
× ♂ aа
зеленые
Типы гамет A a a
F Аа
желтые
50%
аa
зеленые
50%

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска ( А ) и гладкая форма ( В ) семян — доминантные признаки, зеленая окраска ( а ) и морщинистая форма ( b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀ АABB
желтые, гладкие
× ♂ aаbb
зеленые, морщинистые
Типы гамет AB ab
F1 AaBb
желтые, гладкие, 100%
P ♀ АaBb
желтые, гладкие
× ♂ AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1 ) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2 ) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3 ) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1 ), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Чистая линия — группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена.

Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство.

Аналогом чистой линии у микроорганизмов является штамм.

Чистые (инбредные) линии у животных с перекрестным оплодотворением получают путем близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

Использование чистых линий в научных исследованиях

Чистые линии гороха использовал для скрещивания в своих опытах первооткрыватель законов наследственности, Грегор Мендель. В 1903 г. генетик В. Иогансен показал неэффективность отбора в чистых линиях, что сыграло важную роль в развитии эволюционной теории и практики селекции.

В настоящее время чистые линии животных (а первую очередь крыс и мышей) и растений играют важнейшую роль в проведении биологических и медицинских исследований. Генетическая однородность используемых учеными организмов повышает воспроизводимость результатов и снижает вероятность воздействия на результат исследования генетических различий между особями (например, в контрольной и опытной группе). С помощью традиционной селекции и методов генной инженерии получено множество чистых линий с заданными свойствами (например, повышенной склонностью к потреблению алкоголя, высокими уровнем заболеваемости разными формами рака и т.п.), используемые для конкретных исследований.

Использование чистых (инбредных) линий в селекции

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Чистая линия" в других словарях:

Чистая линия — генотипическое однородное потомство, происходящее от одной самоопыляющейся или самооплодотворяющейся особи, подвергающееся искусственному отбору и дальнейшему самоопылению или самооплодотворению. Чистая линия, как результат инбридинга,… … Финансовый словарь

ЧИСТАЯ ЛИНИЯ — генотипически однородное потомство, получаемое от одной самоопыляющейся (растения) или самооплодотворяющейся (животные) особи с помощью отбора и дальнейшего самоопыления или самооплодотворения. Представляет собой группу организмов гомозиготных по … Большой Энциклопедический словарь

ЧИСТАЯ ЛИНИЯ — генотипически однородное потомство, получаемое исходно от одной самоопыляющейся или самооплодотворяющейся особи с помощью отбора и дальнейшего самоопыления (самооплодотворения). Термин введён в 1903 В. Иогансеном. Поскольку самоопыление… … Биологический энциклопедический словарь

чистая линия — генотипически однородное потомство, получаемое исходно от одной самоопыляющейся (растения) или самооплодотворяющейся (животные) особи с помощью отбора и дальнейшего самоопыления или самооплодотворения. Представляет собой группу организмов,… … Энциклопедический словарь

чистая линия — pure line чистая линия. Потомство, получаемое в ряду поколений от 1 особи (при наличии возможности самооплодотворения, используемого и в дальнейшем, максимально тесный инбридинг ); также понятие “Ч.л.” используется для… … Молекулярная биология и генетика. Толковый словарь.

чистая линия — ЭМБРИОЛОГИЯ РАСТЕНИЙ ЧИСТАЯ ЛИНИЯ – группа организмов, гомозиготных по большинству генов, полученная в результате самоопыления или самооплодотворения. Растения, в потомстве которых не наблюдается разнообразия по изучаемому признаку … Общая эмбриология: Терминологический словарь

чистая линия — grynoji linija statusas T sritis augalininkystė apibrėžtis Genotipiškai vienodi palikuonys, gauti iš homozigotinio savidulkio individo. atitikmenys: angl. pure line rus. чистая линия … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

Чистая линия — генотипически однородное потомство, получаемое в результате самоопыления или самооплодотворения от одной особи. Ч.л. представляет собой группу организмов, гомозиготных по большинству генов. Иногда Ч.л. называют инбредные линии. (См. также… … Словарь по психогенетике

Чистая линия — генотипически однородное потомство постоянно самоопыляющихся растений или самооплодотворяющихся животных, большая часть генов которого находится в гомозиготном состоянии. Термин введён в 1903 датским генетиком В. Иогансеном, который в… … Большая советская энциклопедия

Есть растения, например, которые могут размножаться вегетативно черенками. Если вы сажаете несколько черенков с одного растения, мы теоретически создаем небольшую чистую популяцию.


Если мы возьмем один из них и воспроизведем его, когда он достигнет зрелости таким же образом и в течение нескольких поколений, мы создадим клональную линию.

Однако, как ни странно, человека всегда привлекало создание чистых линий организмов, которые размножаются половым путем..

  • 1 Чистая линия в биологии: гомозиготы
    • 1.1 Рецессивные гомозиготы
    • 1.2 Доминантные гомозиготы
    • 2.1 Приручение жизни
    • 2.2 Растения
    • 2.3 Животные
    • 3.1 Является ли генетически чистый клон?

    Чистая линия в биологии: гомозиготы

    Для генетика чистая линия - это гомозиготные особи. Следовательно, у диплоидных индивидуумов в определенном локусе интересующего гена каждая гомологичная хромосома будет нести один и тот же аллель.

    Если линия является чистой для более чем одного генетического маркера, этот критерий будет одинаковым для каждого из отдельных генов, для которых индивидуум будет гомозиготным.

    Рецессивные гомозиготы

    Когда предпочтительный характер проявляется из проявления рецессивного аллеля в гомозиготном состоянии, мы можем иметь большую уверенность в чистоте линии.

    Наблюдая за индивидуумом, проявляющим этот связанный характер, мы можем сразу сделать вывод о его генотипе: аа, например. Мы также знаем, что для сохранения этого же характера в потомстве мы должны скрестить этого человека с другим человеком аа.

    Доминантные гомозиготы

    Когда чистая линия включает доминантные гены, дело обстоит немного сложнее. Гетерозиготные особи Aa и доминирующие гомозиготы А.А. они будут проявлять тот же фенотип.

    Но только гомозиготы являются чистыми, поскольку гетерозиготы будут сегрегировать. На перекрестке между двумя гетерозиготами (Aa), которые показывают интересный характер, четверть потомков может проявить нежелательную черту (генотип) аа).

    Лучший способ продемонстрировать чистоту (гомозиготность) индивида по признаку, включающему доминантные аллели, состоит в том, чтобы подвергнуть его испытательному скрещиванию..

    Если человек гомозиготный А.А., результат скрещивания с человеком аа приведет к особям, фенотипически идентичным родителю (но генотипа) Aa).

    Однако, если испытуемый является гетерозиготным, потомство будет на 50% похожим на анализируемого родителя (Aa) и 50% рецессивному родителю (аа).


    Чистые линии в генетическом улучшении

    Мы называем генетическое улучшение применением схем генетической селекции, направленных на получение и распространение определенных генотипов растений и животных..

    Хотя это может также применяться к генетической модификации грибов и бактерий, например, концепция ближе к тому, что мы делаем с растениями и животными по историческим причинам.

    Приручение жизни

    В процессе одомашнивания других живых существ мы посвящаем себя почти исключительно растениям и животным, которые служили нам в качестве средств к существованию или компании.

    В этом процессе улучшения мы приступили к получению чистых линий с точки зрения того, что нужно производителю или потребителю..

    растения

    Улучшенные таким образом растения называют сортами (в данном случае коммерческими сортами), если они были подвергнуты схеме испытаний, демонстрирующих их чистоту..

    В противном случае они называются типами - и больше связаны с локальными вариациями, которые сохраняются с течением времени силой, навязанной культурой..

    Есть, например, клональные варианты картофеля, которые могут достигать тысяч в Перу. Каждый из них отличается, и каждый связан с культурным образцом использования, и обязательно для людей, которые его сохраняют..

    животные

    У животных чистые линии связаны с так называемыми расами. Например, у собак расы определяют определенные культурные паттерны и отношения с человеком..

    Чем чище раса у животных, тем больше вероятность страдания от условий генетического происхождения.

    В процессе поддержания чистоты определенных признаков он был выбран гомозиготностью других признаков, которые не являются благоприятными для выживания человека и вида.

    Генетическая чистота, однако, сговаривается против генетической изменчивости и разнообразия, что является тем, что разводят, чтобы продолжить отбор..

    Чистые линии в других контекстах

    Когда социальная конструкция навязывается биологическому факту, проявления в реальном мире действительно ужасны.

    Вот как в поисках биологической невозможности и во имя чистоты, построенной в обществе на неправильных представлениях, человек совершил преступления ужасающей природы.

    Евгеника, этническая чистка, расизм и сегрегация государства, истребление одних и превосходство других отдельных человеческих групп порождены неправильным представлением о чистоте и наследственности.

    Это генетически чистый клон?

    Кишечная палочка, например, он имеет не менее 4500 генов. Если эта вероятность одинакова для всех генов, наиболее вероятно, что особи этой колонии не все генетически равны..

    Сомаклональная изменчивость, с другой стороны, объясняет, почему это также не верно для растений с вегетативными (клональными) режимами размножения.


    С появлением скоростных систем обмена информации мы вошли в информационный век, и это послужило значительным толчком для интенсивного развития многих наук, в том числе и генетики. Самой генетике, науке о генах и их строении, уже более 100 лет, однако длительный период времени внимание концентрировалось на ее практическом применении в генной инженерии растений и животных – создавались новые сельскохозяйственные сорта растений и породы животных.

    Медицинская генетика, которая изучает строение генетического материала человека и наследственные заболевания, развивалась медленнее, так как процент наследственных заболеваний был очень низким, а технология проведения ДНК-тестирования и определения набора хромосом была слишком дорогостоящей для большинства медицинских и научно-исследовательских учреждений. Благодаря усовершенствованию технологий и обмену информацией о полученных результатах ДНК-тестирования возникла ДНК-генеалогия, которая соединила в себе достижения и знания многих других наук.

    ДНК-генеалогия не только связана с теоретической разработкой гипотез возникновения человечества, его продвижения и распространения по всему земному шару, появления народов, народностей и этнических групп, но эта наука нашла широкое практическое применение – определение родственных связей между дальними и ближними поколениями, фактически, создание материнских и отцовских родов. В отличие от обыкновенной генеалогии, где определяется родословная человека, то есть перечень поколений, устанавливающий происхождение и степень родства, ДНК-генеалогия пользуется совершенно другими критериями определения родовых связей людей, скорее не в ширину, с учетом всех членов рода, а в глубину, от поколения к поколению по отцовской или по материнской линии. В какой-то степени, результаты ДНК-тестирования с точки зрения ДНК-генеалогии вызывают замешательство у некоторых людей, ибо они путают разные категории этого тестирования, смешивая такие понятия как геном, кариотип, генотип, фенотип, гаплогруппа, гаплотип.

    Набор хромосом человека называется кариотипом и он является специфическим для единственного вида людей, проживающего на планете, — Homosapiens. У мужчин кариотип состоит из 22 пар соматических (аутосомных) хромосом и пары половых хромосом ХY. Х-хромосому мужчина получает всегда от матери, а У-хромосому – от отца. У женщин кариотип содержит 22 пары соматических хромосом и одну пару половых ХХ, где одна Х-хромосома от матери, а другая – от отца. Каждая пара соматических хромосом содержит по две аллели генов, отвечающих за какие-то специфические признаки. Однако фенотипически (наружно) будут проявляться признаки доминантного гена, или же иногда проявление двух аллельных генов будет смешанное.
    При ряде хромосомных аномалий набор хромосом может быть на одну-две хромосомы больше или меньше, и люди-носители таких кариотипов будут страдать определенными дефектами развития. Таким образом, кариотип не может использоваться для категоризации людей по каким-то признакам, в том числе на этнические группы, за исключением деления их на мужчин и женщин (по половым хромосомам).

    Остается разобраться с понятиями гаплогруппы и гаплотипа. Здесь тоже существуют некоторые неточности в определении этих понятий людьми не только без медицинского образования, но и с медицинским образованием. Для ДНК-генеалогии важны те участки ДНК в Y-хромосоме и митохондриальной ДНК, где происходят определенные изменения в виде единичного нуклеотидного полиморфизма (SNP) и коротких тандемных повторений нуклеотидов (SТR), совокупность которых определяет какой гаплотип у человека и к какой гаплогруппе он принадлежит. Такая категоризация людей, благодаря ДНК-генеалогии, пока что единственная четкая классификация современного поколения в отношении связи со всеми другими существовавшими поколениями людей, которая совпадает с миграцией человечества и заселением планеты, историческими фактами, этническими и культурными особенностями, возникновением и развитием языков.
    Важно понимать, что мутации, в том числе SNP, возникают и в соматических хромосомах, на генных участках ДНК, и они могут провоцировать развитие метаболических (обменных) заболеваний человека. Эта область медицины изучается молекулярной генетикой. Оказывается, многие заболевания начинаются именно с поломки гена в виде SNP, которая частично компенсируется организмом, пока другие факторы (возраст, нерациональное питание, вредные привычки, условия внешней среды и др.) не спровоцируют проявление генных изменений на уровне обменных процессов, что повлечет за собой развитие болезни. Но к ДНК-генеалогии SNP мутации в соматических хромосомах отношения не имеют, как и наоборот, SNP, которые изучаются ДНК-генеалогией, ничего общего с обменными заболеваниями не имеют.

    Заключением и обобщением вышесказанного является данная таблица:

    Читайте также: