Что определяет пространство и время в физике кратко

Обновлено: 02.07.2024

Пространство-время в нерелятивистской классической механике

В классической механике предполагается использование только трех координатах и не зависит от времени, так как время рассматривается как всеобщее и неизменное, будучи независимым от состояния движения наблюдателя. В случае релятивистских моделей время не может быть отделено от трёх измерений пространства, потому что наблюдаемая скорость, с которой течёт время для объекта, зависит от его скорости относительно наблюдателя, а также от силы гравитационного поля, которое может замедлить течение времени.

Время-пространство в релятивистской физике

В пространстве-времени координатная сетка, которая простирается в 3+1 измерениях, локализует события (вместо просто точки в пространстве), то есть время добавляется как ещё одно измерение в координатной сетке. Таким образом, координаты определяют где и когда происходят события.

В соответствии с теорией относительности, Вселенная имеет три пространственных измерения и одно временное измерение, и все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определённых рамках способными переходить друг в друга при смене наблюдателем системы отсчёта.

В рамках общей теории относительности пространство-время имеет и единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами (телами, полями) и есть гравитация.

Само понятие пространства-времени сложно для представления, так как существуют вопросы, на которые нет ответа: существуют ли пространство и время независимо от сознания, существуют ли координаты пространства-времени независимо друг от друга, в чём причина субъективно наблюдаемой однонаправленности времени, существуют ли моменты времени, отличные от настоящего и другие.

 Чем активнее учёные пытаются разобраться в устройстве пространства и времени, тем запутаннее все становится. Но и интереснее — тоже!

Чем активнее учёные пытаются разобраться в устройстве пространства и времени, тем запутаннее все становится. Но и интереснее — тоже!

С точки зрения физики, исследуя ничтожно малое пространство, мы увидим, что оно состоит из квантов. Но что это за кирпичики?

Люди, как правило, воспринимают пространство как нечто само собой разумеющееся. Ну, в самом деле: это просто-напросто пустота, фон для всего остального. Время тоже простая штука: беспрестанно тикает и тикает. Однако, если физики, долгие годы бившиеся над объединением их фундаментальных теорий, и сумели извлечь из этого хоть что-то полезное, так это то, что пространство и время образуют систему такой ошеломляющей сложности, что любые, даже самые отчаянные попытки осмыслить её могут оказаться тщетными.

Продвинуться далеко Эйнштейну не удалось. Даже сейчас конкурирующих версий квантовой теории гравитации почти столько же, сколько учёных, работающих над данной темой. В горячих спорах упускают из виду важную истину: все конкурирующие версии говорят о том, что пространство происходит от чего-то более глубокого. Эта идея идёт вразрез с 2500-летним опытом научного и философского осмысления пространства.

Вглубь чёрной дыры

Проблему, стоящую перед физиками, прекрасно иллюстрирует обычный магнит. Он легко поднимает с пола скрепку, несмотря на гравитацию целой планеты Земля. Гравитация слабее магнетизма, электрических и ядерных связей. Какими бы ни были квантовые эффекты, они чрезвычайно слабы. Единственное осязаемое свидетельство того, что они всё же существуют, — это пёстрый узор ранней Вселенной, который, как полагают, не мог появиться без участия квантовых флуктуаций гравитационного поля.

На подступах к чёрной дыре материя не настолько сжата и гравитация не настолько сильна, чтобы не работали известные нам законы физики. Однако они, как это ни странно, не работают. Границей чёрной дыры является горизонт событий, рубеж невозврата: материя, которая сюда попадает, вернуться не может. Спуск в дыру необратим, и это — физическая проблема, ибо все известные ныне законы фундаментальной физики, в том числе квантовой механики в её обычной интерпретации, обратимы. У вас должна быть, по крайней мере, принципиальная возможность обратить вспять движение всех частиц и восстановить то, что у вас было.

Над проблемой равновесия чёрных дыр физики-теоретики бьются уже почти полвека. В середине 1970-х годов недавно почивший Стивен Хокинг (Stephen Hawking) из Кембриджского университета (University of Cambridge) сделал огромный шаг вперёд: изучая с помощью квантовой теории поле излучения вокруг чёрных дыр, он показал, что температура этих объектов не является нулевой. В таком случае, они не только поглощают, но и излучают энергию. Хотя благодаря Хокингу чёрные дыры прописались в термодинамике, проблема необратимости усугубилась. Излучение чёрной дыры не несёт никакой информации о том, что у неё внутри. Это случайная тепловая энергия. Если, запустив данный процесс в обратном порядке, вы вернёте дыре её энергию, то поглощённая ею материя не выскочит назад; вы просто получите больше тепла. И нет оснований считать, будто попавшие в дыру материальные предметы всего лишь заперты в ней, но продолжают существовать, ибо, излучая, дыра сжимается и, согласно расчётам Хокинга, в конце концов неминуемо исчезает.

Эту проблему называют информационным парадоксом, так как чёрная дыра съедает ту информацию о поглощённых ею частицах, с помощью которой вы могли бы обратить их движение вспять. Если физика чёрных дыр действительно допускает обратимость любого процесса, то что-то должно нести информацию из этих дыр, и, чтобы так оно и было, возможно, нашу концепцию пространства-времени следует изменить.

Атомы пространства-времени

Тепло — это хаотическое движение микроскопических частиц, таких как молекулы газа. Поскольку чёрные дыры могут нагреваться и остывать, разумно предполагать, что они включают в себя частицы — в общем, имеют микроскопическую структуру. А поскольку чёрная дыра — это всего-навсего пустое пространство (согласно общей теории относительности, поглощаемая материя проходит через горизонт событий, но не может не исчезнуть), её частицы должны быть частицами самого пространства. Чёрная дыра, простая настолько, насколько может быть простым простор пустого пространства, скрывает в себе беспредельную сложность.

Даже теории, провозглашающие свою приверженность обычному пониманию пространства-времени, в конечном итоге приходят к выводу, что за этим безликим фасадом что-то скрывается. Например, в конце 1970-х годов Стивен Вайнберг (Steven Weinberg), ныне работающий в Техасском университете в Остине (University of Texas at Austin), стремился дать описание гравитации, похожее на описание других сил природы. Однако и он вынужден был отметить, что пространство-время, если брать его в том масштабе, в каком оно проявляет себя максимально ярко, выглядит весьма и весьма необычно.

Первоначально физики изображали микроскопическое пространство в виде мозаики, сложенной из маленьких кусков. Считалось, что взглянув на него в масштабе Планка, то есть имея дело с умопомрачительно малой единицей длины, составляющей 10 −35 метров, мы увидим нечто вроде шахматной доски. Однако, на самом деле, картина пространства будет несколько иной. И, прежде всего, следует отметить, что в сетке этой шахматной доски разные направления неравноценны, в результате чего имеют место асимметрии, противоречащие специальной теории относительности. Например, скорость света может зависеть от его цвета — точь-в-точь как в стеклянной призме, расщепляющей свет на цвета радуги. И эти нарушения относительности будут бросаться в глаза, хотя обычно, имея дело с малыми масштабами, трудно наблюдать какие-либо эффекты.

Кроме того, термодинамика чёрных дыр заставляет усомниться в том, что пространство представляет собой простую мозаику. Измеряя тепловое поведение любой системы, вы можете более или менее точно рассчитать число входящих в неё частей. Вбросьте в систему энергию и посмотрите на термометр. Если температура взлетела, вброшенную энергию получило сравнительно небольшое количество молекул. В сущности, то, что вы измеряете, — это энтропия. Она характеризует микроскопическую сложность системы.

Этот странный эффект называют голографическим принципом, потому что он ассоциируется с голограммой. Глядя на голограмму, мы видим трёхмерный объект, хотя, на самом деле, перед нами двухмерный лист плёнки. Если голографический принцип учитывает микроскопические частицы пространства и его содержание, — а с этим согласны многие физики-теоретики, — то для создания пространства мало простого объединения маленьких кусочков.

Что именно представляют собой эти кирпичики, зависит от теории. В теории петлевой квантовой гравитации это — кванты объёма, взаимодействующие на основе квантовых принципов. В теории струн это — родственные электромагнитным поля, живущие в плоскости, образуемой движущейся струной — нитью или петлёй энергии. В М-теории, которую можно рассматривать как фундамент теории струн, это — особый тип частиц: мембрана, сжатая в точку. В теории причинностного множества (causal sets theory) это — события, связанные сетью причины и следствия. В теории амплитуэдра и некоторых других теоретических схемах никаких кирпичиков, образующих пространство, нет вообще — по крайней мере, в том смысле, в каком их обычно понимают.

Запутанные сети

Большой интеллектуальный прогресс последних лет, разрушивший старые границы физических теорий, состоит в осознании того, что изучаемые физикой отношения могут быть связаны с квантовой запутанностью. Будучи сверхмощным типом корреляции, который исследуется в рамках квантовой механики, запутанность, по-видимому, первичнее пространства. К примеру, экспериментатор может сделать так, чтобы две частицы полетели в противоположных направлениях. Если эти частицы запутаны, то, каким бы огромным ни было разделяющее их пространство, между ними сохранится координация.

В настоящее время целый ряд концепций квантовой гравитации — и, прежде всего, теория струн — отводит запутанности решающую роль. Теория струн применяет голографический принцип не только к чёрным дырам, но и ко всей Вселенной. При этом получился рецепт создания пространства — по крайней мере, некоторых его видов. Например, структурированные особым образом поля, пронизывая двухмерное пространство, генерируют дополнительное измерение. С появлением третьего измерения исходное двухмерное пространство превращается в границу более роскошного царства, известного как объёмное пространство. И то, что объединяет объёмное пространство в сопредельное целое, это — запутанность.

По-видимому, запутанность определяет не только сопредельность пространства, но и многие другие его свойства. Ван Раамсдонк и Брайан Свингл (Brian Swingle), ныне работающий в Мэрилендском университете в Колледж-Парке, объясняют универсальный характер гравитации — то, что она затрагивает все объекты и не поддаётся экранированию, — вездесущностью запутанности. Что касается чёрных дыр, то Леонард Сасскинд (Leonard Susskind) из Стэнфордского университета (Stanford University) и Хуан Мальдацена (Juan Maldacena) из Института перспективных исследований (Institute for Advanced Study) в Принстоне, штат Нью-Джерси, считают, что запутанность между чёрной дырой и её излучением создаёт лаз — чёрный вход в дыру. Возможно, это поможет физике чёрных дыр решить проблему сохранения информации и обратимости.

Данные идеи теории струн работают только в рамках конкретных геометрий и реконструируют только одно измерение пространства. Некоторые исследователи попытались объяснить, как всё пространство может возникнуть с чистого листа. К примеру, Чуньцзюнь Цао (ChunJun Cao), Спиридон Михалакис (Spyridon Michalakis) и Шон М. Кэрролл, все из Калифорнийского технологического института (California Institute of Technology), начинают с минималистского квантового описания системы, введённой без прямой ссылки на пространство-время и даже на материю. Если система имеет правильную структуру корреляций, её можно расщепить на составные части, которые могут быть идентифицированы как разные области пространства-времени. В этой модели степень запутанности определяет понятие пространственного расстояния.

Не только в физике, но и в других естественных науках пространство и время — основа всех теорий. Однако мы не можем наблюдать пространство-время непосредственно. Мы выводим его существование из нашего повседневного опыта. Мы предполагаем, что некий механизм, действующий в пространстве-времени, — это наиболее экономичное объяснение наблюдаемых нами явлений. Но главный урок, который следует извлечь из теории квантовой гравитации, состоит в следующем: не все явления аккуратно вписываются в пространство-время. Физикам нужно найти какой-то новый фундамент, и, найдя его, они смогут завершить революцию, начатую чуть более века назад Альбертом Эйнштейном.

Квантовая механика странная. Для нас, существ, не способных видеть микромир не вооруженным глазом, представить себе как все устроено на уровне атомов довольно сложно. Между тем, согласно атомной теории, все во Вселенной состоит из мельчайших частиц – атомов, скрепленных друг с другом электрическими и ядерными силами. Физические эксперименты, проведенные в ХХ веке показали, что атомы можно дробить на еще более мелкие, субатомные частицы. В 1911 году британский физик Эрнест Резерфорд провел ряд экспериментов и пришел к выводу, что атом похож на Солнечную систему, только по орбитам вместо планет вокруг него вращаются электроны. Два года спустя, взяв за основу модель Резерфорда, физик Нильс Бор изобрел первую квантовую теорию атома и в этой области теоретической физики все стало еще сложнее. Но если квантовая механика объясняет как взаимодействуют между собой мельчайшие частицы, может ли она объяснить существование пространства-времени?


Ученые ищут ответ на вопрос о том из чего состоит пространство-время уже много лет, но пока безуспешно

Что такое пространство-время?

Уверена, большинство из нас воспринимают пространственно-временной континуум как нечто, само собой разумеющееся. И в этом нет ничего удивительного, ведь не каждый день мы размышляем над чем-то подобным. Но если хорошенько задуматься, то окажется, что ответить на вопрос о том, что представляет собой пространство-время не так уж просто.

Начнем с того, что в соотвествии с теорией относительности (ОТО) Эйнштейна, Вселенная имеет три пространственных измерения и одно временное измерение. При этом все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определенных рамках и условиях способными переходить друг в друга. В свою очередь пространственно-временной континуум или пространство-время – это физическая модель, дополняющая пространство временным измерением.


В рамках общей теории относительности пространство-время также имеет единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами и есть гравитация.

В рамках ОТО теория гравитации и есть теория пространства-времени, которое не является плоским и способно менять свою кривизну.

Из ОТО также следует, что гравитация является результатом массы, такой как планета или звезда, искажающая геометрию пространства-времени. Космический аппарат NASA Gravity Probe, запущенный в 2004 году, точно измерил, насколько гравитация Земли искривляет пространство-время вокруг нее, в конечном итоге подтвердив расчеты Эйнштейна. Но откуда взялось пространство-время? Ответ, как это ни странно, может скрывать в себе квантовая механика.

Квантовая механика и теория гравитации


Квантовая механика противоречит ОТО

Взгляд Эйнштейна на гравитацию как проявление геометрии пространства-времени был чрезвычайно успешным. Но то же самое относится и к квантовой механике, которая с безошибочной точностью описывает махинации материи и энергии на атомном уровне. Однако попытки найти математическое решение, которое совместило бы квантовую странность с геометрической гравитацией, наталкивались на серьезные технические и концептуальные препятствия.

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Google News чтобы не пропустить ничего интересного.

По крайней мере, так было долгое время при попытках понять обычное пространство-время. Возможный ответ пришел из теоретического изучения альтернативных геометрий пространства-времени, мыслимых в принципе, но обладающих необычными свойствами. Одна из таких альтернатив известна как антидеситтеровское пространство, которое имеет тенденцию сжиматься само по себе, а не расширяться, как это делает Вселенная. Для жизни, безусловно, это было бы не самое приятное место. Но как лаборатория для изучения теорий квантовой гравитации, оно может многое предложить и даже стать ключом к квантовым процессам, которые могут быть ответственны за создание пространства-времени.

Что такое антидеситтеровское пространство?

Исследования антидеситтеровское пространства предполагают, например, что математика, описывающая гравитацию (то есть геометрию пространства-времени), может быть эквивалентна математике квантовой физики в пространстве с одним меньшим измерением.

Представьте себе голограмму — плоскую двумерную поверхность, которая включает в себя трехмерное изображение. Подобным же образом, возможно, четырехмерная геометрия пространства-времени может быть закодирована в математике квантовой физики, работающей в трехмерном пространстве. Или, может быть, нужно больше измерений — а вот сколько измерений требуется, являются частью проблемы, которую нужно решить.


Квантовая запутанность – одна из сложнейших для понимания научных теорий

Во всяком случае, исследования в этом направлении открыли удивительную возможность: само пространство-время может быть порождено квантовой физикой, в частности загадочным явлением, известным как квантовая запутанность. Подробно о том, что представляет собой квантовая запутанность я рассказывала в этой статье.

Если попробовать объяснить более-менее простыми словами, то квантовая запутанность это сверхъестественная связь между частицами, разделенными огромными расстояниями. Испускаемые из общего источника, такие частицы остаются запутанными независимо от того, как далеко они друг от друга находятся. Если вы измерите свойство (например, спин) одной частицы, то узнаете, каким будет результат измерения спина другой частицы. Но до измерения эти свойства еще не определены, что противоречит здравому смыслу и подтверждается многими экспериментами. Кажется, что измерение в одном месте определяет, каким будет измерение в другом отдаленном месте.

Примечательно, что геометрия, созданная запутанными кубитами, может очень хорошо подчиняться уравнениям из общей теории относительности Эйнштейна, которые описывают движение под действием гравитации — по крайней мере, последние исследования указывают в этом направлении.

Подводя итог отмечу, что никто точно не знает, какие квантовые процессы в реальном мире ответственны за соткание ткани пространства-времени. Возможно, некоторые допущения, сделанные в уже имеющихся расчетах, окажутся ошибочными. Но вполне возможно, что физика стоит на пороге проникновения в основы природы глубже, чем когда-либо. В существование, содержащее ранее неизвестные измерения пространства и времени.

Эта статья — о физической модели. Об использовании этого термина в литературоведении см. Хронотоп; об использовании этого термина в философии см. Философия пространства и времени.

Простра́нство-вре́мя (простра́нственно-временно́й конти́нуум) — физическая модель, дополняющая пространство равноправным [1] временны́м измерением и таким образом создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. Пространство-время непрерывно и с математической точки зрения представляет собой многообразие с лоренцевой метрикой.

В нерелятивистской классической механике использование Евклидова пространства, не зависящего от одномерного времени, вместо пространства-времени уместно, так как время рассматривается как всеобщее и неизменное, будучи независимым от состояния движения наблюдателя. В случае релятивистских моделей время не может быть отделено от трёх измерений пространства, потому что наблюдаемая скорость, с которой течёт время для объекта, зависит от его скорости относительно наблюдателя, а также от силы гравитационного поля, которое может замедлить течение времени.

В соответствии с теорией относительности, Вселенная имеет три пространственных измерения и одно временное измерение, и все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определённых рамках (см. примечания ниже) способными переходить друг в друга при смене наблюдателем системы отсчёта.

В рамках общей теории относительности пространство-время имеет и единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами (телами, полями) и есть гравитация. Таким образом, теория гравитации в рамках ОТО и других метрических теорий гравитации есть теория пространства-времени, полагаемого не плоским, а способным динамически менять свою кривизну.

До начала двадцатого века время полагалось независимым от состояния движения, протекающим с постоянной скоростью во всех системах отсчёта; однако затем эксперименты показали, что время замедляется при больших скоростях одной системы отсчёта относительно другой. Это замедление, названное релятивистским замедлением времени, объясняется в специальной теории относительности. Замедление времени подтвердили многие эксперименты, такие как релятивистское замедление распада мюонов в потоке космических лучей и замедление атомных часов на борту космического челнока, ракеты и самолётов относительно установленных на Земле часов. Длительность времени поэтому может меняться в зависимости от событий и системы отсчёта.

Термин пространство-время получил широкое распространение далеко за пределами трактовки пространства-времени с нормальными 3+1 измерениями. Это действительно соединение пространства и времени. Другие предложенные теории пространства-времени включают дополнительные измерения, обычно пространственные, но существуют некоторые умозрительные теории, включающие дополнительные временные измерения, и даже такие, которые включают измерения, не являющиеся ни временными, ни пространственными (например, суперпространство) [2] . Вопрос о том, сколько измерений необходимо для описания Вселенной, открыт до сих пор. Умозрительные теории, такие как теория струн, предсказывают 10 или 26 измерений (с М-теорией, предсказывающей 11 измерений: 10 пространственных и 1 временное), но существование более четырёх измерений имело бы значение только на субатомном уровне.

Формирование механики достаточно плотно взаимно связано с некоторыми взглядами о понятии пространство-время. В пределах нынешней науки законы традиционной механики формулируются как правильные относительно всей категории инерциальных структур.


Но во время формирования традиционной механики ее основатели всегда ставили перед собой вопрос факта присутствия инерциальных систем. Таким образом, если предположить существование как минимум одной аналогичной системы, то возможно предвидеть и присутствие многочисленного количества данных систем во Вселенной, так как всякая перемещающаяся равномерным и прямолинейным образом система по отношению этой системы тоже будет считаться инерциальной.

Представление пространства и времени


Пространство в традиционной механике является евклидовым, абсолютным, однородным и изотропным. Время в традиционной механике является абсолютным, а также однородным. В то же время, в традиционной механике пространство и время считаются независимыми друг от друга.

В соответствии с высказываниями физиков, на нашей планете с некоторым уровнем точности выполнятся принцип инерции, но, вместе с этим, Земля является неинерциальной системой, так как осуществляет два вида вращательных движений. Она вращается вокруг Солнца, а также вокруг своей оси. Вместе с тем ученые не принимают во внимание присутствие взаимосвязанной с Солнцем инерциальной структуры. Это выражается реальностью вращательного движения Солнца около галактического центра.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Вместе с тем задачей у физиков возник поиск решения на вопрос: если никакая фактическая система координат не считается четко инерциальной, не утрачивают ли в это время собственную значимость ключевые законы механики? Поиски решения на этот вопрос и обусловили основание термина абсолютного пространства.

Пространственные и временные значения являются конкретными субстанциями с индивидуальным присутствием, а также не взаимосвязанные с физическими объектами.

Пространство, следовательно, является полностью неподвижным, и взаимно связанная с ним система координат есть четко инерциальной. Ключевые характеристики пространственных и временных значений определяют собственное основное выражение в положениях Галилея, характеризующиеся последующим образом:

  1. Координаты пространственных и временных значений заключены в формуле неравноправным образом.
  2. Координаты пространства в перемещающейся системе будет зависеть как от пространственной, так и от временной координаты в недвижимой системе. В свою очередь, координата времени будет зависеть только от временной координаты в недвижимой системе. И это является исключением ее взаимосвязи с пространственными координатами.
  3. Следовательно, время рассматривается как некоторая вполне самостоятельная субстанция относительно пространства.

Проблемный вопрос пространства и времени в традиционной механике


Проблемный вопрос пространства-времени был плотным образом взаимосвязан с системами дальнодействия и близкодействия. Дальнодействие рассматривалось физиками в роли моментального распределения гравитационных и электрических сил через полностью пустое пространство. Здесь силы приобретают собственную окончательную цель с помощью беспредельного ресурса Вселенной.

Одновременно систему близкодействия некоторые ученые относили к осознанию пространства в виде расположенности вещества и эфира, где передача светового излучения выполняется с окончательной скоростью в виде волны. К таким ученым относятся голландский механик, физик, математик, астроном и изобретатель Христиан Гюйгенс ван Зейлихем, французский физик Огюстен Жан Френель, а также английский физик-экспериментатор и химик Майкл Фарадей.

В наиболее современной вариации понятие пространства и времени описал в собственной теории относительности Альберт Эйнштейн. Он предложил новое объяснение реляционной системы пространства и времени с научным доказательством.

Реляционная система времени и пространства была развита в следующих трудах Альберта Эйнштейна, в которых он распределил физический принцип относительности, в том числе, и на неинерциальные системы. По данной причине, при разработке теории относительности для неинерциальных систем координат, Альберт Эйнштейн создал всеобщую теорию гравитации.

Таким образом, возникающие мощные гравитационные поля объекты порождают искривление пространства, задавая его неевклидовым, а также благоприятствуя затормаживанию течения времени. Так, чем мощнее гравитационное поле, тем медленнее в нем проистекает время, если производить сравнения с временем за границами поля. Эти результаты в будущем подтвердились в экспериментальных опытах с искривлением светового луча поблизости солнца. Следовательно, в XX столетии одерживает победу диалектико-материалистический подход к вопросу существования пространства и времени.

Следовательно, образ единой для всей Вселенной первоосновы изменяется модификацией о безграничном числе физических объектов, со всеми, из которых у пространства и времени действует определенная взаимная связь. Это, равным образом, приводит к исключению пребывания пространства и времени самостоятельно от материи и предоставляет понимание о свойствах этих понятий как физических явлений и форм существования материи.

Не нашли что искали?

Просто напиши и мы поможем

Ключевые системы пространства и времени

До 1915 года пространство и время рассматривались в роли некоторой зоны, которая исключает воздействие на нее любых возникающих в ее границах явлений и процессов. Объекты передвигались, силы при этом отталкивали и притягивали, но пространство и время оставались постоянными.

В теории относительности Альберта Эйнштейна пространство и время представлены динамическими значениями в пределах явления с перемещением объекта и воздействия силы, которые провоцируют преобразование кривизны пространства и времени. В то же время, система пространства-времени непосредственно воздействует на свойства передвижения и воздействия сил.

В основании пространственно-временных характеристик объекта, в зависимости от скорости его перемещения находятся такие положения:

  1. Принцип относительности, в соответствии с которым все природные законы являются идентичными в каждой инерциальной системе. Альберт Эйнштейн, соответствующим образом, производит расширение положение относительности Галилея.
  2. Принцип неизменности скорости света, благодаря которому скорость света полноправна в любой инерциальной системе координат, и не считается, что она зависит от ориентира передачи света от созерцателя.
  3. Отрицание от изображения эфира в формате устойчивой точки отсчета. В то же время, каждая система координат считаются равноценными. Относительность предполагает одинаковость каждой системы координат и осуществляет исключение эталонной системы.

Пространство и время не считаются абсолютными, иначе говоря, пространство и время в полной мере находятся в зависимости от физических тел, которые находятся в них. Специальная теория относительности показывает плотную взаимосвязь меж собой пространственных и временных значений. В процессе этих анализов и рассмотрений природная среда стала исследоваться в виде организма, в пределах которого просматривается прямая взаимная связь каждой системы, т.е. зависимость всех систем одна от другой.

Пространственные и временные показатели выражаются только в форме параметров гравитационного поля. К тому же, гравитационное поле является искривленным, неевклидовым формированием. Искривление устанавливается материей, перемещение объектов, в то же время, представляется, исключая гравитационные силы. При небольших скоростях непростые формулы СТО стают обыкновенными ньютоновскими формулами, а четырехмерное пространство и время преобразовывается в плоское пространство и время.

Читайте также: