Чему равна внутренняя энергия идеального одноатомного газа кратко

Обновлено: 05.07.2024

Частицы любого тела — атомы или молекулы — совершают хаотическое непрекращающееся движение (так называемое тепловое движение). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела — это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом.

Внутренняя энергия термодинамической системы — это сумма внутренних энергий тел, входящих в систему.

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.
2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
3. Энергия электронов в атомах.
4. Внутриядерная энергия.

В случае простейшей модели вещества — идеального газа — для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма — ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

• совершение механической работы;
• теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь :-) Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура — это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы — работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться — его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача — это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы. Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом.

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.


Рис. 1. Теплопроводность

Теплопроводность — это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела.

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела — такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи — конвекции.

Конвекция

Конвекция — это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества.

Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции — распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).


Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать. Если радиатор установить под потолком, то никакая циркуляция не возникнет — тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи — тепловое излучение. Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет — это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше — частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением — в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

Идеальный одноатомный газ – это простейшая термодинамическая система. Газ молекулы, которого состоят из одного атома, называют одноатомным.

Количество атомов в молекуле оказывает влияние на то, как распределяется энергия по степеням свободы. Так для одноатомного газа молекула имеет три степени свободы ( ). Формулу для расчета внутренней энергии идеального одноатомного газа очень просто получить.

Внутренняя энергия одноатомного идеального газа

Учтем, что молекулы идеального газа представлены как материальные точки, которые не взаимодействуют на расстоянии. Отсутствие сил взаимодействия между молекулами обозначает, что потенциальная энергия взаимодействия молекул постоянна. Суммарная энергия покоя самих молекул также неизменна, так как молекулы при тепловых процессах не изменяются. Следовательно, внутренняя энергия идеального одноатомного газа является суммой кинетических энергий поступательного движения молекул и еще некоторая постоянная.

Обозначим внутреннюю энергию газа как U, тогда сказанное выше запишем как:

\[U=E_<k1></p>
<p>+E_+\dots +E_+const \qquad (1)\]

где +E_+\dots +E_" width="186" height="16" />
– сумма кинетических энергий поступательного движения молекул; N – число молекул в газе. Примем во внимание то, что средняя кинетическая энергия молекулы (_k\right\rangle" width="29" height="19" />
) равна:

\[\left\langle <\varepsilon></p>
<p>_k\right\rangle =\frac+E_+\dots +E_> \qquad (2)\]

По закону о равномерном распределении энергии по степеням свободы имеем:

\[\left\langle <\varepsilon></p>
<p>_k\right\rangle =\frackT \qquad (3)\]

для одноатомного газа:

\[\left\langle <\varepsilon></p>
<p>_k\right\rangle =\frackT \qquad (4)\]

k=1,38\cdot <10></p>
<p>^\frac
– постоянная Больцмана; T – температура по шкале Кельвина.

Внутреннюю энергию одноатомного идеального газа можно записать как:

\[U=N\left\langle <\varepsilon></p>
<p>_k\right\rangle +const=N\frackT+const \qquad (5)\]

Обычно постоянную величину в выражении (5) опускают, так как в расчётах она роли не играет.

Выражение (5) говорит о том, что внутренняя энергия идеального газа определена его температурой. Она является функцией состояния и не зависит от процесса который провели для того чтобы газ пришел в состояние с этой температурой. При этом изменение внутренней энергии идеального газа определено только его начальным и конечным состояниями, и не связано с характером процесса.

Выражение (5) часто используют в виде:

\[U=\frac</p>
<p>\frac<\mu>RT=\frac\nu RT \qquad (6)\]

R=8,31\ \frac<J></p>
<p>где m – масса газа;  – молярная масса газа;
– универсальная газовая постоянная; – количество вещества.

Теплоемкость одноатомного идеального газа

Для изохорного процесса, проводимого в идеальном газе работа равна нулю (A), поэтому первое начало термодинамики:

где – теплоемкость газа при постоянном объеме. Используя выражения (8) и (6) получим:

\[C_V\Delta T=\frac</p>
<p>\nu R\Delta T\to \ C_V=\frac\nu R \qquad (9)\]

Используя формулу (10) можно вычислить молярную теплоемкость любого одноатомного газа при постоянном объеме:

\[c_<\mu V></p>
<p>=\fracR \qquad(10)\]

Молярная теплоемкость одноатомного газа при изобарном процессе (" width="25" height="14" />
) связана с " width="29" height="14" />
соотношением Майера:

\[c_<\mu p></p>
<p>=c_<\mu V>+R=\fracR \qquad(11)\]

Примеры решения задач

Задание Получите формулу для вычисления молярной теплоемкости (c_<\mu>
) одноатомного идеального газа ( ) для процесса, в котором масса газа остается постоянной, закон изменения процесса задан выражением: .
Решение Первое начало термодинамики запишем в дифференциальной форме:

\[\delta Q=\frac<3></p>
<p>\nu RdT+pdV \qquad (1.1)\]

\delta Q=\nu c_<\mu></p>
<p>где dT
.

\[\nu c_<\mu></p>
<p>dT=\frac\nu RdT+pdV\to \ c_<\mu>=\frac+\frac \qquad (1.2)\]

\frac<dV></p>
<p>Из уравнения процесса:  найдем
:

\[\frac<dV></p>
<p>=-\frac \qquad (1.3)\]

Из уравнения состояния идеального газа, имеем:

\[pV=\nu RT\to p=\frac<\nu RT></p>
<p> \qquad (1.4)\]

Используя выражения (1.3) и (1.4) и уравнение процесса преобразуем выражение (1.2) к виду:

\[c_<\mu></p>
<p>=\frac-\frac=\frac-\frac=\frac-\frac=-0,5R\]

Идеальный одноатомный газ, пример 1

\[\Delta U=U_2-U_1=\frac<3\nu R></p>
<p>\left(T_2-T_1\right) \qquad (2.1)\]

\Delta U_<MA></p>
<p>Процесс МА является по условию изотермическим, следовательно, =0
, так как в изотермическом процессе температура не изменяется.

Как мы видим из рис.1 оба процесса начинаются в одной точке, следовательно, характеризуются одинаковыми параметрами, это означает, что начальные температуры в процессах МА и МВ равны. Посмотрим, что происходит с температурой в процессе МВ.

Температуры в точках М и А равны исходя из процесса ( ). Сравнив температуры и мы определим, увеличивается ли температура в процессе MB. Для этого рассмотрим изохору . Изохорный процесс подчиняется закону Шарля:

\[\frac<p_A></p>
<p>=\frac \qquad (2.2)\]

Из рис.1 следует, что , значит , получается, что температура процессе MB уменьшается. Следовательно, в процессе MB уменьшается внутренняя энергия идеального газа.

§ 11. Термодинамическая система. Внутренняя энергия. Внутренняя энергия идеального одноатомного газа

Полную энергию физической системы можно представить как алгебраическую сумму её механической энергии и внутренних энергий тел, образующих систему. Убыль механической энергии системы в ряде случаев происходит при самопроизвольном переходе её части во внутреннюю энергию тел системы. Так, например, режущие инструменты заметно нагреваются при заточке. При скольжении конькобежца под коньками тает лёд, что обеспечивает хорошее скольжение. В этих примерах тела при трении нагреваются, и интенсивность теплового движения их молекул возрастает, что приводит к увеличению внутренней энергии тел. Как же определить внутреннюю энергию термодинамической системы? И что понимают под термодинамической системой?

Термодинамическая система. В термодинамике физические тела и их модели называют термодинамическими системами. Для их описания используют параметры системы, такие, как давление, объём, температура (макропараметры), а не физические характеристики молекул (микропараметры). Макропараметры можно непосредственно измерить, используя приборы, или выразить через другие величины, которые можно измерить на опыте. Мы рассмотрим простейшие термодинамические системы, состояние которых определяют, используя только давление, объём и температуру.

Тела, образующие термодинамическую систему, могут обмениваться с окружающей средой энергией, а также веществом. Если этого не происходит, то термодинамическую систему называют замкнутой или изолированной.

Изолированная термодинамическая система стремится к равновесию, когда все её макропараметры не изменяются с течением времени. Иначе говоря, для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, в которое она переходит самопроизвольно .

Это утверждение называют нулевым началом термодинамики * .

В одном случае газ находится в герметично закрытом теплонепроницаемом сосуде, а в другом — в стеклянной колбе. В каком случае газ как термодинамическая система является изолированным?

* Выводы термодинамики основаны на фундаментальных законах, называемых началами термодинамики. Эти законы установлены в результате обобщения многочисленных экспериментальных фактов. Опираясь на них, термодинамика позволяет делать определённые выводы о свойствах исследуемых систем, которые подтверждаются экспериментально. ↑

Внутренняя энергия идеального газа формула

Физика

Для понимания процессов, протекающих в природе, для их математического описания в физике используют различные упрощенные модели. Одной из них является идеальный газ. Формула внутренней энергии для него играет важную роль при изучении переходов между макроскопическими состояниями, в которых изменяются давление, объем и температура.

Идеальные газы

Что таке идеальный газ

Впоследствии его начали применять для всех веществ, которые соответствуют этому агрегатному состоянию. Газами стали считать любые соединения, которые проявляют следующие физические характеристики:

  • не сохраняют объем, то есть занимают любое предоставленное им пространство;
  • не имеют определенной формы, она зависит от сосуда, в котором находится вещество.

Газы легко сжимаемы, не имеют упругости, часто являются бесцветными, обладают низкой плотностью, легко смешиваются друг с другом в произвольных долях. Ярким примером такой смеси является воздух, состоящий из кислорода и азота, а также из многих других соединений (паров воды, углекислоты, аргона и т. д. ).

Молекулярно-кинетическая теория

Эта теория является удобным и довольно точным упрощением или моделью, которая служит для наглядного понимания процессов, происходящих в газах. Основными постулатами ее являются следующие:

Идеальный газ

  1. Газовые частицы движутся хаотически по прямым траекториям.
  2. Они не взаимодействуют друг с другом с помощью каких-либо сил, кроме механических столкновений.
  3. В процессе соударений кинетическая энергия системы не изменяется, то есть столкновения носят исключительно упругий характер.
  4. Благодаря соударениям частиц со стенками сосуда газ оказывает на них давление.
  5. Кинетическая энергия является единственной энергетической составляющей газа, которая однозначно определяет его абсолютную температуру.

Эти принципы легли в основу модели идеального газа, которую с успехом применяют в настоящее время для решения многих практических задач.

Она дает хорошие результаты для инертных газов при относительно высоких температурах и низких давлениях.

Общее уравнение и частные законы

Идеальный газ — это упрощенная термодинамическая модель, которая полностью базируется на принципах молекулярно-кинетической теории. Состояние любого газообразного соединения можно описать, если знать три макроскопические величины:

  • давление P;
  • объем V;
  • температуру T.

Впервые взаимосвязь между ними нашел французский ученый Эмиль Клапейрон в 1834 году. В своих научных трудах он использовал многие работы XVII—XVIII вв. Клапейрон показал, что для любых химических соединений, которые подчиняются приближению идеальной модели газа, справедливо равенство P*V = n*R*T, где:

  • n — количество вещества в молях,
  • R — газовая универсальная постоянная, равная 8,31 Дж/(моль*К).

Это равенство получило название общего уравнения или выражения Клапейрона. В общем случае оно содержит 4 переменные величины (P, V, T и n).

Общее уравнение и частные законы

Записанное выражение было получено Клапейроном в результате обобщения уже открытых для газов частных законов. В таблице они кратко перечисляются.

Фамилия открывшего ученого Постоянная величина Формула Кривая перехода между состояниями
Бойль и Мариотт T, n P1*V1 = P2*V2 изотерма
Шарль и Гей-Люссак P, n V1/T1 = V2/T2 изобара
Гей-Люссак V, n P1/T1 = P2/T2 изохора
Авогадро P, T V1/n1 = V2/n2 изобарно-изотермический переход

Каждый из законов легко может получить любой школьник, если обратится к общему уравнению. Например, если взять газ в закрытом сосуде, имеющем объем V, то выражение Клапейрона запишется так: P1*V = n*R*T1. Здесь индекс 1 показывает начальное состояние системы.

Теперь можно нагреть систему до некоторой температуры T2. Поскольку сосуд является закрытым, то объем во время его нагрева не изменяется, также остается постоянным количество частиц газа n. Уравнение Клапейрона для нового состояния системы принимает вид P2*V = n*R*T2. Оба выражения следует преобразовать таким образом, чтобы переменные находились в одной стороне равенства, а постоянные — в другой:

Приравнивая левые части равенств, можно получить формулу закона Гей-Люссака.

Внутренняя энергия

Внутренняя энергия

Любая система частиц с точки зрения термодинамики запасает в себе определенную внутреннюю (потенциальную) энергию. Теоретически она может быть использована для осуществления полезной работы. Единицей энергии в СИ является джоуль (Дж). Иногда в задачах могут встречаться расчеты в калориях, но они легко переводятся в единицы системы СИ (1 калория = 4,184 Дж).

Первый постулат термодинамики

Пусть существует некоторая газовая система, которая находится в состоянии 1. Под ним понимают набор термодинамических величин, характеризующих его однозначно. В случае перехода в состояние 2 энергетическое уравнение процесса запишется в следующей форме: Q (1−2) = A (1−2) + U (1−2).

Здесь Q (1−2) будет называться энергией, которая поглощена или выделена системой в процессе изменения ее состояния из 1 в 2. Эта величина в большинстве случаев указывает на энергетический (тепловой) обмен. Величина A (1−2) показывает механическую работу, совершенную газом в рассматриваемом процессе. Слагаемое, которое обозначается U (1−2), — это изменение внутренней энергии, запасенной газом.

Записанное равенство носит название первого закона термодинамики. Оно говорит о том, что энергия не появляется из ниоткуда и не исчезает бесследно, а лишь преобразуется в различные состояния.

Составляющие величины U

Если вспомнить приближения теории молекулярно-кинетической, то можно сказать, что для газа внутренняя энергия определяется исключительно его кинетической составляющей. Никакие взаимодействия между частицами с помощью энергетических полей не существуют. Кинетическая энергия является суммой следующих вкладов:

  • поступательных движений частиц;
  • их вращения вокруг собственных осей;
  • их колебаний около некоторого внутреннего центра симметрии.

В случае одноатомного идеального газа формула для U будет включать только поступательную составляющую кинетического движения атомов, поскольку иные степени свободы у них отсутствуют.

Получение формулы

Формула внутренней энергии

Пусть имеется система с идеальным газом, который занимает определенный сосуд. С помощью трубки присоединим этот сосуд к другому пустому, тогда газ практически мгновенно займет весь предоставленный ему объем. Поскольку процесс протекает быстро, то можно говорить, что обмен теплом с окружающей средой равен нулю (Q (1−2)=0). При этом система не совершает никакой механической работы (A (1−2)=0).

Это означает, что ее энергия U также остается неизменной: U (1−2) = 0. Так как переход является изотермическим, можно смело утверждать, что величина U — это исключительно функция температуры, а не давления или объема. Постоянство U подтверждается законом Бойля-Мариотта: P*V = n*R*T = const.

Чтобы получить формулу энергии газа, нужно выбрать произвольный процесс, который сопровождается изменением температуры, и разложить его на два перехода: изотермический (1−1′) и изохорный (1′-2). После первого из них величина U останется постоянной, после второго она изменится на следующую величину: U (1′-2) = n*Cv*(T2-T1).

Внутренняя энергия газа формула

Здесь T2, T1 — конечная и начальная абсолютные температуры системы, соответственно, Cv — теплоемкость при постоянном объеме. Так как U (1−1′) = 0 (изотермический переход), то можно записать следующее выражение: ΔU = n*Cv* ΔT.

Записанная формула позволяет производить расчет изменения ΔU для любых типов идеального газа. Для них будет различаться лишь само значение Cv:

  • для одноатомного Cv = 3/2*R;
  • для двухатомного Cv = 5/2*R;
  • для трехатомного и более Cv = 3*R.

Теплоемкость при постоянном давлении

Любой неизотермический переход между двумя газовыми состояниями можно представить не только с использованием изохоры, но и через изобару. В этом случае первый закон термодинамики запишется в следующем виде: Q = A + ΔU. При изобарном переходе газ совершает механическую работу, которая вычисляется так: A = P* ΔV = n*R* ΔT.

Согласно определению при охлаждении на 1 К системы, состоящей из 1 моля частиц газа без изменения давления, выделяется энергия Cp (теплоемкость при постоянной величине P). Тогда получается для изобарного перехода следующая формула: Q = n*Cp* ΔT.

Подставляя все выражения для A, Q и ΔU в формулу первого постулата термодинамики, можно получить следующее равенство: n*Cp* ΔT = n*R* ΔT + n*Cv* ΔT =>Cp = R + Cv.

Эта формула связывает две разные теплоемкости друг с другом, что позволяет использовать любую из них для расчета изменения внутренней энергии ΔU.

Таким образом, модель идеального газа является универсальным теоретическим инструментом для исследования изменения макроскопических термодинамических величин давления, температуры и объема. С ее помощью легко получить и использовать формулу для расчета изменения внутренней энергии газовой системы, которая зависит исключительно от температуры и определяется только кинетическим вкладом составляющих молекул.

Читайте также: