Чем отличается термопара от термосопротивления кратко

Обновлено: 04.07.2024

Чем отличаются термопара и термосопротивление

Чем отличаются термопара и термосопротивление

Ещё нужно обратить внимание на то, что многие ошибочно называют одно другим. Термопары Имхо чаще используются при больших температурах, а терморезисторы- при маленьких до 100-150 град.

Да, да, согласен - термопары обычно используются для больших температур. Правда про максимальные 150 С для термометров - это вы загнули. Максимальная измеряемая температура 150 С - это только для медных термометров сопротивления, а для платиновых, например, максимум 850 С.

rhf-admin писал(а): Правда про максимальные 150 С для термометров - это вы загнули. Максимальная измеряемая температура 150 С - это только для медных термометров сопротивления, а для платиновых, например, максимум 850 С.

Странно.
Если речь про ТСМ- то температуры, аналогично, более 150С"- не попадались
А платиновые- видел(работал с ними) только термопары. Свыше 1.5 тыс. градусов- только пирометры встречались.
А до 1100- Хромель-Алюмель самая распространённая т.п. бывала. Длина- до 5-ти метров!
А вот у меня есть неизвестый термодатчик, в виде малюсенькой(около 0.2мм) капельки стекла, на 2-х тонюсеньких(микроны) проводках, в какой-то тоненькой пробирочке. И мне оч. любопытно, как его зовут, и мах.температура.

Хм, на конце капелька. По описанию похоже на термопару. Но почему в стекле?
Концы надо искать там, откуда ты его снял, найти даташит на этот прибор и оттуда копать.

rhf-admin писал(а): Хм, на конце капелька. По описанию похоже на термопару. Но почему в стекле?
Концы надо искать там, откуда ты его снял, найти даташит на этот прибор и оттуда копать.

Где я её нашёл- там больше нет.Я её взял у (давно уже) покойного отца друга,он работал ведущим конструктором на машиностроительном заводе, и изобретал модули управления на горнодобывающее оборудование. А, в конце-концов- мне достлось всё, что было у него дома.
А ка сюда фото закидывать? Так-же архивом?

При необходимости измерения температуры одним из ключевых моментов является выбор типа используемых датчиков. Принимаемое решение должно максимально полно учитывать условия конкретной задачи.

Измерение температуры является одним из основных требований практически при любых условиях технологических процессов перерабатывающей промышленности. В большинстве устройств используются датчики, основанные на двух технологиях. Выбор между этими двумя подходами определяется конкретными требованиями к технологическому процессу и его условиями.

Колебания температуры могут оказывать значительное влияние на прибыльность, безопасность и качество. Это справедливо в отношении разных отраслей промышленности, таких как нефтегазовая, энергетическая, нефтеперерабатывающая, нефтехимическая, фармацевтическая и др. Точность непрерывного контроля температуры зависит от нескольких факторов, в том числе от правильного выбора датчика для конкретных задач и технологических процессов.

Наиболее распространенными устройствами измерения температуры являются термометры сопротивления (ТС) и термопары (ТП). Эти устройства основаны на двух разных технологиях, каждая из которых обладает своими преимуществами, в соответствии с которыми и делается выбор в пользу той или иной технологии.

В конструкции ТС используется тот факт, что электрическое сопротивление металла возрастает с повышением температуры — явление, известное как тепловое сопротивление.

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом если температура на одном конце этих отрезков проволоки (спае) отличается от таковой на другом, в ней возникает электрический ток. Такое явление известно под названием эффекта Зеебека. Возникающее напряжение зависит от конкретных используемых металлов, а также от текущей разницы температур. Сопоставление различных значений напряжения, возникающих при использовании разных металлов, представляет собой основу измерения температуры термопарой.

Сравнение технологий

Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

Термометры сопротивления изготавливаются из резистивного материала с прикрепленными выводами и, как правило, помещаются в защитную оболочку. В качестве резистивного материала может выступать платина, медь или никель. Наибольшее распространение получила платина — благодаря высокой точности и стабильности результатов измерений и их исключительной линейности в широком диапазоне. Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность.

Обычно показания термометров сопротивления являются значительно более стабильными, и ТС обладают более высокой чувствительностью по сравнению с ТП. Долгосрочное смещение показаний ТС является хорошо предсказуемым, в то время как ТП часто ведут себя неустойчиво в данном отношении. За счет этого обеспечивается такое преимущество ТС, как менее частая потребность в калибровке и, следовательно, пониженная стоимость их эксплуатации. Наконец, ТС обеспечивают исключительную линейность показаний. В сочетании с линеаризацией, произведенной в качественном передатчике, становится достижимой точность около 0,1 °C — значительно более высокая по сравнению с максимально возможной при использовании ТП.

Конструкции термометра сопротивления и термопары

Рис. 1. Конструкции термометра сопротивления и термопары

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом различные сочетания металлов классифицируются как разные типы датчиков и, соответственно, обладают отличающимися характеристиками. Наиболее часто используемыми типами ТП являются тип J (железо и константан) и тип K (хромель и алюмель). ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность. Конструкция кабелей ТП отличается повышенной прочностью, за счет чего они могут выдерживать высокие уровни вибрации (рис. 1). В таблице приводится сравнение основных характеристик датчиков.

Свойство

Термометр сопротивления

Термопара

Класс A: ±[0,15+0,002] °C

Класс B: ±[0,30+0,005] °C

Согласно стандарту IEC 60751

Типичная точность составляет ±1,1 °C или ±0,4 % от измеренного значения температуры (большее из двух значений). Зависит от типа ТП и диапазона измерения. Снижается при использовании удлинительного провода.

Принципы действия абсолютно разные.
Термопара - два металла с разным электронным давлением (плотностью) . При их соединении часть часть электронов из металла с более высокой электр. плотностью под действием разности давлений переходит в металл с меньшей плотность, заряжая его отрицательно. В результате первый металл становится положительно заряхенным (электроны ушли) , а второй -отрицательно (электроны пришли) . Образуется электрическое поле (напряжение) , которое останавливает процесс выравнивания плотностей электронов. Это напряжение прямопропорционально температуре металлов, т. к. в выражение для электронного давления (nKT) входит температура. Подключив милливольтметр
и проградуировав шкалу, можно измерять температуру.
Источник питания, принципиально, не нужен.

Термосопротивление меняет пропорционально температуре свое сопротивление току от внешнего источника напряжения. Физика процесса - уменьшение дрейфовой (токовой) скорости электронов за счет увеличения столкновений при увеличении температуры.

Термопара с изменением температуры (чаще с нагревом) производит ЭДС (напряжение)
очень малой величины, но замеряемое.
Термосопротивление (PT 100) изготавливается (калибруется) для подходящих температур.
Меняет сопротивление в зависимости от изменения среды. Реагирует медленнее термопары (1-2 сек.) ,
но позволяет вывести снимаемые данные на значительное расстояние.

Из четырёх величин Международной системы единиц (СИ), неразрывно связанных с человеческой деятельностью: массой, длиной, временем и температурой, последняя оставалась полной загадкой для человечества вплоть до 18 века. Но и сегодня немногие, пользующиеся различными средствами измерения температуры, понимают, что же они измеряют.


То же давление легко воспринимается, так как оно связано с силой и может быть без труда определено количественно. С температурой невозможно связать количественную величину. В быту мы оцениваем температуру по ощущениям: горячо, тепло, холодно. Казалось бы, если одно тело горячее другого, то и его температура должна быть больше. Но это не так.Попробуйте взять в разогретой сауне в руку деревянный ковшик и металлический ковшик. Совершенно разные ощущения, хотя температура одна. Но если мы хотим сравнить температуру одинаковых по своей природе объектов, то можем сделать это с высокой точностью.


Рукой можно определить, повышена ли температура другого человека, т.е. фактически измерить её с точностью ±0,5⁰С. Также находясь в помещении можно с точностью до 1…2⁰С определить её температуру. Человек хорошо чувствует этот физический параметр и в то же время мало кто сможет чётко сказать, что же это такое - температура.

Забегая вперёд можно сказать, что совершенно обратная ситуация творится с влажностью воздуха. Очень трудно определить влажность воздуха по своим ощущениям. В то же время эта характеристика прекрасно понимается в количественном выражении. Грубо – это количество молекул воды в единице объёма. (См. статью: Что такое влажность воздуха? Как правильно измерять влажность? Давление водяного пара. Таблицы и примеры расчета.)

Существуют несколько определений температуры. Но мы воспользуемся здесь одним, который наиболее близок людям, занимающимся практическими измерениями и исходит из нулевого закона термодинамики. По нему если два тела находятся в состоянии теплового равновесия, то они имеют одинаковую температуру. Таким образом, если мы обеспечим хороший тепловой контакт термометра с измеряемой средой, то по прошествии некоторого времени, необходимого для установления теплового равновесия, температуры термометра и среды будут одинаковы. Естественно, что данный вывод будет верен, только если наша система изолирована от других тел и не совершается никакой работы. Ну а само понимание физической природы температуры приходит только после изучения статистической механики, где температура представлена как мера кинетической энергии тела.

Температура - параметр, который можно измерить только косвенно, по изменению других физических параметров. Термометрию различают на первичную и вторичную. В первичной термометрии температура явно описывается через другие физические параметры, например для газовых термометров это давление и объём. Примерами вторичных термометров являются термометры сопротивления и термопары. В промышленности термометры сопротивления и термопары являются основными средствами контроля температуры, закрывая диапазон измерения от минус 200 до + 2500⁰С и более.

Термометры сопротивления

Основной стандарт в странах таможенного союза, устанавливающий общие технические требования к техническим термометрам сопротивления: ГОСТ 6651-2009. Он практически полностью соответствует МЭК 60751. Ниже приведены некоторые параметры из этого документа.

Тип ТС Обозначение Температурный коэффициент, a Класс допуска Сопротивление при 0⁰С, Ом
Платиновый Pt 0,00385 АА, А, В, С 10,50,100,500,1000
П 0,00391
Медный М 0,00428 А, В, С
Класс допуска Допуск, ⁰С Диапазон измерений (максимальный), ⁰С
Платиновый ТС Медный ТС
Проволочный ЧЭ Плёночный ЧЭ -
АА ±(0,1+0,0017Т) -50…+250 0…+150
А ±(0,15+0,002Т) -100…+450 -30…+300 -50…+120
В ±(0,3+0,005Т) -196…+660 -50…+500 -50…+200
С ±(0,6+0,01Т) -196…+660 -50…+600 -180…+200

В последнее время платиновые термосопротивления активно начали вытеснять медные и термопары . Связано это с появлением на рынке недорогих платиновых плёночных термочувствительных элементов, которые в отличие от медных являются более стабильными и работают в более широком диапазоне температур. А по сравнению с термопарами - обеспечивают более высокую точность измерения и не требуют использования дорогого термокомпенсационного кабеля. Однако в России медные термометры до сих пор находят широкое применение. Одно из основных преимуществ меди - это очень хорошая линейная зависимость её сопротивления от температуры в диапазоне от минус 50 до + 200⁰С и более высокая чем у платины чувствительность. Свыше 200⁰С медь начинает очень быстро окисляться на воздухе, поэтому обычно верхний предел измерения для медных термосопротивлений устанавливается до 180⁰С. При производстве используется проволока диаметром от 30 до 80 мкм. При дальнейшем уменьшении диаметра стоимость проволоки резко возрастает, а изготовление термосопротивления с заданными параметрами становится проблематичным.

Также следует обращать внимание на максимальный измерительный ток. Например, для термометров сопротивления, изготовленных из проволоки диаметром 30 мкм уже при токе 0,2мА становится заметным явление саморазогрева от протекающего тока, а значит, использование таких термометров с большинством измерительных приборов становится невозможным. Обычно диаметр используемой проволоки определяется исходя из диаметра зонда, в который будет устанавливаться проволочный чувствительный элемент. Например, для зонда диаметром 2 мм используют проволоку диаметром 30 мкм, 4 мм – 40 мкм, 5…6 мм – 50 мкм, 8…10 мм- 80 мкм.

Большое значение имеет схема соединения проводников термосопротивления. Различают три основных схемы: 2-х, 3-х и 4-х проводную.


При двухпроводной схеме к сопротивлению ЧЭ добавляется сопротивление внешних проводов, что приводит к появлению дополнительной погрешности измерения. Ясно, что такой способ можно использовать только для ЧЭ с большим сопротивлением. Из наиболее употребляемых - это Pt1000. Легко подсчитать, что для обеспечения точности измерения 0,1⁰С общее сопротивление внешних проводников не должно быть больше 3,8 Ом.

В трёхпроводной схеме подключения автоматически из полного сопротивления вычитается сопротивление внешних проводов. Но это только в случае, если сопротивление проводников 1 и 2 трёхпроводной схемы равны между собой. Тем не менее, 3-х проводная схема подключения термосопротивлений на сегодняшний момент является самой популярной. Практически все вторичные приборы (измерители, регуляторы) имеют входные цепи, рассчитанные под эту схему. Трёхпроводная схема позволяет увеличить расстояние от датчика до прибора до 50…100 метров. При этом не обязательно, чтобы сам термометр сопротивления был изготовлен по 3-х проводной схеме. Можно использовать и датчики с двумя клеммами, подключив к одной клемме один провод, а ко второй – два.

Четырёхпроводная схема используется в основном только для точных измерений и в эталонных приборах. Данная схема позволяет автоматически компенсировать влияние на результат измерения не только сопротивления проводников, но и ЭДС в местах контактов.

Советы при выборе и монтаже термометров сопротивления


Есть банальные истины, которыми нужно руководствоваться при выборе подходящего датчика температуры. Конечно же, нужно в первую очередь обратить внимание на диапазон измерения и точность. Во-вторых, нужно решить вопрос с основным конструктивным исполнением: в клеммной головке, или с кабельным выводом. Датчики с кабельным выводом более миниатюрны и менее инерционны. Они уже полностью готовы к подключению к вторичному прибору. Но вышеперечисленные преимущества одновременно являются и их недостатками. Миниатюрный корпус – следовательно, небольшой размер чувствительного элемента и малый измерительный ток. Жёстко присоединённый кабель несёт за собой худшую, чем для датчиков в клеммной головке степень защиты от воды. Эти датчики заведомо дороже из-за высокой стоимости применяемого высокотемпературного кабеля. Они менее надёжны при механических воздействиях опять-таки из-за наличия кабеля. С термосопротивлением в клеммной головке не обязательно использовать высокотемпературный кабель. Минус этих датчиков в одном – габаритных размерах, что бывает важно в ряде случаем.


При монтаже датчика температуры нужно максимально увеличить его тепловой контакт с контролируемой средой и одновременно уменьшить отток тепла от места подключения. Необходимо помнить, что чувствительный элемент имеет конечную длину, поэтому глубина погружения датчика должна быть как минимум на несколько диаметров зонда больше, чем длина ЧЭ. При монтаже датчиков контроля поверхности очень важно место соединения предварительно смазать каким-либо вязким веществом. Также важно обеспечить тепловой контакт кабеля с контролируемым объектом, чтобы минимизировать отвод тепла от ЧЭ датчика по кабелю. Ещё лучше, если и датчик и подводящий кабель будут закрыты хорошим теплоизолятором, например пенополиуретаном, или пенополиэтиленом.


Датчики температуры воздуха лучше устанавливать в тех местах помещения, которые наиболее важны для контроля. При плохой конвекции воздуха в помещении градиент температуры может составить до 5-ти и более градусов.

Термопары

По сравнению с термометрами сопротивления термопары обладают рядом очень больших преимуществ и таких же больших недостатков. По большому счёту эти два класса приборов очень органично дополняют друг друга. И задача киповца - определить, какой датчик температуры ему нужен для той или иной задачи.

Технические требования, классификация, методы испытаний преобразователей термоэлектрических приведены в ГОСТ 6616-94. Номинальные статические характеристики приведены в ГОСТ Р 8.585-2001. В Таблице 3 представлены технические параметры наиболее применяемых в России термопар.

Тип ТП

Обозн. типа

Маркировка
цветовая
оболочки и жил +/-

Диап. измер., ⁰С

Класс допуска, пределы допускаемого отклонения для диапазона измерения,⁰С

Читайте также: