Чем отличается шар от сферы кратко

Обновлено: 02.07.2024

Шар – одна из важнейших фигур не только стереометрии, но и всего естествознания, ведь Солнце, Земля, Луна и многие другие космические объекты имеют форму шара.

План урока:

Понятие сферы и шара

Люди постоянно сталкиваются с предметами, имеющими форму шара. В большинстве спортивных игр (баскетболе, большом и настольном теннисе, футболе) используются мячи, которые по форме как раз являются шарами. Такую же форму имеют многие фрукты – яблоки, апельсины, мандарины. Более того, известно, что Земля, другие планеты и звезды, большинство крупных спутников также представляют собой шары.

Важно отличать шар от сферы. Сферой называют только поверхность шара. Сам же шар является объемной фигурой, к нему относят всю часть пространства, ограниченную сферой.

Дадим строгие определения сферы и шара:

Отрезок, соединяющий точку на сфере с ее центром, именуется радиусом сферы. Он же называется и радиусом шара, заключенного внутри этой сферы.

Проходящий через центр сферы отрезок, чьи концы принадлежат сфере, именуется диаметром сферы. Сама сфера считается частью шара, также как и окружность считается частью круга.Показывают шар или сферу на рисунке так:

Из определения сферы явно вытекает тот факт, что все ее радиусы одинаковы. Это в свою очередь означает, что центр сферы – это середина диаметра, и диаметр вдвое длиннее радиуса.

Заметим, что сфера является телом вращения. Она получается при повороте полуокружности вокруг ее диаметра:

Уравнение сферы

В планиметрии мы уже изучали уравнения линии. Так назывались ур-ния с двумя переменными, каждое решение которых соответствовало точке на координатной плос-ти, принадлежавшей заданной линии. Если же точка не принадлежала линии, то ее координаты решением соответствующего ур-ния не являлись. В частности, нам удалось получить уравнения прямой и окружности.

Аналогично в стереометрии вводится понятие уравнения поверхности. Так как в пространстве используются уже три координаты (х, у и z), то ур-ния поверхности содержат три переменных. Координаты всякой точки, принадлежащей поверхности, будут являться решениями ур-ния этой поверхности. И наоборот, координаты точки, не принадлежащей поверхности, будут обращать ур-ние поверхности в неверное равенство.

Выведем ур-ние сферы. Пусть ее центр располагается в точке С с координатами (х0, у0, z0), а радиус обозначен как R. Возьмем произвольную точку А на сфере. По определению сферы расстояние между А и С должно составлять R:

Точки, координаты которых удовлетворяют этому неравенству, находятся от центра сферы на расстоянии меньше ее радиуса. Это значит, что они находятся внутри сферы, то есть принадлежат шару, чьей поверхностью является рассматриваемая сфера. Если же координаты точки удовлетворяют неравенству

то можно утверждать, что точка находится вне пределов сферы, то есть она не принадлежит ни сфере, ни шару.

Задание. Напишите уравнение сферы, центр которой располагается в точке (2; – 4; 7) и чей радиус равен 3.

Решение. Здесь мы просто подставляем координаты центра сферы и ее радиус в ур-ние сферы:

Задание. Есть сфера с радиусом 9, чей центр располагается в точке О(2; 3; 4). Определите, какие из следующих точек будут принадлежать этой сфере: А(1; 7; – 4), В(0; 6; 10), С(– 2; – 1; 11), D(5; 6; 8).

Решение. Сначала составляем уравнение сферы, описанной в условии:

Равенство неверное, значит, В не располагается на сфере (более того, раз 49 2 .

Задание. Некоторое тело представляет собой шар, внутри которого есть полость, также имеющая форму шара, причем центры этих шаров совпадают. Докажите, что площадь сечения этого тела, проходящего через центр шаров, совпадает с площадью сечения, являющегося касательной к внутреннему шару.

Решение. Обозначим радиус большей сферы как R, а радиус меньшей (внутренней сферы) как r. Площадь центрального сечения в виде кольца (показано синим цветом) представляет собой разницу между площадью большого круга с радиусом R и малого с радиусом r:

Задание. Сфера радиусом 5 см касается каждой стороны треугольника со сторонами 13, 14 и 15 см. Каково расстояние между центром этой сферы и плос-тью треугольника?

Решение. Обозначим вершины треугольника точками А, В и С. Пусть

Заметим, что плос-ть АВС – секущая, а само сечение имеет форму окруж-ти. Эта окруж-ть будет касаться сторон ∆АВС, то есть она является вписанной окруж-тью. Как вычислить ее радиус НK?

Площадь ∆АВС можно найти по формуле Герона. Предварительно найдем полупериметр ∆АВС:

Пересечение двух сфер

Пусть есть две пересекающиеся сферы с центрами в точках О1 и О2 с радиусами R1 и R2 соответственно. Какую форму будет иметь линия L, по которой они пересекаются?

Эта линия является множеством точек, которые принадлежат как первой, так и второй сфере. Обозначим две произвольные точки этой линии буквами А и В:

Проведем радиусы О1А, О1В, О2А и О2В. Теперь сравним ∆АО1О2 и ∆ВО1О2. Сторона О1О2 у них общая, а другие стороны попарно равны как радиусы сфер:

Получается, что ∆АО1О2 и ∆ВО1О2 равны. Теперь из точек А и В опустим высоты на прямую О1О2. Из равенства ∆АО1О2 и ∆ВО1О2 вытекает два факта:

  • эти высоты упадут в одну точку Н;
  • эти высоты будут одинаковы, то есть АН = НВ.

Другими словами, А и В равноудалены от Н. Получается, что точки А и В находятся на окруж-ти, центр которой – точка Н. Заметим, что О1О2 – перпендикуляр к плоскости окружности, ведь О1О2⊥АН и О1О2⊥ВН.

Точки А и В были выбраны произвольно, поэтому можно утверждать, что любые точки линии L будут находиться на одной окруж-ти. Докажем и обратное утверждение – любая точка, лежащая на этой окруж-ти, будет принадлежать линии L. Возьмем на окруж-ти какую-нибудь точку С и построим радиус НС:

Теперь сравним ∆О1НС и ∆О1НА. Они прямоугольные, ведь О1Н – перпендикуляр к плос-ти окружности. Катет О1Н у них общий, а катеты АН и НС одинаковы как радиусы окруж-ти. Значит, ∆О1НС и ∆О1НА равны, и потому

Это равенство означает, что С принадлежит сфере с центром в О1. Аналогично рассмотрев ∆О2НС и ∆О2НА, можно показать, что С также принадлежит и второй сфере. Тогда С принадлежит пересечению этих сфер.

Итак, всякая точка линии L лежит на окруж-ти с центром Н, и наоборот, каждая точка этой окруж-ти лежит на линии L. Это означает, что L как раз и является этой окружностью.

Отметим ещё один факт: по неравенству треугольника отрезок О1О2 должен быть меньше суммы отрезков О1А и О2А, то есть суммы радиусов сфер.

Задание. Сферы имеют радиусы 25 см и 29 см, а расстояние между их центрами составляет 36 см. Вычислите радиус окруж-ти, по которой они пересекаются.

Решение. Пусть А – одна их точек сечения. Искомый радиус обозначим как АН. В итоге получим такую картинку:

Площадь сферы

Сферическая поверхность, как и всякая другая ограниченная поверхность, имеет какую-то площадь. Напомним, что для вычисления площадей цилиндрической и конической поверхности мы строили их плоские развертки и находили площади уже этих разверток, используя формулы из планиметрии. Оказывается, что для сферы построить такую развертку невозможно. Мы не будем доказывать строго этот факт, но он известен из географии – любая карта Земли, которая как раз и должна быть разверткой сферической поверхности нашей планеты, является неточной и сильно искажает форму и размеры континентов. Если бы существовал способ построить точную развертку, то и географические карты не имели бы таких искажений.

Однако вычислить площадь сферы всё же можно по известной формуле:

Сейчас мы не будем доказывать эту формулу. Отметим лишь, что для ее получения необходимо использовать интегралы.

Задание. Какова площадь сферы с радиусом 5 см?

Решение. Просто используем формулу:

Ответ: 100π см 2 .

Вписанные и описанные сферы

Если каждая точка многогранника лежит на поверхности сферы, то говорят, что многогранник вписан в сферу. Тогда сферу именуют описанной, а многогранник – вписанным.

Если же сфера касается каждой грани многогранника, то уже наоборот, сфера вписана в многогранник. Тогда уже сфера будет вписанной фигурой, а многогранник – описанной.

Заметим, что не в каждый многогранник может быть вписанным или описанным. Например, в куб вписать сферу можно, а в прямоугольный параллелепипед, измерения которого отличаются, уже вписать сферу не получится.

Надо отметить, что в сферу можно вписать не только в многогранник, но и другие геометрические фигуры, в частности конус и цилиндр. Здесь нужно уточнить (без доказательства), что если касание плос-ти и сферы происходит только в одной точке, то цилиндрическая и коническая поверхности касаются сферы уже по окруж-ти.

Задание. Правильная пирамида вписана в сферу. Докажите, высота этой пирамиды проходит через центр сферы.

Решение. Опустим из центра сферы О перпендикуляр ОН на основание пирамиды. Далее возьмем произвольную вершину Х основания пирамиды, и соединим ее с Н отрезком ХН. По теореме Пифагора можно вычислить длину ХН (радиус сферы ОХ обозначим, буквой R):

Получилось, что расстояние ХН не зависит от самой точки Х. То есть все вершины основания равноудалены от точки, то есть Н – центр описанной около основания окруж-ти. Это означает, что перпендикуляр ОН одновременно является высотой правильной пирамиды, ч. т. д.

Задание. Вычислите радиус описанной сферы, в которую вписан правильный тетраэдр со стороной а.

Решение. Правильный тетраэдр можно считать правильной треугольной пирамидой, поэтому (согласно предыдущей задаче) из центра сферы О можно опустить перпендикуляр на основание АВС, который упадет в точку Н – центр основания. Так как тетраэдр правильный, то ∆АВС – равносторонний, то есть Н – эта точка пересечения и медиан, и высот. Опустим из А высоту АК, она пройдет через Н. Так как АК – ещё и медиана, то

Далее найдем длину АН. Вспомним, что АН – медиана, а точка пересечения медиан Н делит их в отношении 2:1. Это значит, что

Буквой R здесь обозначен радиус описанной сферы. Осталось применить теорему Пифагора к ∆АНD:

Задание. Докажите что вокруг любого тетраэдра можно описать сферу.

Решение. Обозначим вершины произвольного тетраэдра буквами А, В, С и D. Далее на грани АВС отметим точку К – центр окруж-ти, описанной около ∆АВС. Аналогично на грани АВD отметим Н – центр окруж-ти, описанной около ∆АВD:

Напомним, что центры описанных окружностей располагаются в той точке, где пересекаются серединные перпендикуляры. Это значит, что если мы из К и Н опустим перпендикуляры на ребро АВ, то эти перпендикуляры будут серединными, то есть они попадут в одну точку М, являющуюся серединой ребра АВ.

Мы получили плос-ть НМК. Заметим, что НМК⊥АВ по признаку перпендикулярности прямой и плоскости, так как АВ⊥МН и АВ⊥МК. Но тогда АВС⊥МНК уже по признаку перпендикулярности плоскостей, ведь АВС проходит через АВ, являющийся перпендикуляром к НМК. По той же причине и АВD⊥НМК.

Далее проведем через К перпендикуляр m к АВС. Он должен будет принадлежать НМК, ведь НМК⊥АВD. Аналогично и через Н проведем перпендикуляр n к АВD, который также будет принадлежать НМК.

В плос-ти НМК есть две прямые, mи n. Они либо параллельны, либо пересекаются. Но перпендикуляры к двум плос-тям могут быть параллельны только в случае, если сами эти плос-ти параллельны (или совпадают). Но АВС и АВD непараллельны и не совпадают, поэтому m и n непаралелльны, то есть они пересекаются в какой-то точке О.

Покажем, что точка О равноудалена от всех вершин тетраэдра. Сравним ∆АОК и ∆СОК. Они прямоугольные, ведь ОК – перпендикуляр к АВС. ОК – общий катет, а катеты АК и СК одинаковы как радиусы описанной окруж-ти. Значит, ∆АОК и ∆СОК равны, ОА = ОС. Аналогично рассмотрев ∆АОК и ∆ВОК, приходим к выводу, что ОА = ОВ. Далее рассматриваем ∆ОНD и ∆ОНА и получаем, что ОА = ОD. Эти три равенства все вместе означают, что О равноудалена от точек А, В, С и D. А это значит, что на сфере с центром О и радиусом ОА будут лежать все вершины тетраэдра, то есть такая сфера окажется описанной, ч. т. д.

Примечание. Несложно доказать, что описанная сфера будет единственной. Действительно, если бы около тетраэдра можно было описать две различных сферы, то они пересекались бы в точках А, В, С и D. Сферы пересекаются по окруж-ти, то есть А, В, С и D должны лежать на одной окруж-ти, но это невозможно, ведь они не располагаются в одной плос-ти. Значит, двух описанных сфер существовать не может.

Доказанное в задаче утверждение можно сформулировать несколько иначе:

Сегодня мы изучили сферу – одну из важнейших геометрических фигур. Именно сферическую форму имеют звезды и планеты. Жидкость, оказавшаяся в невесомости, также принимает форму шара. Важно запомнить, что сечение сферы имеет форму окруж-ти, и касательные к сфере обладают почти такими ми же свойствами, как и касательные к окруж-ти в планиметрии.

Сфера - это оболочка, граница шара. Вот когда надувается воздушный шарик, это будет сфера. А когда шар выточен из дерева или металла - это шар. То есть не только оболочка, но и то, что внутри. Точки сферы расположены на одинаковом расстоянии от центра. А точки шара на расстоянии равном радиусу ИЛИ МЕНЕЕ. То есть еще то, что внутри.

грубо говоря-шар это апельсин (с серединой) а сфера это воздушный шар ик (без середины)
А определение-так: сфера-это часть пространства, которая находится на заданном расстоянии от данной точки, называемой центром
Шар-это множество точек пространства, для которых выполняется неравенство радиус меньше или равен расстоянию

Шар в отличие от сферы может содержит в себе не только поверхность, но и внутреннюю часть поверхности, как например внутри детского воздушного шарика гелий будет этим содержимым, а вот сфера это только лишь поверхность шара


Сфера и шар – это аналог круга и окружности в трехмерном пространстве. Стоит поговорить о каждой из этих фигур, выделить сходства и различия, а так же формулы, свойственные этим фигурам.

Трехмерное пространство

Большая часть геометрических построений производится в плоскости, но в старших классах начинают изучать трехмерные фигуры. Двухмерное пространство имеет только две характеристики: длину и ширину. В трехмерных областях добавляется высота. В математике 6 класса изучаются отдельные 3д фигуры.

На плоскости фигуру характеризовала площадь и периметр. В трехмерных объектах к ним прибавляется объем.

Трехмерное пространство

Рис. 1. Трехмерное пространство.

Кроме того, имеется ряд специфических свойств 3д фигур. Их может пересекать прямая и плоскость, могут имеется секущие плоскости, которые принимают формы других фигур.

Применение 3д фигур для составления задач значительно усложняет их, но в то же время делает куда более интересными. Приведем определения шара и сферы, после чего попробуем выделить различия этих фигур.

Шар и сфера – это аналог круга и окружности в плоскости. Шар представляет собой фигуру, полученную вращением полукруга вокруг одной точки.

Шар имеет площадь поверхности: $S=4pir^2$

Радиус это отрезок, соединяющий центр шара и любую из точек на его поверхности.

Объем показывает, какое пространство занимает фигура. Чтобы понять, что такое объем нужно представить себе фигуру полой. Тогда объем это количество воды, которое можно налить в эту фигуру

Шар, как и любую другую трехмерную фигуру, можно рассечь плоскостью. Секущей плоскостью шара является круг, центр которого можно найти, опустив из центра шара перпендикуляр на окружность.


Рис. 2. Сечение шара.

Хоть в школьном курсе такие ситуации не случаются, но нужно понимать, что шар может быть рассечен плоскостью под углом. Но даже в этом примере, секущая плоскость останется шаром.

Сфера

Сфера это фигура, представляющая собой множество точек в пространстве, равноудаленных от центра сферы. Сфера:

  • Имеет те же формулы объема и площади поверхности, что и шар.
  • Секущая плоскость сферы это окружность
  • Центр секущей окружности, находится так же, как и в случае с шаром

В чем различие

Тогда возникает вопрос, а чем отличается шар от сферы кроме определения? Дело в том, что различия шара и сферы куда более размыты, нежели различия круга и окружности. Сфера так же имеет объем и площадь поверхности.

Пожалуй, кроме определения, разница заключается в том, что в задачах никогда не находят объем сферы. Как правило, ищут объем шара. Это не значит, что у сферы нет объема. Это трехмерная фигура, поэтому объем у нее есть.

Просто проводится аналогия с окружностью, у которой нет площади. Это не правило, но скорее традиция, которую нужно запомнить: в геометрии не приветствуется формулировка объем сферы.

Еще одно отличие, которое можно считать более или менее значимым: секущая плоскость сферы: окружность, которая не имеет внутреннего пространства, но имеет длину. Секущая плоскость шара: круг, который имеет площадь и не имеет длины окружности. Поэтому стоит быть аккуратным в формулировках задачи, чтобы не было ошибок из-за подобных мелочей.

Что мы узнали?

Мы узнали, что такое сфера и шар. Поговорили об их сходствах и различии. Узнали, что различий у этих фигур почти нет. Решили, что не стоит приводить такую формулировку, как объем сферы.

В геометрии существует ряд базовых понятий, от которых принято отталкиваться при описании того или иного предмета. К таковым относится определение геометрической точки. Некая совокупность точек, подпадающих под конкретное свойство, называется геометрической фигурой. Сфера и шар – абстрактные объекты, состоящие из множества геометрических точек. Многие считают эти фигуры одинаковыми, но это заблуждение. В чем же разница между сферой и шаром?


Сфера (от древнегреческого σφαῖρα, изначально обозначающего мяч/шар) — это геометрическая равноудаленная совокупность точек пространства. Центром сферы является некая заданная точка. Все остальные точки расположены на равном от нее расстоянии, которое называется радиусом.


В качестве вывода можно сказать, что сфера и шар являются абстрактными геометрическими объектами, задаваемыми через некоторое геометрическое место точек пространства. Однако только шар является полноценным геометрическим телом, поскольку включает в себя не только описание ограничивающей его поверхности, но и всего внутреннего пространства. С такой точки зрения сфера — это внешняя граница задаваемого в пространстве шара.

Читайте также: