Чем отличается индукция от самоиндукции кратко

Обновлено: 19.05.2024

Как мы уже выяснили, электрический ток способен порождать магнитные поля. Возникает вопрос: может ли магнитное поле вызывать появление электрического тока? Эта задача была решена английским физиком Майклом Фарадеем, открывшим явление электромагнитной индукции в 1831 г.^Свитый в катушку проводник замыкается на гальванометре (рис. 3.19). Если вдвигать в катушку постоянный магнит, то гальванометр покажет наличие тока в течение всего промежутка времени, пока магнит перемещается относительно катушки. При выдергивании магнита из катушки гальванометр показывает наличие тока противоположного направления. Изменения направления тока происходит при изменении вдвигаемого или выдвигаемого полюса магнита.

Аналогичные результаты наблюдались при замене постоянного магнита электромагнитом (катушкой с током). Если обе катушки закрепить неподвижно, но в одной из них менять значение тока, то в этот момент в другой катушке наблюдается индукционный ток.

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ состоит в возникновении электродвижущей силы (э.д.с.) индукции в проводящем контуре, через который меняется поток вектора магнитной индукции. Если контур является замкнутым, то в нем возникает индукционный ток.

Открытие явления электромагнитной индукции:

1) показало взаимосвязь между электрическим и магнитным полем;

2) предложило способ получения электрического тока с помощью магнитного поля.

Основные свойства индукционного тока:

1. Индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции.

2. Сила индукционного тока не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения.

Опытами Фарадея было установлено, что величина электродвижущей силы индукции пропорциональна скорости изменения магнитного потока, пронизывающего контур проводника (закон электромагнитной индукции Фарадея)

, или , (3.46)

где (dF) – изменение потока в течении времени (dt).МАГНИТНЫМ ПОТОКОМ или ПОТОКОМ МАГНИТНОЙ ИНДУКЦИИназывается величина, которая определяется на основе следующего соотношения: (магнитный поток через поверхность площадью S): Ф=ВScosα, (3.45), угол a – угол между нормалью к рассматриваемой поверхности и направлением вектора индукции магнитного поля

единица магнитного потока в системе СИ носит название вебер – [Вб=Тл×м 2 ].

Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было обнаружено в 1831 г. М. Фарадеем. Ток, возникающий при электромагнитной индукции, называют индукционным. Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея.

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностьюкатушки. Единица индуктивности в СИ называется генри (Гн).

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было обнаружено в 1831 г. М. Фарадеем. Ток, возникающий при электромагнитной индукции, называют индукционным. Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея.

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностьюкатушки. Единица индуктивности в СИ называется генри (Гн).

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Индукция – это когда изменение внешнего магнитного поля вызывает появление в замкнутом контуре эдс (закон электромагнитной индукции Фарадея).

Самоиндукция – это когда магнитное поле создаётся самим контуром, и появление эдс вызывается изменением этого собственного поля (вызванное изменением, например, тока в этом контуре). Явление самоиндукции открыто Дж. Генри.

При постоянном токе напряжение на (идеальной) катушке индуктивности равно нулю. Такая катушка представляет собой просто кусок провода. Но попытка изменить ток приводит к изменению создаваемого катушкой магнитного поля, а уж изменяющееся магнитное поле наводит эдс по фигу в чём. Вот что попало в область изменяющегося поля (в частности и сама эта катушка) – в том и наводит.

Напряжение самоиндукции определяется формулой e = L*dI/dt, где L – индуктивность контура.

Хотя индукция и самоиндукция связаны по своей физической природе (обе есть результат изменения магнитного поля), они могут существовать и по отдельности. В частности, если магнитное поле создаётся внешним источником – да хоть постоянным магнитом, движущимся относительно контура, то эдс индукции возникает, а вот самоиндукция – не обязательно. Верно и обратное. Если нет ещё одного контура, кроме того, который создаёт изменяющееся поле и в котором, стало быть, возникает самоиндукция, то и явления индукции нету.

По сути явление самоиндукции – это частный случай явления электромагнитной индукции.

Электромагнитная индукция наблюдается при любом изменение магнитного потока через замкнутый проводящий контур (рамку, катушку) и проявляется в том, что возникает индукционный ток в этом контуре.

Например, при введении постоянного магнита или катушки с током в контур или его удаления, при приближении магнита или катушки с током, при включении и выключении тока в катушке, при изменении тока реостатом. Или все то же самое, но уже движется сам контур. Обычно все эти примеры называют примерами явления электромагнитной индукции, то есть изменение магнитного потока связана с изменением внешнего магнитного поля, созданного другим объектом.

Явление электромагнитной индукции, которое происходит в одном и том же замкнутом контуре (катушке) называется самоиндукцией. Оно проявляется в том, что изменение тока в контуре (магнитного потока) замедляется (происходит с запаздыванием). Объясняется это тем, что индукционный ток возникает в том же проводнике, что и переменный ток, вызвавший его. Он всегда направлен так, что препятствует изменению магнитного потока: если ток увеличивается, то индукционный ток направлен против, если ток уменьшается, то ток направлен в ту же сторону (правило Ленца). В этом и состоит отличие в деталях, а по сути это одно и то же.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Индукция и индуктивность в чем разница

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку :), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Индукция и индуктивность в чем разница

Индукция и индуктивность в чем разница

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

Индукция и индуктивность в чем разница

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Индукция и индуктивность в чем разница

Давайте разберемся, что за величину входят в это выражение:

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

Катушка индуктивности в цепи постоянного тока.

Индукция и индуктивность в чем разница

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Индукция и индуктивность в чем разница

Индукция и индуктивность в чем разница

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

Индукция и индуктивность в чем разница

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

Индукция и индуктивность в чем разница

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

Индукция и индуктивность в чем разница

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Индукция и индуктивность в чем разница

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Индукция и индуктивность в чем разница

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Индукция и индуктивность в чем разница

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: , 0" title="Rendered by QuickLaTeX.com" height="12" w />, участок 3-4: 0" title="Rendered by QuickLaTeX.com" height="12" w />, ). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника). А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока). И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

Индукция и индуктивность в чем разница

Где – круговая частота: . – это частота переменного тока.

Индукция и индуктивность в чем разница

Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Индукция и индуктивность в чем разница

Индукция и индуктивность в чем разница

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Индукция и индуктивность в чем разница

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Чтобы задать вопрос учителю, оплатите абонемент

У вас уже есть абонемент? Войти

Волнует то, что половина формул в курсе просто взята из воздуха и никак не объясняется. Например формула для магнитной индукции с коэффициентом мю. Откуда взялся этот коэффициент? Почему 2пr в знаменателе? Почему в формуле магнитного потока не учитывается угол между нормалью к поверхности и вектором магнитной индукции? Или он по стандарту здесь считается равным нулю но нам об этом не сказали? И вообще о какой поверхности мы говорим? И так весь курс. Недосказанностей больше, чем информации. В итоге, чтобы хоть как-то решать задачи приходится просто заучивать непонятные наборы констант и переменных совсем не понимая, что за ними скрывается.

а в чом разница между самоиндукция и просто индукция

Ответ кроется в названии. Индукция в целом – возникновение электрического тока в проводнике под действием магнитного поля (изменение потока магнитного поля). А самоиндукция – вид индукции, когда действие оказывает магнитное поле созданное самим проводником.

Я правильно понял? что лампочка загорается медлинее потому что едет сопративление

Действительно, лампочка загорается медленнее, поскольку при изменении силы тока в катушке возникает так называемое "реактивное сопротивление". Но по своей природе оно отличается от сопротивления, которое присутствует в проводниках, ведь сопротивление проводников связано со столкновениями электронов с узлами кристаллической решетки. Что же касается реактивного сопротивления, то оно не изучается подробно в школьном курсе. Поэтому самоиндукцию проще представить следующим образом: при увеличении тока (замкнули цепь) в катушке возникает еще один ток, направленный в другую сторону. Таким образом, суммарный ток будет меньше. Соответственно, лампочка загорается дольше.

Вопрос, всё понятно со скоростью накала лампочек, но почему одна из них горит слабже другой?

Опыт демонстрируется в течение небольшого времени. Лампочка еще не успевает загореться. Если проводить опыт более длительное время, то накал лампочек станет практически одинаковым.

а как найти самоиндукционный ток, возникающий в катушке?

Для определения тока самоиндукции необходимо воспользоваться законом Ома и разделить ЭДС самоиндукции на сопротивление контура (катушки)

Если катушка намотана против часовой стрелки, то будет замедление, а если же я наматаю катушку по часовой стрелке?? Будет ли ускоренное зажигание лампочки??

Измерения показывают, что переменный ток в соленоиде достигает максимального значения на четверть периода позже относительно напряжения. Попробуем разобраться в этом явлении. Допустим, напряжение описывается функцией u = U sin ωt (42.1), где частота ω равна 50 Гц. Это значит, что период напряжения равен 20 мс, а одна четверть периода равна 5 мс. Для электрона это приличное время. В первую миллисекунду после включения генератора ток в обмотке, конечно, есть. Этот циркулирующий ток создает поток поля внутри соленоида. Фарадей называл его магнитным, но суть от этого не меняется. Главное, что поле действует на электроны проводимости по правилу Лоренца. Легко определить, что сила Лоренца вытесняет электроны (т. е. породивший её ток) на поверхность провода обмотки. Электроны вместо того, чтобы двигаться вдоль оси провода, расходятся к поверхности под углом, который зависит от частоты генератора. Величина тока в проводе падает, что равносильно появлению сопротивления XL = ωL. С другой стороны, при этом растёт концентрация электронов в приповерхностном слое провода. Здесь возникает собственное электрическое поле, которое усиливается пропорционально концентрации электронов. Напряженность этого поля растет, пока кулоновская сила отталкивания между электронами не сравняется с концентрирующей силой Лоренца. Возникает динамическое равновесие, при котором небольшой ток протекает через тонкий слой провода у его поверхности. Назовем этот ток током утечки.




Принципы Максвелла

Обратимся к закону Ома (41.2). Перепишем его в виде: u = iZ, или, с учетом (41.3): u = i (R + XL) = iR + iXL = iR + iωL (43.1). Заметим, что в (43.1) слева стоит мгновенное значение напряжения генератора. Значит, справа находится сумма двух величин, измеряемых в вольтах. Нас интересует второе слагаемое, которое зависит от частоты тока и индуктивности соленоида. Обозначим его как: uL = iωL (43.2). Слева в (43.2) стоит величина, измеряемая в вольтах, пропорциональная частоте, индуктивности, току. Очевидно, это и есть э.д.с. самоиндукции Ленца, причина тока самоиндукции. Принимая во внимание, что электроны колеблются в проводе линейно, заменим круговую частоту ω на линейную f = 1/T. Кроме того, мы должны учесть, что э.д.с. самоиндукции всегда направлена против напряжения генератора. Тогда уравнение (43.2) принимает вид: uL = – ifL = – Li/T (43.3). Мы получили уравнение, которое показывает, что изменяющийся во времени ток i/T в среднем за период T создает в проводнике встречное электрическое поле -u. Величина i/T измеряется в амперах в секунду. Очевидно, это есть скорость тока i/t, о которой писал Фарадей, когда записывал уравнение для э.д. с самоиндукции в виде: Є = – Li/t (43.4). Позже Максвелл ввел понятие магнитного потока Ф = Li (43.5). В его теории уравнение Фарадея выглядит как: Є = – Ф/t (43.6). Заметим, по Ленцу закон самоиндукции имеет вид: e = – Li/t (43.7), что выглядит ближе к уравнению (43.4).

Мы составили уравнение (43.8), исходя из закона Ома для переменного тока. Обобщим наши результаты в виде двух принципов электродинамики Максвелла и соответствующей энергетической схемы.

1. Переменное электрическое напряжение u от внешнего генератора создает в витке провода циркуляцию переменного тока i. Циркуляция переменного тока i создает внутри витка провода поток переменного поля Ф = Li.

2. Поток переменного поля Ф создает в проводе переменное напряжение самоиндукции uL = – Ф/t, которое направлено против напряжения генератора u.

3. Учитывая, что напряжение характеризует работу поля, преобразование энергии в соленоиде происходит по следующей схеме: напряжение генератора (u) → циркуляция тока (i) → поток поля (Ф) → напряжение самоиндукции (-uL) → ток самоиндукции (-iL).

Измерения показывают, что переменный ток в соленоиде достигает максимального значения на четверть периода позже относительно напряжения. Попробуем разобраться в этом явлении. Допустим, напряжение описывается функцией u = U sin ωt (42.1), где частота ω равна 50 Гц. Это значит, что период напряжения равен 20 мс, а одна четверть периода равна 5 мс. Для электрона это приличное время. В первую миллисекунду после включения генератора ток в обмотке, конечно, есть. Этот циркулирующий ток создает поток поля внутри соленоида. Фарадей называл его магнитным, но суть от этого не меняется. Главное, что поле действует на электроны проводимости по правилу Лоренца. Легко определить, что сила Лоренца вытесняет электроны (т. е. породивший её ток) на поверхность провода обмотки. Электроны вместо того, чтобы двигаться вдоль оси провода, расходятся к поверхности под углом, который зависит от частоты генератора. Величина тока в проводе падает, что равносильно появлению сопротивления XL = ωL. С другой стороны, при этом растёт концентрация электронов в приповерхностном слое провода. Здесь возникает собственное электрическое поле, которое усиливается пропорционально концентрации электронов. Напряженность этого поля растет, пока кулоновская сила отталкивания между электронами не сравняется с концентрирующей силой Лоренца. Возникает динамическое равновесие, при котором небольшой ток протекает через тонкий слой провода у его поверхности. Назовем этот ток током утечки.

Принципы Максвелла

Обратимся к закону Ома (41.2). Перепишем его в виде: u = iZ, или, с учетом (41.3): u = i (R + XL) = iR + iXL = iR + iωL (43.1). Заметим, что в (43.1) слева стоит мгновенное значение напряжения генератора. Значит, справа находится сумма двух величин, измеряемых в вольтах. Нас интересует второе слагаемое, которое зависит от частоты тока и индуктивности соленоида. Обозначим его как: uL = iωL (43.2). Слева в (43.2) стоит величина, измеряемая в вольтах, пропорциональная частоте, индуктивности, току. Очевидно, это и есть э.д.с. самоиндукции Ленца, причина тока самоиндукции. Принимая во внимание, что электроны колеблются в проводе линейно, заменим круговую частоту ω на линейную f = 1/T. Кроме того, мы должны учесть, что э.д.с. самоиндукции всегда направлена против напряжения генератора. Тогда уравнение (43.2) принимает вид: uL = – ifL = – Li/T (43.3). Мы получили уравнение, которое показывает, что изменяющийся во времени ток i/T в среднем за период T создает в проводнике встречное электрическое поле -u. Величина i/T измеряется в амперах в секунду. Очевидно, это есть скорость тока i/t, о которой писал Фарадей, когда записывал уравнение для э.д. с самоиндукции в виде: Є = – Li/t (43.4). Позже Максвелл ввел понятие магнитного потока Ф = Li (43.5). В его теории уравнение Фарадея выглядит как: Є = – Ф/t (43.6). Заметим, по Ленцу закон самоиндукции имеет вид: e = – Li/t (43.7), что выглядит ближе к уравнению (43.4).

Мы составили уравнение (43.8), исходя из закона Ома для переменного тока. Обобщим наши результаты в виде двух принципов электродинамики Максвелла и соответствующей энергетической схемы.

1. Переменное электрическое напряжение u от внешнего генератора создает в витке провода циркуляцию переменного тока i. Циркуляция переменного тока i создает внутри витка провода поток переменного поля Ф = Li.

2. Поток переменного поля Ф создает в проводе переменное напряжение самоиндукции uL = – Ф/t, которое направлено против напряжения генератора u.

3. Учитывая, что напряжение характеризует работу поля, преобразование энергии в соленоиде происходит по следующей схеме: напряжение генератора (u) → циркуляция тока (i) → поток поля (Ф) → напряжение самоиндукции (-uL) → ток самоиндукции (-iL).

Читайте также: