Чем принципиально отличаются процессы обмена у живых организмов и в неживой природе кратко

Обновлено: 04.07.2024

В клетках живых организмов содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. В состав клетки входит большинство из 109 элементов периодической системы Менделеева, причем клетки бактерий, грибов, растений и животных имеют сходный химический состав. Особенно велико содержание в клетках кислорода (65–75%), углерода (15–18%), водорода (8–10%) и азота (1,5–3,0%); в сумме эти элементы составляют почти 98% всего элементного состава клетки. Следующая группа включает восемь элементов, содержание которых в клетке составляет десятые и сотые доли процента. Это сера (0,15–0,2%), фосфор (0,2–1,0%), хлор (0,05–0,1%), калий (0,15–0,4%), магний (0,02–0,03%), натрий (0,02–0,03%), кальций (0,04–2,0%) и железо (0,01–0,015%). В сумме эти элементы составляют 1,9%. Микроэлементы – цинк, медь, фтор, йод – содержатся в клетках в ничтожных долях процента (0,0001–0,0003%), но при недостатке их возникают серьезные нарушения обмена веществ.
Все перечисленные химические элементы входят и в состав неживой природы. Таким образом, существует принципиальное единство химического состава живых организмов и неживой природы, выявляющееся на атомном уровне организации материи. На более высоком уровне организации – молекулярном – между живым и неживым обнаруживаются существенные различия.

7. В чем отличие обмена веществ у живых организмов от обменных процессов, протекающих в неживой природе?

8. Докажите, что клетки, ткани и органы в сумме еще не представляют собой целостный организм

В многоклеточном организме клетки объединены в различные органы и ткани и специализированы для выполнения разных функций. В зависимости от выполняемой функции клетки имеют разную организацию. Так, например, в мышечных клетках имеются миофибриллы и протофибриллы, в секретирующих – специфические гранулы, в эритроцитах – гемоглобин и т.д. Совокупность клеток, сходных по строению, происхождению и выполняемым функциям, представляет собой ткань. Определенный комплекс тканей составляет орган, выполняющий одну или несколько функций; органы входят в состав систем органов (дыхательной, сердечно-сосудистой и др.). Особь представляет собой системную совокупность органов, которой свойственна способность к саморегуляции и адаптации к условиям окружающей среды. Искусственно выделенные из такой системы клетка, ткань или орган не способны к длительному существованию.
Клетке одноклеточного организма (бактерии, одноклеточные водоросли, простейшие) свойственны все характеристики целостного организма; такая клетка-организм может существовать самостоятельно, т.к. она способна к саморегуляции и адаптации. Появление в процессе эволюции многоклеточности (первыми многоклеточными организмами были водоросли) привело к тому, что отдельная клетка потеряла свою самостоятельность. Однако на первом этапе развития многоклеточности дифференцированных тканей еще не было (тело водорослей представляет собой слоевище, или таллом); позднее появились различные ткани и органы, объединенные в единый организм сложными системами регуляции.

9. Раскройте основные положения клеточной теории. Каково ее значение для развития науки?

1. Все организмы состоят из одинаковых частей – клеток; они образуются и растут по одним и тем же законам.
2. Общий принцип развития для элементарных частей организма – клеткообразование.
3. Каждая клетка в определенных границах есть индивидуум, некое самостоятельное целое. Но эти индивидуумы действуют совместно, так, что возникает гармоничное целое. Все ткани состоят из клеток.
4. Процессы, возникающие в клетках растений, могут быт сведены к следующим: 1) возникновение новых клеток; 2) увеличение клеток в размерах; 3) превращение клеточного содержимого и утолщение клеточной стенки.

1. Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого.
2. Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
3. Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления материнской клетки.
4. В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.

10. Дайте сравнительную характеристику строения и жизнедеятельности прокариот и эукариот

Прокариоты (лат. про – перед и гр. карион – ядро) – это древнейшие организмы, не имеющие оформленного ядра. Носителем наследственной информации у них является молекула ДНК, которая образует нуклеоид. В цитоплазме прокариотической клетки нет многих органоидов, которые имеются у эукариотической клетки (митохондрий, эндоплазматической сети, аппарата Гольджи и т.д.; функции этих органоидов выполняют ограниченные мембранами полости). В прокариотической клетке имеются рибосомы. Большинство прокариот имеет размер 1–5 мкм. Размножаются они путем деления без выраженного полового процесса. Прокариоты обычно выделяют в надцарство. К ним относят бактерии, синезеленые водоросли (цианеи, или цианобактерии), риккетсии, микоплазмы и ряд других организмов.

Рис. 2. Схема строения растительной клетки
Рис. 1. Схема строения животной клетки

Эукариоты (гр. эу – хорошо и карион – ядро) – организмы, в клетках которых есть четко оформленные ядра, имеющие собственную оболочку (кариолемму) (рис. 1, 2). Ядерная ДНК у них заключена в хромосомы. В цитоплазме эукариотических клеток имеются различные органоиды, выполняющие специфические функции (митохондрии, эндоплазматическая сеть, аппарат Гольджи, рибосомы и т.д.). Большинство эукариотических клеток имеет размер порядка 25 мкм. Размножаются они митозом или мейозом (образуя половые клетки – гаметы или споры у растений); изредка встречается амитоз – прямое деление, при котором не происходит равномерного распределения генетического материала (например, в клетках эпителия печени). Эукариоты также выделяют в особое надцарство, которое включает царства грибов, растений и животных.

11. Каковы строение и функции клеточного ядра и клеточного центра?

Клеточное ядро – это часть клетки диаметром 3–10 мкм, окруженная оболочкой (кариолеммой), состоящей из двух мембран. Пространство между наружной и внутренней мембранами (30 нм), заполненно полужидким веществом. Ядерная мембрана имеет такое же строение, как и плазматическая мембрана. В ядерной оболочке есть множество пор (рис. 3), через которые происходит обмен веществ между ядром и цитоплазмой. Под ядерной оболочкой находится ядерный сок (кариоплазма), в котором содержатся ядрышки и хромосомы.

Рис. 3. Некоторые мембранные системы в клетках эукариот

Ядрышки – это округлые тельца диаметром от 1 до нескольких микрометров. В ядре может быть несколько ядрышек. В состав ядрышек входят РНК и белок. Ядрышки образуются на определенных участках хромосом; в них синтезируется рибосомальная РНК (рРНК). В ядрышках происходит формирование больших и малых субъединиц рибосом. Ядрышки видны только в неделящихся клетках.

Хромосомы (греч. хрома – краска и сома – тело; были так названы из-за способности к интенсивному окрашиванию) – это важнейший органоид ядра, образованный ДНК в комплексе с основным белком – гистоном, содержащим большое количество лизина и аргинина; этот комплекс составляет около 90% вещества хромосом. В состав хромосом входят также РНК, кислые белки, липиды, минеральные вещества и фермент ДНК-полимераза, необходимый для репликации (удвоения) ДНК. Хромосомы могут иметь длину, в десятки и сотни раз превышающую диаметр ядра. В интерфазу (период между делениями) хромосомы деспирализованы, видны только в электронный микроскоп и представляют собой длинные тонкие нити хроматина. В этот период идет процесс удвоения (редупликации) хромосом; в конце интерфазы каждая хромосома состоит из двух хроматид. Она имеет первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. Центромера служит местом прикрепления нити веретена деления. У ядрышковых хромосом имеется также вторичная перетяжка, где формируется ядрышко.

Функция хромосом заключается в контроле над всеми процессами жизнедеятельности клетки. Хромосомы являются носителями генетической информации. Наследственная информация передается путем репликации молекулы ДНК. Число, размер и форма хромосом строго специфичны для каждого вида.

В половых клетках и в спорах у растений содержится одинарный (гаплоидный) набор хромосом, в соматических клетках – двойной (диплоидный) набор. Бывают также полиплоидные клетки. Различают гомологичные (парные, соответствующие) и негомологичные хромосомы. Хромосомы, определяющие развитие пола, называют половыми. Хромосомы соматических клеток называют аутосомами.

Клеточный центр относится к немембранным компонентам клетки. В состав его входят две центриоли. Центриоли обнаружены не во всех клетках, имеющих клеточный центр (например, их нет у покрытосеменных растений). Каждая центриоль – это цилиндр размером около 1 мкм, по окружности которого расположены девять триплетов микротрубочек. Центриоли располагаются под прямым углом друг к другу. Клеточный центр играет важную роль в организации цитоскелета, т.к. цитоплазматические микротрубочки расходятся во все стороны из этой области. Перед делением центриоли расходятся к противоположным полюсам клетки и возле каждой из них возникает дочерняя центриоль. От центриолей протягиваются микротрубочки, которые образуют митотическое веретено деления. Часть нитей веретена прикрепляется к хромосомам. Формирование нитей веретена происходит в профазе.

12. Раскройте биологическое значение хромосом

Рис. 4. Схематическое изображение типичной метафазной хромосомы

13. Охарактеризуйте строение и функции цитоплазматической мембраны

14. Раскройте механизм поступления веществ в клетку

Рис. 5. Схема фагоцитоза

15. Каково строение и функции цитоплазмы?

Цитоплазма (греч. цитос – клетка и плазма – вылепленная) – живое содержимое клетки (за исключением ядра). Состоит из мембран и органоидов (ЭПС, рибосом, митохондрий, пластид, аппарата Гольджи, лизосом, центриолей и др.), пространство между которыми заполнено коллоидным раствором – гиалоплазмой. Снаружи цитоплазма ограничена клеточной мембраной (плазмалеммой), внутри – мембраной ядерной оболочки. У растительных клеток имеется еще и внутренняя пограничная мембрана, образующая вакуоли с клеточным соком.
Цитоплазма содержит большое количество воды с растворенными в ней солями и органическими веществами. Цитоплазма – это среда, в которой осуществляются внутриклеточные физиологические и биохимические процессы. Она способна к движению – круговому, струйчатому, ресничному.

16. Назовите органоиды движения клетки и раскройте их значение для ее жизнедеятельности

К клеточным органоидам движения относят реснички и жгутики диаметром около 0,25 мкм, содержащие в середине микротрубочки. Такие органоиды имеются у многих клеток (простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например, в дыхательном эпителии).
Эти органоиды выполняют функцию обеспечения движения (например, у простейших) или способствуют продвижению жидкости вдоль поверхности клеток (например, продвижению слизи в дыхательном эпителии).
Клетки могут передвигаться также с помощью ложноножек (псевдоподий; например, амебы и лейкоциты), но псевдоподии – это временные образования, которые не относят к органоидам движения.

Обмен веществ — характерное свой­ство живых организмов, заключающееся в потреблении живой системой веществ из окружающей среды и выделении в нее различных продуктов жизнедеятельнос­ти. Но это явление встречается и в нежи­вой природе. При горении из воздуха поглощается кислород и используются органические вещества, например уголь. При этом в окружающую среду выделяют­ся разнообразные соединения.

Главное отличие обмена веществ в жи­вой природе — возможность осуществ­лять реакции синтеза высокомолекуляр­ных соединений и их распада.

Чем принципиально отличаются процессы обмена у живых организмов и в неживой природе?

Ответ

Обмен веществ — это характерное свойство живых организмов , заключающееся в потреблении живой системой веществ из окружающей среды и выделении в нее различных продуктов жизнедеятельности.

Но это явление встречается и в неживой природе. При горении из воздуха поглощается кислород и используются органические вещества, например уголь. При этом в окружающую среду выделяются разнообразные соединения.

Главное отличие обмена веществ в живой природе — возможность осуществлять реакции синтеза высокомолекулярных соединений и их распада. Обмен веществ осуществляется в результате двух взаимосвязанных процессов: синтеза органических веществ в организме (за счет внешних источников энергии — света и пищи) и процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом.


Различия обмена веществами в неживой природе и у живых организмов

Объясните, в чем, по вашему мнению, заключаются принципиальные различия обмена веществами в неживой природе и у живых организмов.

В отличие от неживой природы, живые организмы способны накапливать необходимые вещества, а также энергию в форме особых химических соединений (АТФ). Кроме того, живые организмы способны трансформировать химические вещества и превращать простые соединения в более сложные при помощи ферментов (часто с затратой энергии). Так, например, из мономера глюкозы синтезируются полимеры крахмал, гликоген, целлюлоза. Живые организмы обладают способностью копировать наследственный материал. Такое копирование тоже является примером преобразования простых веществ (отдельных нуклеотидов) в более сложные (нуклеиновые кислоты). Специальный комплекс ферментов способен создать новую полинуклеотидную цепь по образцу материнской

Читайте также: