Что изучает биохимия кратко

Обновлено: 05.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Биохимия как базовая составляющая современной биологии.

Биохимия как наука о веществах, входящих в состав живых организмов, и их превращениях.

Связь биохимии с другими дисциплинами.

Краткая история биохимии.

Основные достижения биологической химии.

1. Биохимия как наука о веществах, входящих в состав живых организмов, и их превращениях.

Биологическая химия – это наука, изучающая химическое строение и функцию веществ, входящих в состав живых организмов, и их превращения в процессе жизнедеятельности.

Совокупность этих превращений находится в постоянной взаимосвязи с окружающей средой и обеспечивает функционирование живых организмов в условиях сбалансированности процессов синтеза и распада веществ в клетках и тканях.

Главной задачей биохимии является определение основных закономерностей биохимических процессов, выяснение взаимосвязи между структурой и функциями биомолекул, участвующих в реакциях клеточного метаболизма.

Сфера биохимии столь же широка, как сама жизнь. Всюду, где существует жизнь, протекают различные химические процессы. Биохимия изучает химию живой природы в широком диапазоне: в микроорганизмах, растениях, насекомых, рыбах, птицах, низших и высших млекопитающих, и в частности в организме человека. При этом необходимо иметь ввиду, что, несмотря на определенные различия в химическом составе и обмене веществ тех или иных видов живых организмов, существует биохимическое единство всех форм жизни.

Биохимию можно разделить на:

а) структурную – изучает химическое строение биомолекул;

б) метаболическую – изучает обмен веществ и энергии;

в) функциональную – изучает взаимосвязь между химическими превращениями веществ в организме и их биологическими функциями.

Кроме того, выделяют ряд разделов биохимии и по объектам исследования – медицинская биохимия, фармацевтическая биохимия, биохимическая экология, биохимическая фармакология и др.

2. Связь биохимии с другими дисциплинами.

Фундаментальная биохимия является основой для многих наук биологического профиля. Например, биохимия нуклеиновых кислот лежит в основе генетики; физиология, наука о функционировании организма, очень сильно перекрывается с биохимией; в иммунологии находит применение большое число биохимических методов. Фармакология и фармация базируются на биохимии и физиологии – метаболизм большинства лекарств осуществляется в результате соответствующих ферментативных реакций. Различные яды влияют на биохимические реакции или процессы – эти вопросы составляют предмет токсикологии. В основе развития разных видов заболеваний лежит нарушение ряда биохимических процессов. Это обусловливает широкое использование биохимических подходов для изучения патогенеза различных заболеваний (например, воспалительные процессы, аллергические реакции, рак и др.). Успехи клеточной и генной инженерии в последние годы в значительной мере сблизили биохимию с зоологией и ботаникой.

3. Краткая история биохимии.

Как самостоятельная наука биохимия сформировалась на рубеже 19-20 в.в. До середины 19 в. биохимия существовала как раздел физиологии и называлась физиологической химией. Однако накопление фактического материала в области строения биологических молекул и структур, а также идентификация простейших метаболических процессов сыграли значительную роль в становлении биохимии как самостоятельной науки.

Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям.

В 17-18 в.в. работали такие выдающиеся ученые как М.В. Ломоносов (1711-1765) и Антуан Лавуазье (1743-1794), открывшие закон сохранения материи (массы). А. Лавуазье внес важнейший вклад в развитие не только химии, но и в изучение биологических процессов. Он количественно исследовал и объяснил сущность дыхания, отметив роль кислорода в этом процессе (1772-1777). Одновременно им же, вместе с Пьером Лапласом (1749-1827), было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 в. было определено количество тепла, выделяемого при сгорании 1 г. углеводов, жиров и белков.

Крупными событиями второй половины 18 в. стали исследования Рене Реомюра (1683-1757) и Ладзаро Спалланцани (1729-1799) по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных на различные виды пищи (в основном мясо) и положили начало изучению ферментов пищеварительных соков. Однако, возникновение энзимологии (учения о ферментах) обычно связывают с именами Эдуарда Бухнера (1860-1917), который первым показал, что в водных экстрактах дрожжевых клеток находится набор ферментов, катализирующих превращение сахара в спирт, а также Пейена и Персо, впервые изучивших действие фермента амилазы на крахмал in vitro . Важную роль сыграли работы Джозефа Пристли (1733-1804; в 1771 г. Д. Пристли показал, что животные и растения изменяют состав окружающего воздуха противоположным образом) и Яна Ингенхауза (обнаружил, что растения выделяют кислород только на свету; в 1796 г. Ингенхауз дал общее уравнение фотосинтеза: СО2 + Н2О = Растительные ткани + О2), открывших явление фотосинтеза.

Успехи биохимии с самого начала были неразрывно связаны с развитием органической химии. Толчком к развитию химии природных соединений явились исследования шведского химика Карла Шееле (1742-1786). Он выделил из живых организмов и описал свойства целого ряда органических кислот – молочной, винной, лимонной, щавелевой, яблочной.

Большое значение имели исследования Йенса Берцелиуса (1779-1848) и Юстуса Либиха (1803-1873), закончившиеся разработкой в начале 19 в. методов количественного элементарного анализа органических соединений.

Вслед за этим начались попытки синтезировать природные органические вещества:

в 1828 г. – синтезирована мочевина;

в 1844 г. – синтезирована уксусная кислота;

в 1850 г. – синтезированы жиры, а в 1861 г. – углеводы.

Это имело большое значение, так как была показана возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена.

Во второй половине 18 в. – начале 19 в. были проведены и другие важные исследования:

из мочевых камней была выделена мочевая кислота;

из желчи выделен холестерин;

из меда выделены глюкоза и фруктоза;

из листьев зеленых растений выделен пигмент хлорофилл;

в составе мышц был открыт креатин.

Во Франции в лаборатории Клода Бернара (1813-1878) в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление.

В Германии в лаборатории Эмиля Фишера (1852-1919) были изучены структура и свойства белков, а также продуктов их гидролиза, кроме того, был проведен анализ аминокислот, жиров и липидов.

В 1836-1838 г.г. начали активно изучать процессы брожения после описания дрожжевых клеток (Ю. Либих, Л. Пастер, Э. Бухнер).

Подлинный расцвет биохимии наступил в 20 в. В самом начале его была экспериментально обоснована и сформулирована полипептидная теория строения белков (Э. Фишер, 1901-1902 г.г.). Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков.

Блестящие работы Эрвина Чаргаффа (1905 г), Джеймса Уотсона (1928 г) и Френсиса Крика (1916 г) завершаются выяснением структуры ДНК. Устанавливается её роль в передаче наследственной информации. Расшифровывается РНК – аминокислотный код. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки.

Фундаментальные исследования в области энзимологии, химии белков, липидов, углеводов, идентификация молекулярных механизмов основных обменных процессов, а также структуры и функций генома вывели биохимию на уровень основной количественной биологической науки.

4. Основные достижения биологической химии.

Биологическая химия изучает различные структуры, свойственные живым организмам и химические реакции, протекающие на клеточном и организменном уровнях. Основой жизни является совокупность химических реакций, обеспечивающих обмен веществ. Таким образом, биохимию можно считать основным языком всех биологических наук.

В настоящее время, как биологические структуры, так и обменные процессы, благодаря применению эффективных методов, изучены достаточно хорошо.

Можно суммировать основные достижения в области биохимии:

Определен химический состав клеток, тканей и целого организма. Выделены основные соединения, присутствующие в этих системах и установлена их структура.

Выяснены функции многих простых биомолекул. Установлены также функции наиболее сложных биомолекул. Центральное место среди всех этих открытий принадлежит установлению того факта, что ДНК – это генетический материал и содержащаяся в нем информация передается от ДНК информационной РНК, которая в свою очередь определяет последовательность аминокислот в белках. Поток информации исходно заключенной в ДНК можно представить в виде схемы:

ДНК РНК Белок

Выделены главные органеллы животных клеток, установлены их основные функции.

Показано, что почти все реакции, протекающие в клетках, катализируются ферментами; многие ферменты получены в чистом виде и изучены, выявлены общие принципы механизмов их действия.

Прослежены метаболические пути синтеза и распада основных простых и сложных биомолекул. Показано, что пути синтеза данного соединения в общем случае отличается от путей его распада.

Выяснены многие аспекты регуляции метаболизма.

В общих чертах установлено, каким образом клетки запасают и используют энергию.

Выяснены основные особенности строения и функции различных мембран, показано, что основными их компонентами являются белки и липиды.

Накоплено значительное количество данных о механизме действия основных гормонов.

Биохимия находится на стыке нескольких наук, прежде всего — биологии и химии.

Содержание

Смежные дисциплины

Возникнув как наука о химии жизни в конце XIX века, чему предшествовало бурное развитие органической химии, биохимия отличается от органической химии тем, что исследует только те вещества и химические реакции, которые имеют место в живых организмах, прежде всего в живой клетке. Согласно этому определению, биохимия охватывает также многие области клеточной биологии и включает в себя молекулярную биологию [1] . После выделения последней в особую дисциплину, размежевание между биохимией и молекулярной биологией в основном сформировалось как методологическое и по предмету исследования. Молекулярные биологи преимущественно работают с нуклеиновыми кислотами, изучая их структуру и функции, в то время как биохимики сосредоточились на белках, в особенности на ферментах, катализирующих биохимические реакции.

История развития

Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение, сыроварение, виноделие, выделка кож. Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений. Использование растений в пищу, для изготовления красок и тканей также приводило к попыткам понять свойства веществ растительного происхождения.

Итальянский учёный и художник Леонардо да Винчи на основании своих опытов сделал важный вывод о том, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

XVIII век ознаменовался трудами М. В. Ломоносова и А. Л. Лавуазье. На основе открытого ими закона сохранения массы веществ и накопленных к концу столетия экспериментальных данных, была объяснена сущность дыхания и исключительная роль в этом процессе кислорода.

В 1882 году Иван Горбачевский впервые в мире осуществил синтез мочевой кислоты из глицина. В дальнейших исследованиях он установил источник и пути её образования в человеческом и животном организмах. В 1885 году ему удалось получить метилмочевую кислоту из метилгидантоина и карбамида. В 1886 году он предложил новый метод синтеза креатина, а в 1889—1891 годах открыл фермент ксантиноксидазу. Иван Горбачевский одним из первых указал, что аминокислоты являются составляющими белков.

Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г. Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический. На рубеже XIX и XX веков работал немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент — это белок.

Биохимия стала первой биологической дисциплиной с развитым математическим аппаратом благодаря работам Холдейна, Михаэлиса, Ментен и других биохимиков, создавших ферментативную кинетику, основным законом которой является уравнение Михаэлиса-Ментен.

Открытие ферментов позволило начать грандиозную работу по полному описанию всех процессов метаболизма, не завершённую до сих пор. Одними из первых значительных находок в этой области стали открытия витаминов, гликолиза и цикла трикарбоновых кислот.

В 1928 г. Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма. В 1953 году американский биолог Дж. Уотсон и английский физик Ф. Крик описали структуру ДНК — ключ к пониманию принципов передачи наследственной информации. Это открытие означало рождение нового направления науки — молекулярной биологии.

Методы

В основе биохимической методологии лежит фракционирование, анализ, изучение структуры и свойств отдельных компонентов живого вещества. Методы биохимии преимущественно формировались в XX веке; наиболее распространенными являются хроматография, изобретённая М.С. Цветом в 1906 г., центрифугирование (Т. Сведберг, 1923 г., Нобелевская премия по химии 1926 г.) и электрофорез (А. Тизелиус, 1937 г., Нобелевская премия по химии 1948 г.).

С конца ХХ в. в биохимии всё шире применяются методы молекулярной и клеточной биологии, в особенности искусственная экспрессия и нокаут генов в модельных клетках и целых организмах (см. генная инженерия, биотехнология). Определение структуры всей геномной ДНК человека выявило приблизительно столько же ранее неизвестных генов и их неизученных продуктов, сколько уже было известно к началу XXI века благодаря полувековым усилиям научного сообщества. Оказалось, что традиционный химический анализ и очистка ферментов из биомассы позволяют получить лишь те белки, которые в живом веществе присутствуют в сравнительно большом количестве. Не случайно основная масса ферментов была открыта биохимиками в середине XX века и к концу столетия распространилось убеждение, что все ферменты уже открыты. Данные геномики опровергли эти представления, но дальнейшее развитие биохимии требовало изменения методологии. Искусственая экспрессия ранее неизвестных генов предоставила биохимикам новый материал для исследования, часто недоступный традиционными методами. В результате возник новый подход к планированию биохимического исследования, который получил название обратная генетика или функциональная геномика [2] . Эта методология предоставляет биохимикам шанс изучать функции продуктов уже известных генов, в то время как ранее наука шла по пути определения структуры генов, кодирующих уже известные ферменты.

Медицинская биохимия: суть и цели науки

Медицинская биохимия - что это такое? Это раздел биологической химии, который изучает химический состав клеток человеческого организма, обмен веществ в нем (в том числе при патологических состояниях). Ведь любая болезнь, даже в бессимптомном периоде, неизбежно наложит свой отпечаток на химические процессы в клетках, свойства молекул, что отразится в результатах биохимического анализа. Без знания биохимии невозможно найти причину развития болезни и путь ее эффективного лечения.

Биохимическое исследование крови

что такое биохимия

- аланинаминотрансфераза (АлАТ, АЛТ);

- холестерин или холестерол;

- аспартатаминотрансфераза (АСТ, АсАТ);

- гамма-глутамил транспептидаза (ГГТ), гамма ГТ (глутамилтранспептидаза);

- антитела к вирусу Эпштейн-Барра.

Для здоровья каждого человека важно знать, что такое биохимия крови, и понимать, что показатели ее не только дадут все данные для эффективной схемы лечения, но и помогут предупредить болезнь. Отклонения от нормальных показателей - это первый сигнал о том, что в организме что-то не так.

Биохимический анализ крови для исследования печени: значимость и цели

методы биохимии

Кроме того, биохимическая диагностика позволит провести мониторинг динамики заболевания и результатов лечения, создать полноценную картину обмена веществ, дефицита микроэлементов работы органов. Например, обязательным анализом для людей с нарушением работы печени станет биохимия печени. Что это? Так называют биохимический анализ крови для исследования количества и качества ферментов печени. Если их синтез нарушен, то такое состояние грозит развитием болезней, воспалительных процессов.

Специфика биохимии печени

Биохимия печени - что это такое? Печень человека состоит из воды, белков, ферментов, липидов, гликогена. Ее ткани содержат минералы: медь, железо, никель, марганец, поэтому биохимическое изучение тканей печени – очень информативный и довольно эффективный анализ. Самые важные ферменты в работе печени - это глюкокиназа, гексокиназа. Наиболее чувствительны к биохимическим тестам такие ферменты печени: аланинаминотрансфераза (АЛТ), гамма-глутамил трансфераза (ГГТ), аспартатаминотрансфераза (АСТ), щелочная фосфатаза (ЩФ). Как правило, при исследовании ориентируются на показатели этих веществ.

Сферы исследования биохимии и важность правильной интерпретации результатов анализа

Что изучает биохимия? Прежде всего, процессы обмена веществ, химический состав клетки, химическую природу и функцию ферментов, витаминов, кислот. Оценить показатели крови по этим параметрам возможно только при условии правильной расшифровки анализа. Если все хорошо, то показатели крови по разным параметрам (уровень глюкозы, белок, ферменты крови) не должны отклоняться от нормы. В противном случае это следует расценивать как сигнал о нарушении работы организма.

Расшифровка биохимии

Как же расшифровать цифры в результатах анализа? Ниже приведена расшифровка анализа биохимии крови по основным показателям.

что изучает биохимия

Уровень глюкозы показывает качество процесса углеводного обмена. Граничная норма содержания не должна превышать 5,5 ммоль/л. Если уровень ниже, то это может свидетельствовать о сахарном диабете, эндокринных заболеваниях, проблемах с печенью. Повышенный уровень глюкозы может быть из-за сахарного диабета, физических нагрузок, гормональных лекарств.

Норма содержания белка в крови – 65-85 г/л. Низкий результат говорит о нарушении работы почек, печени, хронических заболеваниях, плохом питании, обезвоживании. Высокий уровень белка – сигнал о воспалительном процессе.

Норма содержания холестерина в крови – 2,97-8,79 ммоль/л. Его уровень даже у здорового человека зависит от пола, возраста, физических нагрузок, иногда времени года. Высокий холестерин сигнализирует о возможном атеросклерозе сосудов, болезнях сердца.

Так называют конечный продукт распада белков. У здорового человека она должна полностью выводиться из организма с мочой. Если этого не происходит, и она попадает в кровь, то следует обязательно проверить работу почек.

Это белок эритроцитов, который насыщает клетки организма кислородом. Норма: для мужчин – 130-160 г/л, у девушек – 120-150 г/л. Низкий уровень гемоглобина в крови считают одним из показателей развивающейся анемии.

Биохимическое исследование крови на ферменты крови (АлАТ, АсАТ, КФК, амилаза)

Ферменты отвечают за полноценную работу печени, сердца, почек, поджелудочной железы. Без нужного их количества полноценный обмен аминокислот просто невозможен.

Норма содержания фермента печени аланинаминотрансферазы (АлАТ, АЛТ) составляет 41 ед./л для мужчин, до 31 ед./л для женщин. Повышенное содержание говорит о неправильной работе сердца, печени, возможно, вирусном гепатите.

Уровень аспартатаминотрансферазы (АсАТ, АСТ - клеточного фермента сердца, почек, печени) не должен быть выше 41 и 31 ед./л для мужчин и женщин соответственно. В противном случае это может свидетельствовать о развитии гепатита, болезней сердца.

Липаза (фермент, что расщепляет жиры) играет важную роль в обмене веществ и не должен превышать значение 190 ед./л. Повышенный уровень сигнализирует о нарушении работы поджелудочной железы.

Тяжело переоценить значимость биохимического анализа на ферменты крови. Что такое биохимия и что она исследует, обязан знать каждый человек, заботящийся о своем здоровье.

Результаты биохимического анализа крови записывают в специальный бланк, где указаны уровни содержания веществ. Нередко этот анализ назначают как дополнительный для уточнения предполагаемого диагноза. При расшифровке результатов биохимии крови учитывайте, что на них также влияет пол пациента, его возраст и образ жизни. Теперь вы знаете, что изучает биохимия и как правильно интерпретировать ее результаты.

Как правильно подготовится к сдаче крови на биохимию?

Как правило, биохимию крови рекомендуют сдавать, если медики подозревают наличие:

- острых болезней внутренних органов;

- для профилактики заболеваний, во время беременности;

- для уточнения поставленного диагноза.

Кровь для анализа берут рано утром, и перед приходом к врачу есть нельзя. В противном случае результаты анализа будут искажены. Биохимическое исследование покажет, насколько правильным является ваш обмен веществ и солей в организме. Кроме того, воздержитесь от питья сладкого чая, кофе, молока хотя бы за час-два до забора крови.

Обязательно ответьте себе на вопрос о том, что такое биохимия, перед сдачей анализа. Знание процесса и его значимости поможет вам правильно оценить состояние здоровья и быть компетентным в медицинских вопросах.

Как берут кровь на биохимию?

Процедура длится недолго и практически безболезненна. У человека в положении сидя (иногда предлагают прилечь на кушетку) медик берет кровь из вены, предварительно наложив жгут. Место укола обязательно должно быть обработано антисептиком. Взятый образец помещают в стерильную пробирку и отправляют на анализ в лабораторию.

что такое биохимия крови

Контроль за качеством проведения биохимического исследования проводят в несколько этапов:

- преаналитический (подготовка пациента, взятие анализа, транспортировка в лабораторию);

- аналитический (обработка и хранения биоматериала, дозирование, проведение реакции, анализ результата);

- постаналитический (заполнение бланка с результатом, лабораторно-клинический анализ, отправка врачу).

Качество результата биохимии зависит от целесообразности выбранного метода исследования, компетентности лаборантов, точности мерок, техничной оснащенности, чистоты реактивов, соблюдения диеты.

Биохимия для волос

Что такое биохимия для волос? Биозавивка - это способ долгосрочного завивания локонов. Разница между обычной химической завивкой и биозавивкой принципиальна. В последнем случае не используют пероксид водорода, аммиак, тиогликолевую кислоту. Роль действующего вещества исполняет аналог цистина (биологический белок). Именно отсюда и произошло название метода укладки волос.

что такое анализ биохимия

Несомненными плюсами можно назвать:

- щадящее действие на структуру волоса;

- смытую грань между отросшими и волосами, подвергавшимся биозавивке;

- процедуру можно повторять, не дожидаясь окончательного исчезновения ее эффекта.

Но перед походом к мастеру следует учитывать следующие ньансы:

- технология биозавивки сравнительно сложная, и нужно щепетильно подойти к выбору мастера;

- эффект недолгосрочен, около 1-4 месяцев (особенно на волосах, которые не подвергались завивке, окрашиванию, имеют плотную структуру);

- биозавивка стоит недешево (в среднем 1500-3500 р.).

Методы биохимии

Что такое биохимия и какие методы используются для исследования? Их выбор зависит от его цели и поставленных доктором задач. Они призваны изучить биохимическую структуру клетки, исследовать образец на возможные отклонения от нормы и таким образом помочь диагностировать болезнь, узнать динамику выздоровления и т. п.

    Хроматография (метод состоит в распределении веществ между двумя фазами: подвижной и неподвижной).

биохимия печени что это такое

медицинская биохимия что это такое

Биохимия – один из самых эффективных анализов для уточнения, постановки диагноза, мониторинга лечения, определения успешной схемы терапии.

В этой статье мы ответим на вопрос, что такое биохимия. Здесь мы рассмотрим определение этой науки, ее историю и методы исследования, уделим внимание некоторым процессам и определим ее разделы.

Введение

Чтобы ответить на вопрос о том, что такое биохимия, достаточно сказать, что это наука, посвященная химическому составу и процессам, протекающим внутри живой клетки организма. Однако она имеет множество составляющих, узнав которые, можно более конкретизировано составить представление о ней.

что такое биохимия

Исторические факты

Ответить на вопрос четко, что такое биохимия, человечество смогло лишь около ста лет назад. Несмотря на то что общество использовало биохимические процессы и реакции еще в далекой древности, оно не подозревало о наличии их истинной сути.

Одними из самых отдаленных примеров может служить изготовление хлеба, виноделие, сыроварение и т. д. Ряд вопросов о целебных свойствах растений, проблем со здоровьем и т. п. заставил человека вникнуть в их основу и природу деятельности.

методы биохимии

В XVIII веке, благодаря работам А.Л. Лавуазье и М.В. Ломоносова, был выведен закон сохранения массы вещества. В конце того же века было определено значение кислорода в процессе дыхания.

В 1827 году наука позволила создать разделение молекул биологической природы на соединения жиров, белков и углеводов. Этими терминами пользуются до сих пор. Годом позже в работе Ф. Велера было доказано, что вещества живых систем могут синтезироваться искусственными способами. Еще одним важным событием было изготовление и составление теории строения органических соединений.

Основы биохимии формировались многие сотни лет, но приняли четкое определение в 1903 году. Эта наука стала первой дисциплиной из разряда биологических, которая обладала собственной системой математических анализов.

Спустя 25 лет, в 1928 году, Ф. Гриффит провел эксперимент, целью которого было исследование механизма трансформации. Ученый заражал мышей пневмококками. Он убивал бактерии одного штамма и добавлял их к бактериям другого. Исследование показало, что процесс очистки болезнетворных агентов привел к образованию нуклеиновой кислоты, а не белка. Перечень открытий пополняется и в настоящее время.

Наличие смежных дисциплин

Биохимия – это отдельная наука, однако ее созданию предшествовал активный процесс развития органического раздела химии. Главное отличие заключается в объектах исследования. В биохимии рассматриваются только те вещества или процессы, которые могут протекать в условиях живых организмов, а не за их пределами.

цикл кребса биохимия

Наличие разделов

На сегодняшний день биохимия включает в себя ряд исследовательских направлений, среди которых:

Раздел статической биохимии - наука о химическом составе живых существ, структур и молекулярном разнообразии, функций и т. д.

Существует ряд разделов, изучающий биологические полимеры белковых, липидных, углеводных, аминокислотных молекул, а также нуклеиновые кислоты и сам нуклеотид.

Биохимия, изучающая витамины, их роль и форму воздействия на организм, возможные нарушения в процессах жизнедеятельности при нехватке или чрезмерном количестве.

Гормональная биохимия – наука, изучающая гормоны, их биологический эффект, причины недостатка или переизбытка.

Наука об обмене веществ и его механизмах – динамический раздел биохимии (включает в себя биоэнергетику).

Исследования молекулярной биологии.

Функциональная составляющая биохимии изучает явление химических превращений, отвечающих за функциональность всех компонентов организма, начиная с тканей, а заканчивая всем телом.

Медицинская биохимия – раздел о закономерностях обмена веществ между структурами организма под влиянием заболеваний.

Также существуют ответвления биохимии микроорганизмов, человека, животных, растений, крови, тканей и т. д.

Средства исследования и решения проблем

Методы биохимии основываются на фракционировании, анализе, детальном изучении и рассмотрении структуры как отдельного компонента, так и целого организма или его вещества. Большинство из них формировались в течение XX века, а самую широкую известность получила хроматография - процесс центрифугирования и электрофорез.

медицинская биохимия

В конце XX века биохимические методы начали все чаще и чаще находить свое применение в молекулярных и клеточных разделах биологии. Была определена структура всего генома человеческой ДНК. Это открытие дало возможность узнать о существовании огромного ряда веществ, в частности различных белков, которые не обнаруживались при очистке биомассы, в связи с их чрезвычайно малым содержанием в веществе.

Геномика поставила под сомнение огромное количество биохимических знаний и обусловила развитие изменений в ее методологии. Появилось понятие компьютерного виртуального моделирования.

Химическая составляющая

Физиология и биохимия тесно связаны между собой. Это объясняется зависимостью нормы протекания всех физиологических процессов с содержанием различного ряда химических элементов.

физиология и биохимия

В природе можно встретить 90 компонентов периодической таблицы химических элементов, но для жизни необходимо около четверти. Во многих редких компонентах наш организм вовсе не нуждается.

Различное положение таксона в иерархической таблице живых существ обуславливает разную потребность в наличии тех или иных элементов.

99 % человеческой массы состоит из шести элементов (С, Н, N, O, F, Ca). Помимо основного количества данных видов атомов, образующих вещества, нам необходимы еще 19 элементов, но в малых или микроскопических объемах. Среди них имеются: Zn, Ni, Ma, K, Cl, Na и другие.

Биомолекула белка

Главные молекулы, изучением которых занимается биохимия, относятся к углеводам, белкам, липидам, нуклеиновым кислотам, а также внимание этой науки сосредоточенно на их гибридах.

Белки - соединения, обладающие крупными размерами. Они образуются посредством связывания цепочек из мономеров – аминокислот. Большая часть живых существ получает белки при помощи синтеза двадцати видов этих соединений.

Эти мономеры отличаются между собой структурой радикальной группы, которая играет огромную роль в ходе свертывания белка. Цель этого процесса заключается в образовании трехмерной структуры. Соединяются между собой аминокислоты при помощи образования пептидных связей.

Отвечая на вопрос о том, что такое биохимия, нельзя не упомянуть такие сложные и многофункциональные биологические макромолекулы, как белки. Они имеют больше задач, чем полисахариды или нуклеиновые кислоты, которые необходимо выполнить.

Некоторые белки представлены ферментами и занимаются катализом различных реакции биохимической природы, что очень важно для обмена веществ. Другие белковые молекулы могут выполнять роль сигнальных механизмов, образовывать цитоскелеты, участвовать в иммунной защите и т. д.

Некоторые виды белков способны образовывать небелковые биомолекулярные комплексы. Вещества, созданные путем слияния белков с олигосахаридами, позволяют существовать таким молекулам, как гликопротеины, а взаимодействие с липидами приводит к появлению липопротеинов.

Молекула нуклеиновой кислоты

Нуклеиновые кислоты представлены комплексами макромолекул, состоящих из полинуклеотидного набора цепочек. Их главное функциональное предназначение заключается в кодировке наследственной информации. Синтез нуклеиновый кислоты происходит благодаря наличию мононуклеозидтрифосфатных макроэнергетических молекул (АТФ, ТТФ, УТФ, ГТФ, ЦТФ).

Самые широко распространенные представители таких кислот - это ДНК и РНК. Эти структурные элементы находятся в составе каждой живой клетки, от археи, до эукариотов, и даже в вирусах.

Молекула липида

Липиды – это молекулярные вещества, составленные глицерином, к которым посредством сложно-эфирных связей прикрепляются жирные кислоты (от 1 до 3). Такие вещества делят на группы в соответствие с длиной углеводородной цепочки, а также обращают внимание на насыщенность. Биохимия воды не позволяет ей растворять в себе соединения липидов (жиров). Как правило, такие вещества растворяются в полярных растворах.

биохимия вузы

Основные задачи липидов заключаются в обеспечении энергией организма. Некоторые входят в состав гормонов, могут выполнять сигнальную функцию или переносить липофильные молекулы.

Молекула углевода

Углеводы – это биополимеры, образованные путем соединения мономеров, которые в данном случае представлены моносахаридами, такими как, например, глюкоза или фруктоза. Изучение биохимии растений позволило человеку определить, что основная часть углеводов содержится именно в них.

Свое применение эти биополимеры находят в структурной функции и предоставлении энергетических ресурсов организму или клетке. У растительных организмов главным запасающим веществом служит крахмал, а у животных – гликоген.

Течение цикла Кребса

Существует в биохимии цикл Кребса – явление, в ходе которого преобладающее количество эукариотических организмов получают большую часть энергии, расходуемой на процессы окисления поглощаемой пищи.

В биохимии цикл Кребса – это важный фрагмент общего дыхательного процесса и вещественного обмена внутри клеток. Цикл был открыт и изучен Х. Кребсом. За это ученый получил Нобелевскую премию.

Данный процесс также называют системой для переноса электронов. Это связано с сопутствующим переходом АТФ в АДФ. Первое соединение, в свою очередь, занимается обеспечением метаболических реакций при помощи выделения энергии.

Биохимия и медицина

Биохимия медицины представлена нам в виде науки, охватывающей множество областей биологических и химических процессов. В настоящее время существует целая отрасль в образовании, которая готовит специалистов для данных исследований.

Здесь изучают все живое: от бактерии или вируса до человеческого организма. Наличие специальности биохимика дает субъекту возможность следить за постановкой диагноза и анализировать лечение, применимое к индивидуальной единице, делать выводы и т. д.

основы биохимии

Чтобы подготовить высококвалифицированного эксперта в этой области, нужно обучить его естественным наукам, медицинским основам и биотехнологическим дисциплинам, проводят множество тестов по биохимии. Также студенту дают возможность практически применять свои знания.

вузы биохимии в настоящее время приобретают все большую популярность, что обуславливается быстрым развитием этой науки, ее важностью для человека, востребованностью и т. д.

Среди самых известных учебных заведений, где готовят специалистов этой отрасли науки, самые популярные и значимые: МГУ им. Ломоносова, ПГПУ им. Белинского, МГУ им. Огарева, Казанский и Красноярский государственные университеты и другие.

Перечень документов, необходимых для поступления в подобные вузы не отличается от списка для зачисления в другие высшие учебные заведения. Биология и химия являются основными предметами, которые необходимо сдавать при поступлении.

В этой статье мы ответим на вопрос, что такое биохимия. Здесь мы рассмотрим определение этой науки, ее историю и методы исследования, уделим внимание некоторым процессам и определим ее разделы.

Введение

Чтобы ответить на вопрос о том, что такое биохимия, достаточно сказать, что это наука, посвященная химическому составу и процессам, протекающим внутри живой клетки организма. Однако она имеет множество составляющих, узнав которые, можно более конкретизировано составить представление о ней.

что такое биохимия

Исторические факты

Ответить на вопрос четко, что такое биохимия, человечество смогло лишь около ста лет назад. Несмотря на то что общество использовало биохимические процессы и реакции еще в далекой древности, оно не подозревало о наличии их истинной сути.

Одними из самых отдаленных примеров может служить изготовление хлеба, виноделие, сыроварение и т. д. Ряд вопросов о целебных свойствах растений, проблем со здоровьем и т. п. заставил человека вникнуть в их основу и природу деятельности.

методы биохимии

В XVIII веке, благодаря работам А.Л. Лавуазье и М.В. Ломоносова, был выведен закон сохранения массы вещества. В конце того же века было определено значение кислорода в процессе дыхания.

В 1827 году наука позволила создать разделение молекул биологической природы на соединения жиров, белков и углеводов. Этими терминами пользуются до сих пор. Годом позже в работе Ф. Велера было доказано, что вещества живых систем могут синтезироваться искусственными способами. Еще одним важным событием было изготовление и составление теории строения органических соединений.

Основы биохимии формировались многие сотни лет, но приняли четкое определение в 1903 году. Эта наука стала первой дисциплиной из разряда биологических, которая обладала собственной системой математических анализов.

Спустя 25 лет, в 1928 году, Ф. Гриффит провел эксперимент, целью которого было исследование механизма трансформации. Ученый заражал мышей пневмококками. Он убивал бактерии одного штамма и добавлял их к бактериям другого. Исследование показало, что процесс очистки болезнетворных агентов привел к образованию нуклеиновой кислоты, а не белка. Перечень открытий пополняется и в настоящее время.

Наличие смежных дисциплин

Биохимия – это отдельная наука, однако ее созданию предшествовал активный процесс развития органического раздела химии. Главное отличие заключается в объектах исследования. В биохимии рассматриваются только те вещества или процессы, которые могут протекать в условиях живых организмов, а не за их пределами.

цикл кребса биохимия

Наличие разделов

На сегодняшний день биохимия включает в себя ряд исследовательских направлений, среди которых:

Раздел статической биохимии - наука о химическом составе живых существ, структур и молекулярном разнообразии, функций и т. д.

Существует ряд разделов, изучающий биологические полимеры белковых, липидных, углеводных, аминокислотных молекул, а также нуклеиновые кислоты и сам нуклеотид.

Биохимия, изучающая витамины, их роль и форму воздействия на организм, возможные нарушения в процессах жизнедеятельности при нехватке или чрезмерном количестве.

Гормональная биохимия – наука, изучающая гормоны, их биологический эффект, причины недостатка или переизбытка.

Наука об обмене веществ и его механизмах – динамический раздел биохимии (включает в себя биоэнергетику).

Исследования молекулярной биологии.

Функциональная составляющая биохимии изучает явление химических превращений, отвечающих за функциональность всех компонентов организма, начиная с тканей, а заканчивая всем телом.

Медицинская биохимия – раздел о закономерностях обмена веществ между структурами организма под влиянием заболеваний.

Также существуют ответвления биохимии микроорганизмов, человека, животных, растений, крови, тканей и т. д.

Средства исследования и решения проблем

Методы биохимии основываются на фракционировании, анализе, детальном изучении и рассмотрении структуры как отдельного компонента, так и целого организма или его вещества. Большинство из них формировались в течение XX века, а самую широкую известность получила хроматография - процесс центрифугирования и электрофорез.

медицинская биохимия

В конце XX века биохимические методы начали все чаще и чаще находить свое применение в молекулярных и клеточных разделах биологии. Была определена структура всего генома человеческой ДНК. Это открытие дало возможность узнать о существовании огромного ряда веществ, в частности различных белков, которые не обнаруживались при очистке биомассы, в связи с их чрезвычайно малым содержанием в веществе.

Геномика поставила под сомнение огромное количество биохимических знаний и обусловила развитие изменений в ее методологии. Появилось понятие компьютерного виртуального моделирования.

Химическая составляющая

Физиология и биохимия тесно связаны между собой. Это объясняется зависимостью нормы протекания всех физиологических процессов с содержанием различного ряда химических элементов.

физиология и биохимия

В природе можно встретить 90 компонентов периодической таблицы химических элементов, но для жизни необходимо около четверти. Во многих редких компонентах наш организм вовсе не нуждается.

Различное положение таксона в иерархической таблице живых существ обуславливает разную потребность в наличии тех или иных элементов.

99 % человеческой массы состоит из шести элементов (С, Н, N, O, F, Ca). Помимо основного количества данных видов атомов, образующих вещества, нам необходимы еще 19 элементов, но в малых или микроскопических объемах. Среди них имеются: Zn, Ni, Ma, K, Cl, Na и другие.

Биомолекула белка

Главные молекулы, изучением которых занимается биохимия, относятся к углеводам, белкам, липидам, нуклеиновым кислотам, а также внимание этой науки сосредоточенно на их гибридах.

Белки - соединения, обладающие крупными размерами. Они образуются посредством связывания цепочек из мономеров – аминокислот. Большая часть живых существ получает белки при помощи синтеза двадцати видов этих соединений.

Эти мономеры отличаются между собой структурой радикальной группы, которая играет огромную роль в ходе свертывания белка. Цель этого процесса заключается в образовании трехмерной структуры. Соединяются между собой аминокислоты при помощи образования пептидных связей.

Отвечая на вопрос о том, что такое биохимия, нельзя не упомянуть такие сложные и многофункциональные биологические макромолекулы, как белки. Они имеют больше задач, чем полисахариды или нуклеиновые кислоты, которые необходимо выполнить.

Некоторые белки представлены ферментами и занимаются катализом различных реакции биохимической природы, что очень важно для обмена веществ. Другие белковые молекулы могут выполнять роль сигнальных механизмов, образовывать цитоскелеты, участвовать в иммунной защите и т. д.

Некоторые виды белков способны образовывать небелковые биомолекулярные комплексы. Вещества, созданные путем слияния белков с олигосахаридами, позволяют существовать таким молекулам, как гликопротеины, а взаимодействие с липидами приводит к появлению липопротеинов.

Молекула нуклеиновой кислоты

Нуклеиновые кислоты представлены комплексами макромолекул, состоящих из полинуклеотидного набора цепочек. Их главное функциональное предназначение заключается в кодировке наследственной информации. Синтез нуклеиновый кислоты происходит благодаря наличию мононуклеозидтрифосфатных макроэнергетических молекул (АТФ, ТТФ, УТФ, ГТФ, ЦТФ).

Самые широко распространенные представители таких кислот - это ДНК и РНК. Эти структурные элементы находятся в составе каждой живой клетки, от археи, до эукариотов, и даже в вирусах.

Молекула липида

Липиды – это молекулярные вещества, составленные глицерином, к которым посредством сложно-эфирных связей прикрепляются жирные кислоты (от 1 до 3). Такие вещества делят на группы в соответствие с длиной углеводородной цепочки, а также обращают внимание на насыщенность. Биохимия воды не позволяет ей растворять в себе соединения липидов (жиров). Как правило, такие вещества растворяются в полярных растворах.

биохимия вузы

Основные задачи липидов заключаются в обеспечении энергией организма. Некоторые входят в состав гормонов, могут выполнять сигнальную функцию или переносить липофильные молекулы.

Молекула углевода

Углеводы – это биополимеры, образованные путем соединения мономеров, которые в данном случае представлены моносахаридами, такими как, например, глюкоза или фруктоза. Изучение биохимии растений позволило человеку определить, что основная часть углеводов содержится именно в них.

Свое применение эти биополимеры находят в структурной функции и предоставлении энергетических ресурсов организму или клетке. У растительных организмов главным запасающим веществом служит крахмал, а у животных – гликоген.

Течение цикла Кребса

Существует в биохимии цикл Кребса – явление, в ходе которого преобладающее количество эукариотических организмов получают большую часть энергии, расходуемой на процессы окисления поглощаемой пищи.

В биохимии цикл Кребса – это важный фрагмент общего дыхательного процесса и вещественного обмена внутри клеток. Цикл был открыт и изучен Х. Кребсом. За это ученый получил Нобелевскую премию.

Данный процесс также называют системой для переноса электронов. Это связано с сопутствующим переходом АТФ в АДФ. Первое соединение, в свою очередь, занимается обеспечением метаболических реакций при помощи выделения энергии.

Биохимия и медицина

Биохимия медицины представлена нам в виде науки, охватывающей множество областей биологических и химических процессов. В настоящее время существует целая отрасль в образовании, которая готовит специалистов для данных исследований.

Здесь изучают все живое: от бактерии или вируса до человеческого организма. Наличие специальности биохимика дает субъекту возможность следить за постановкой диагноза и анализировать лечение, применимое к индивидуальной единице, делать выводы и т. д.

основы биохимии

Чтобы подготовить высококвалифицированного эксперта в этой области, нужно обучить его естественным наукам, медицинским основам и биотехнологическим дисциплинам, проводят множество тестов по биохимии. Также студенту дают возможность практически применять свои знания.

вузы биохимии в настоящее время приобретают все большую популярность, что обуславливается быстрым развитием этой науки, ее важностью для человека, востребованностью и т. д.

Среди самых известных учебных заведений, где готовят специалистов этой отрасли науки, самые популярные и значимые: МГУ им. Ломоносова, ПГПУ им. Белинского, МГУ им. Огарева, Казанский и Красноярский государственные университеты и другие.

Перечень документов, необходимых для поступления в подобные вузы не отличается от списка для зачисления в другие высшие учебные заведения. Биология и химия являются основными предметами, которые необходимо сдавать при поступлении.

Читайте также: