Что называют электромагнитом физика 8 класс кратко

Обновлено: 06.07.2024

Соленоид – это катушка индуктивности в виде намотанного на цилиндрическую поверхность изолированного проводника, по которому течёт электрический ток. Электрический ток в обмотке создает в окружающем пространстве магнитное поле соленоида.

Соленоид становится магнитом. Железные опилки притягиваются к концам катушки при прохождении через нее электрического тока и отпадают при отключении тока.

Сила магнитного поля катушки с током зависит от числа витков катушки, от силы тока в цепи и от наличия сердечника в катушке.
Чем большее число витков в катушке и чем больше сила тока, тем сильнее магнитное поле. Железный сердечник, введенный внутрь катушки с током усиливает магнитное поле катушки.

Если подвесить соленоид на нити, то он повернется и сориентируется в магнитном поле Земли подобно свободно вращающейся магнитной стрелке.

Конец соленоида, из которого магнитные линии выходят, становится северным полюсом, а другой конец, в который магнитные линии входят, - южным полюсом магнита-соленоида.
___

Графически изображение магнитного поля соленоида похоже на магнитное поле полосового магнита.

Магнитные линии магнитного поля катушки с током замкнутые кривые и направлены снаружи катушки от северного полюса к южному полюсу.
___

Внутри соленоида, длина которого значительно больше диаметра, магнитные линии магнитного поля параллельны и направлены вдоль соленоида.
Здесь магнитное поле однородно, его напряжённость пропорциональна силе тока и числу витков.
Внешнее магнитное поле соленоида неоднородно.
____

Соленоид с сердечником во внутренней полости представляет собой электромагнит .

Электромагнит – это устройство, состоящее из токопроводящей обмотки и ферромагнитного сердечника, который намагничивается при прохождении по обмотке электрического тока и притягивающегося якоря.

Обмотка выполняется из изолированного алюминиевого или медного провода.
Существуют также электромагниты с обмоткой из сверхпроводящих материалов.
Сердечники изготавливают из стали или чугуна, или железоникелевых ( железокобальтовых ) сплавов, которые с целью уменьшения вредных вихревых токов выполняют не цельными, а из набора листов.

Дугообразный электромагнит используется для поднятия тяжестей. Через катушку пропускается электрический ток, в результате намагничивается сердечник и притягивает якорь с подвешенным грузом.

Действие электромагнита зависит как от силы магнитного поля, так и от силы и направления электрического тока в обмотке.

Полезные свойства электромагнитов

- быстро размагничиваются при выключении тока,
- можно изготовить любых размеров,
- при работе можно регулировать магнитное действие, меняя силу тока в цепи.

В основном область применения электромагнитов - электрические машины и аппараты, входящие в системы промышленной автоматики, в аппаратуру защиты электротехнических установок. Электромагниты используют в подъемных устройствах, для очищения угля от металла, для сортировки разных сортов семян, для формовки железных деталей , в магнитофонах.
Электромагниты применяются и в электроизмерительных приборах.
Развивающейся областью применения электромагнитов является медицинская аппаратура.

СДЕЛАЙ ЭЛЕКТРОМАГНИТ САМ



Почему для переноски раскаленых болванок нельзя воспользоваться электромагнитом? - потому, что чистое железо, нагретое выше 767 градусов, совершенно не намагничивается!

Самый тяжёлый в мире магнит имеет диаметр 60 м и весит 36 тыс. т. Он был сделан для синхрофазотрона мощностью 10 ТэВ, установленного в Объединённом институте ядерных исследований в Дубне, Московская область.


Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке тока. В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.

Обмотку электромагнитов изготавливают из изолированного алюминиевого или медного провода, хотя есть и сверхпроводящие электромагниты. Магнитопроводы изготавливают из магнитно-мягких материалов — обычно из электротехнической или качественной конструкционной стали, литой стали и чугуна, железоникелевых и железокобальтовых сплавов. Для снижения потерь на вихревые токи (токи Фуко) магнитопроводы выполняют из набора листов.

Выделяют три типа электромагнитов по способу создания магнитного потока.

Нейтральные электромагниты постоянного тока

Постоянный магнитный поток создается постоянным током в обмотке таким образом, что сила притяжения зависит только от величины и не зависит от направления тока в обмотке.

Поляризованные электромагниты постоянного тока

Присутствуют два независимых магнитных потока — поляризующий и рабочий. Первый создается рабочей (или управляющей) обмоткой. Поляризующий поток чаще всего создается постоянными магнитами, иногда дополнительными электромагнитами, и используется для обеспечения наличия притягивающей силы при выключенной рабочей обмотке. В целом действие такого магнита зависит как от величины магнитного потока, так и от направления электрического тока в рабочей обмотке.

Электромагниты переменного тока

В этих магнитах питание обмотки осуществляется от источника переменного тока, магнитный поток периодически изменяется по величине и направлению, а однонаправленная сила притяжения меняется только по величине, в результате чего сила притяжения пульсирует от нуля до максимального значения с удвоенной частотой по отношению к частоте питающего тока. Широко применяют в электротехнике начиная от бытовой техники до плит электромагнитных для станков, при магнитопорошковом методе неразрушающего контроля.

Содержание

История



В 1825 году английский инженер Уильям Стёрджен изготовил первый электромагнит, представляющий собой согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки. Для изолирования от обмотки стержень был покрыт лаком. При пропускании тока железный стержень приобретал свойства сильного магнита, но при прерывании тока он мгновенно их терял. Именно эта особенность электромагнитов и позволила широко применять их в технике.

Другие классификации

Электромагниты различают также по ряду других признаков: по способу включения обмоток — с параллельными и последовательными обмотками; по характеру работы — работающие в длительном, прерывистом и кратковременном режимах; по скорости действия — быстродействующие и замедленного действия, создающие постоянное или переменное магнитное поле и т. д.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Электромагнит" в других словарях:

электромагнит — электромагнит … Орфографический словарь-справочник

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, искусственный магнит, получаемый путем воздействия на железо электрического тока. Основной частью Э. является сердцевина из мягкого железа, обмотанная медной изолированной проволокой, по к рой пропускается электрический ток.… … Большая медицинская энциклопедия

ЭЛЕКТРОМАГНИТ — (от слова электричество и магнит). Мягкое, обыкновенно подковообразное железо, обмотанное изолированной медной проволокой, в котором возбуждается электромагнитная сила, проходящая по проволоке. Словарь иностранных слов, вошедших в состав русского … Словарь иностранных слов русского языка

ЭЛЕКТРОМАГНИТ — электротехническое устройство, состоящее из ферромагнитного сердечника с токопроводящей обмоткой, которая при включении в электрическую цепь намагничивает сердечник. Электромагнит используют для создания магнитных потоков в электрических машинах… … Большой Энциклопедический словарь

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, магнит, состоящий из железного сердечника, вокруг которого обмотка из изолированной проволоки. Когда по проволоке пропускают электрический ток, возникает МАГНИТНОЕ ПОЛЕ, исчезающее при отключении тока. Это позволяет включать и… … Научно-технический энциклопедический словарь

электромагнит — [IEV number 151 14 08] электромагнит Намагничивающее и размагничивающее устройство в виде П образного ферромагнитного сердечника, на который намотаны одна, две или более обмоток, включенных согласованно, в котором магнитное поле возникает и… … Справочник технического переводчика

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, электротехническое устройство, состоящее из ферромагнитного сердечника (например, из электротехнической стали) с токопроводящей обмоткой, которая при включении в электрическую цепь намагничивает сердечник. Используется для создания … Современная энциклопедия

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, электромагнита, муж. (физ.). Кусок железа или стали, обмотанный изолированной проволокой и намагничиваемый пропусканием через проволоку электрического тока. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, а, м. Устройство для получения магнитного поля при помощи электрического тока, обычно в виде стального или железного сердечника с проволочной обмоткой, искусственный магнит. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 … Толковый словарь Ожегова

ЭЛЕКТРОМАГНИТ — (Electromagnet) железный стержень, намагничиваемый током, проходящим через проволочную спираль (соленоид), которая надета на стержень. В зависимости от формы стержня различают: стержневой Э., подковообразный Э. Э. широко применяются во всех… … Морской словарь

ЭЛЕКТРОМАГНИТ — катушка из изолированной проволоки с железным сердечником внутри, создающая при прохождении по ней тока магнитное поле. Сердечник служит для усиления магнитного поля, т. к. железо значительно лучше проводит магнитные силовые линии, чем воздух… … Технический железнодорожный словарь

Электромагниты и их применение

Грузоподъемный электромагнит

Электромагниты получили настолько широкое распространение, что трудно назвать область техники, где бы они не применялись в том или ином виде. Они содержатся во многих бытовых приборах - электробритвах, магнитофонах, телевизорах и т.п. Устройства техники связи - телефония, телеграфия и радио немыслимы без их применения.

Электромагниты являются неотъемлемой частью электрических машин, многих устройств промышленной автоматики, аппаратуры регулирования и защиты разнообразных электротехнических установок. Развивающейся областью применения электромагнитов является медицинская аппаратура. Наконец, гигантские электромагниты для ускорения элементарных частиц применяются в синхрофазотронах.

Вес электромагнитов колеблется от долей грамма до сотен тонн, а потребляемая при их работе электрическая мощность - от милливатт до десятков тысяч киловатт.

силовой электромагнит

Особой областью применения электромагнитов являются электромагнитные механизмы. В них электромагниты используются в качестве привода для осуществления необходимого поступательного перемещения рабочего органа или поворота его в пределах ограниченного угла, или для создания удерживающей силы.

Примером подобных электромагнитов являются тяговые электромагниты, предназначенные для совершения определенной работы при перемещении тех или иных рабочих органов; электромагнитные замки; электромагнитные муфты сцепления и торможения и тормозные электромагниты; электромагниты, приводящие в действие контактные устройства в реле, контакторах, пускателях, автоматических выключателях; подъемные электромагниты, электромагниты вибраторов и т. п.

В ряде устройств наряду с электромагнитами или взамен их используются постоянные магниты (например, магнитные плиты металлорежущих станков, тормозные устройства, магнитные замки и т. п.).

грузоподъемный электромагнит

Электромагниты весьма разнообразны по конструктивным выполнениям, которые различаются по своим характеристикам и параметрам, поэтому классификация облегчает изучение процессов, происходящих при их работе.

В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы электромагниты подразделяются на три группы: электромагниты постоянного тока нейтральные, электромагниты постоянного тока поляризованные и электромагниты переменного тока.

В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие электромагнита зависит только от величины этого потока и не зависит от его направления, а следовательно, от направления тока в обмотке электромагнита. При отсутствии тока магнитный поток и сила притяжения, действующая на якорь, практически равны нулю.

Поляризованные электромагниты постоянного тока характеризуются наличием двух независимых магнитных потоков:(поляризующего и рабочего. Поляризующий магнитный поток в большинстве случаев создается с помощью постоянных магнитов. Иногда для этой цели используют электромагниты. Рабочий поток возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, создаваемая поляризующим магнитным потоком. Действие поляризованного электромагнита зависит как от величины, так и от направления рабочего потока, т. е. от направления тока в рабочей обмотке.

Электромагниты переменного тока

В электромагнитах переменного тока питание обмотки осуществляется от источника переменного тока. Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически изменяется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоенной частотой по отношению к частоте питающего тока.

Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как это приводит к вибрации якоря, а в отдельных случаях к прямому нарушению нормальной работы. Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к мерам для уменьшения глубины пульсации силы (например, применять экранирующий виток, охватывающий часть полюса электромагнита).

исполнительные электромагниты

Кроме перечисленных разновидностей, в настоящее время большое распространение получили электромагниты с выпрямлением тока, которые по питанию могут быть отнесены к электромагнитам переменного тока, а по своим характеристикам приближаются к электромагнитам постоянного тока. Поскольку все же имеются некоторые специфические особенности их работы.

В зависимости от способа включения обмотки различают электромагниты с последовательными и параллельными обмотками.

Обмотки последовательного включения , работающие при заданном токе, выполняются с малым числом витков большого сечения. Ток, проходящий по такой обмотке, практически не зависит от ее параметров, а определяется характеристиками потребителей, включенных .последовательно с обмоткой.

Обмотки параллельного включения , работающие при заданном напряжении, имеют, как правило, весьма большое число витков и выполняются из провода малого сечения.

По характеру работы обмотки электромагниты разделяются на работающие в длительном, прерывистом и кратковременном режимах.

По скорости действия электромагниты могут быть с нормальной скоростью действия, быстродействующие и замедленно действующие. Это разделение является несколько условным и свидетельствует главным образом о том, приняты ли специальные меры для получения необходимой скорости действия.

Все перечисленные выше признаки накладывают свой отпечаток на особенности конструктивных выполнений электромагнитов.

Грузоподъемные электромагниты

Вместе с тем при всем разнообразии встречающихся на практике электромагнитов они состоят из основных частей одинакового назначения. К ним относятся катушка с расположенной на ней намагничивающей обмоткой (может быть несколько катушек и несколько обмоток), неподвижная часть магнитопровода, выполняемого из ферромагнитного материала (ярмо и сердечник) и подвижная часть магнитопровода (якорь). В некоторых случаях неподвижная часть магнитопровода состоит из нескольких деталей (основания, корпуса, фланцев и т. д.). а)

Якорь отделяется от остальных частей магнитопровода воздушными промежутками и представляет собой часть электромагнита, которая, воспринимая электромагнитное усилие, передает его соответствующим деталям приводимого в действие механизма.

Количество и форма воздушных промежутков, отделяющих подвижную часть магнитопровода от неподвижной, зависят от конструкции электромагнита. Воздушные промежутки, в которых возникает полезная сила, называются рабочими; воздушные промежутки, в которых не возникает усилия в направлении возможного перемещения якоря, являются-паразитными.

Поверхности подвижной или неподвижной части магнитопровода, ограничивающие рабочий воздушный промежуток, называют полюсами.

В зависимости от расположения якоря относительно остальных частей электромагнита различают электромагниты с внешним притягивающимся якорем, электромагниты со втягивающимся якорем и электромагниты с внешним поперечно движущимся якорем.

Характерной особенностью электромагнитов с внешним притягивающимся якорем является внешнее расположение якоря относительно обмотки. На него действует главным образом рабочий поток, проходящий от якоря к торцу шляпки сердечника. Характер перемещения якоря может быть вращательным (например, клапанный электромагнит) или поступательным. Потоки рассеяния (замыкающиеся помимо рабочего зазора) у таких электромагнитов практически не создают тягового усилия, и поэтому их стремятся уменьшить. Электромагниты этой группы способны развивать достаточно большое усилие, но обычно применяются при сравнительно небольших рабочих ходах якоря.

устройство электромагнита

Особенностью электромагнитов со втягивающимся якорем являются частичное расположение якоря в своем начальном положении внутри катушки и дальнейшее перемещение его в катушку в процессе работы. Потоки рассеяния у таких электромагнитов, особенно при больших воздушных зазорах, создают определенное тяговое усилие, в результате чего они являются полезными, особенно при сравнительно больших ходах якоря. Такие электромагниты могут выполняться со стопом или без него, причем форма поверхностей, образующих рабочий зазор, может быть различной в зависимости от того, какую тяговую характеристику нужно получить.

Наибольшее распространение получили электромагниты с плоскими и усеченно коническими полюсами, а также электромагниты без стопа. В качестве направляющей для якоря чаще всего применяется трубка из немагнитного материала, создающая паразитный зазор между якорем и верхней, неподвижной, частью магнитопровода.

Электромагниты со втягивающимся якорем могут развивать усилия и иметь ход якоря, изменяющиеся в очень большом диапазоне, что обусловливает их широкое распространение.

В электромагнитах с внешним поперечно движущимся якорем якорь перемещается поперек магнитных силовых линий, поворачиваясь на некоторый ограниченный угол. Такие электромагниты обычно развивают сравнительно небольшие усилия, но они позволяют путем соответствующего согласования форм полюсов и якоря получать изменения тяговой характеристики и высокий коэффициент возврата.

В каждой из трех перечисленных групп электромагнитов в свою очередь имеется ряд конструктивных разновидностей, связанных как с характером протекающего по обмотке тока, так и с необходимостью обеспечения заданных характеристик и параметров электромагнитов.

Нажмите, чтобы узнать подробности

Урок по физике предназначен для 8 класса по учебнику О.Ф.Кабардина Физика 8, изд.Просвещение.

Белогорского района Республики Крым

План – конспект урока по физике в 8 классе

Учитель физики

Тейфекова Зарема Курбаналиевна

урок 31

тема: Электромагниты и их применение

Цель урока: узнать, что такое электромагнит, из чего он состоит, каков принцип его действия, исследовать свойства электромагнита, где он применяется

Планируемые результаты:

Предметные: изучить способы усиления и ослабления магнитного поля катушки с током; научить определять магнитные полюса катушки с током; рассмотреть принцип действия электромаг­нита и области его применения; научить собирать электромагнит из готовых деталей и опытным путём проверять, от чего зависит его магнитное действие;

Метапредметные: развивать умение обобщать знания, применять
знания в конкретных ситуациях; развивать навыки работы с прибора­
ми; развивать познавательный интерес к учебному предмету;

Личностные: развитие самостоятельности в приобретении новых знаний и практических умений, воспитание усидчивости, трудолюбия, аккуратности при выполнении практической работы; развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства этих гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы

Тип урока: комбинированный

Оборудование для лабораторной работы: электромагнит разборный с деталями (предназначен для проведения фронтальных лабораторных работ по электричеству и магнетизму), источник то­ка, реостат, ключ, соединительные провода, компас.

Демонстрации:

1) действие проводника, по которому протекает постоянный

ток, на магнитную стрелку;

2) действие соленоида (катушка без сердечника), по которо­му протекает постоянный ток, на магнитную стрелку;

действие соленоида (катушка с сердечником), по которому
протекает постоянный ток, на магнитную стрелку;

притяжение железных опилок гвоздем, на который на­
мотан провод, подключенный к источнику постоянного
тока.

Ход урока

Организационный момент. (2 мин)

Учитель приветствует, проверяет готовность к уроку.

Для эмоционального настроя используется музыка.

Итак, давайте сегодня на уроке будем активными, внимательными, энергичными

II . Актуализация опорных знаний (6 мин). (работа в парах)

1. Если электрический заряд неподвижен, то вокруг него существует.

а) магнитное поле,

б) электрическое поле,

в) электрическое и магнитное поле.

2. Если электрический заряд неподвижен, то вокруг него существует.

а) магнитное поле,

б) электрическое поле,

в) электрическое и магнитное поле.

3. Какое явление наблюдается в опыте Эрстеда?

а) взаимодействие проводников с током;

б) взаимодействие двух магнитных стрелок;

в) поворот магнитной стрелки вблизи проводника с током.

4. Почему магнитная стрелка поворачивается вблизи проводника с током?

а) на нее действует магнитное поле;

б) на нее действует электрическое поле;

в) на нее действует сила притяжения;

5. Как располагаются железные опилки в магнитном поле прямого тока?

а) располагаются вдоль проводника с током;

б) образуют замкнутые кривые вокруг проводника с током;

в) располагаются беспорядочно.

6. Магнитные линии – это…

а) линии, по которым движутся железные опилки

б) линии, которые показывают действие магнитного поля на магнитные стрелочки

в) линии, вдоль которых устанавливаются в магнитном поле оси магнитных стрелочек

7. Какой из вариантов соответствует схеме расположения магнитных линий вокруг катушки с током?


Учащиеся обмениваются тетрадями, проверяют и оценивают друг друга

1б 2в 3в 4а 5б 6в 7б

Вы можете повысить свою оценку, если будете активно работать в течение урока.

Изучение нового материала (25 мин).

Каждый из вас сотни тысяч раз слышал школьный звонок, но задумывался ли хоть один из вас, каков принцип его действия?

У меня есть модель звонка (демонстрирую). Кто сможет объяснить принцип его действия?

Затрудняетесь?! Итак, ваших знаний оказалось недостаточно для того, чтобы объяснить принцип действия электрозвонка. Основной частью электрического звонка является электромагнит. С ним сегодня мы и познакомимся.

Подумайте! Какова, по-вашему, цель урока? (Узнать, что такое электромагнит, из чего он состоит, каков принцип его действия, исследовать свойства электромагнита, где он применяется)

Электромагнит (слайд 3)

Андре Мари Ампер, проводя опыты с катушкой (соленоидом), показал эквивалентность ее магнитного поля полю постоянного магнита Соленоид (от греч. solen - трубка и eidos - вид) - прово­лочная спираль, по которой пропускают электрический ток для соз­дания магнитного поля.

Исследования магнитного поля кругового тока привели Ам­пера к мысли, что постоянный магнетизм объясняется существова­нием элементарных круговых токов, обтекающих частицы, из кото­рых состоят магниты.

Магнетизм - одно из проявлений электричества. Как создать магнитное поле внутри катушки? Можно ли изменять это поле?

Катушка состоит из большого числа витков про­вода, намотанного на деревянный каркас. Когда в катушке есть ток, железные опилки притягиваются к ее концам, при отключении тока они отпадают.(слайд 4)

Включим в цепь, содержащую катушку, реостат и при помо­щи него будем изменять силу тока в катушке. При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении - ослабевает.(слайд 5)

Магнитное действие катушки с током можно значительно усилить, не меняя число ее витков и силу тока в ней. Для этого надо ввести внутрь катушки железный стержень (сердечник). Железо, |веденное внутрь катушки, усиливает ее магнитное действие.(слайд 6)

Катушка с железным сердечником внутри называется электромагнитом. Электромагнит - одна из основных деталей многих технических приборов.

Демонстрации, выполняемые учителем:

действие проводника, по которому протекает постоянный
ток, на магнитную стрелку;

действие соленоида (катушка без сердечника), по которо­му протекает постоянный ток, на магнитную стрелку;

действие соленоида (катушка с сердечником), по которому
протекает постоянный ток, на магнитную стрелку;

притяжение железных опилок гвоздем, на который намо­тан провод, подключенный к источнику постоянного тока.

По окончании опытов учениками делаются выводы:

если по катушке проходит электрический ток, то катушка
становится магнитом;

магнитное действие катушки можно усилить или ослабить:
изменяя число витков катушки;

изменяя силу тока, проходящую по катушке;

вводя внутрь катушки железный или стальной сердечник.

Обмотки электромагнитов изготавливают из изолированного алюминиевого или медного провода, хотя есть и сверхпроводящие электромагниты. Магнитопровода изготавливают из магнитно-мягких материалов - обычно из электротехнической или качественной конструкционной стали, литой стали и чугуна, железоникелевых и железокобальтовых сплавов.

Электромагнит - устройство, магнитное поле которого созда­ётся только при протекании электрического тока.(слайд 7)

Подумай и ответь (слайд 8)

Можно ли намотанную на гвоздь проволоку назвать элек­тромагнитом? (Да.)

От чего зависят магнитные свойства электромагнита? (От
силы тока, от количества витков, от магнитных свойств сердечника, от формы и размеров катушки.)

По электромагниту пустили ток, а затем уменьшили его в
два раза. Как изменились магнитные свойства электромаг­нита? (Уменьшились в 2 раза.)

А теперь попробуем еще раз объяснить устройство электрического звонка (слайд 20). Для начала посмотрим видеофрагмент Электромагнит, реле и звонок

Демонстрация: Электромагнитное реле, электрический звонок, электродвигатель, трансформатор.

Физкультминутка

Практическая часть (10 мин).

Выполнение учениками самостоятельно практической работы по группам (инструкции выдаются на парту вместе с приборами). (слайд 21)

Закрепление (2 мин).

Что называют электромагнитом? (Катушку с железным сердечником)

Какими способами можно усилить магнитное действие ка­тушки с

током? (магнитное действие катушки можно усилить:
изменяя число витков катушки, изменяя силу тока, проходящую по катушке, вводя внутрь катушки железный или стальной сердечник.)

В каком направлении устанавливается катушка с током,
подвешенная на длинных тонких проводниках? Какое сходство
имеется у нее с магнитной стрелкой?

Для каких целей используют на заводах электромагниты?

Рефлексия

Ответьте на предложенные вопросы:

1. Сегодня на уроке я узнал (а) .

2. Сегодня на уроке я открыл (а) для себя.

3. Сегодня на уроке я научился (лась).

4. Сегодня на уроке меня удивило.

5. Сегодня на уроке я понял (а), что . пригодится мне в дальнейшей жизни.

Подведение итогов и выставление оценок с комментариями.

VI . Домашнее задание.

Приложение.

Электромагнит, продемонстрированный Стёрженом 23 мая 1825 г., выглядел как согнутый в подкову, лакированный, железный стержень длиной 30 и диаметром 1,3 см, покрытый сверху одним слоем изолированной медной проволоки. Электромагнит удерживал на весу 3600 г и значительно превосходил по силе природные маг­ниты такой же массы.

Джоуль, экспериментируя с самым первым магнитом Стёрджена, сумел довести его подъемную силу до 20 кг. Это было в том же 1825 г.

Джозеф Генри (1797-1878) - американский физик, усовершен­ствовал электромагнит.

В 1827 г. Дж. Генри стал изолировать уже не сердечник, а са­му проволоку. Только тогда появилась возможность наматывать витки в несколько слоев. Дж. Генри исследовал различные методы намотки провода для получения электромагнита. Создал магнит в 29 кг, удерживающий гигантский по тем временам вес - 936 кг. (слайд 9, 10, 11)

Дугообразный электромагнит удерживает якорь (железную пластинку) с подвешенным грузом. Прямоугольные электромагни­ты предназначены для захвата и удержания при транспортировании листов, рельсов и других длинномерных грузов.

На одном американском заводе электромагнит поднимал же­лезные болванки.

Внезапно на электростанции Ниагарского водопада, подаю­щей ток, что-то случилось, ток в обмотке электромагнита пропал; масса металла сорвалась с электромагнита и всей своей тяжестью обрушилась на голову рабочего.

Чтобы избежать повторения подобных несчастных случаев, а также с целью сэкономить потребление электрической энергии, при электромагнитах стали устраивать особые приспособления: после того как переносимые предметы подняты магнитом, сбоку опускаются и плотно закрываются прочные стальные подхватки, которые затем сами поддерживают груз, ток же во время транспортировки прерывается.

Электромагнитные траверсы используются для перемещения длинномерных грузов.

В морских портах для перегрузки металлолома используются, наверное, самые мощные круглые грузоподъемные электромагниты. Их масса достигает 10 тонн, грузоподъемность - до 64 тонн, а от­рывное усилие - до 128 тонн. (слайд 12-18)

Самый тяжёлый в мире магнит имеет диаметр 60 м и весит 36 тыс. т. Он был сделан для синхрофазотрона мощностью 10 ТэВ, установленного в Объединенном институте ядерных исследований в Дубне, Московская область. (слайд 19)

Читайте также: