В классе 15 девочек и 17 мальчиков сколько существует способов выбора одного ведущего для школьного

Обновлено: 05.07.2024

Часто в жизни возникает потребность определить количество возможных вариантов развития событий. Существует специальная математическая дисциплина, посвященная подобным вопросам. Она называется комбинаторикой.

План урока:

Комбинаторика и ее основные принципы

Очевидно, что если в конечном множестве содержится n элементов, то есть ровно n способов выбрать один из них.

Пример. В классе 15 человек. Сколькими способами учитель может назначить одного из них ответственным за чистоту доски?

Ответ. Таких способов ровно 15.

В комбинаторике существует два основных правила. Первое из них называется правилом сложения.

Несмотря на формулировку, по сути это очень простое правило.

Пример. В магазине продается 14 телевизоров Panasonic и 17 телевизоров Sony. Петя хочет купить один телевизор. Сколько у него вариантов покупки?

Решение. По правилу сложения Петя может выбрать один из 14 + 17 = 31 телевизоров.

Ответ: 31 телевизор.

Особое значение имеет второе правило, которое называют правилом умножения.

Проиллюстрируем это правило.

Решение. Тренер может составить 15•20= 300 разнополых пар из своих воспитанников.

Пример. Пете нужно купить технику для компьютера. В магазине продается 20 различных клавиатур, 25 моделей геймпадов и 30 компьютерных мышей. Купить надо по одному экземпляру каждого из этих устройств. Сколько вариантов покупки есть у него?

Правила сложения и умножения можно комбинировать.

Пример. Сколько слов не более чем из трех букв можно составить, используя алфавит, содержащий ровно 30 букв?

Решение. Очевидно, что слов из одной буквы можно составить ровно 30. Количество двухбуквенных слов равно количеству пар, которые можно составить из этих букв, то есть 30•30 = 900. Трехбуквенных слов можно составить 30•30•30 = 27000. Всего же слов длиною не более 3 букв будет

30 + 900 + 27000 = 27930

Далее мы изучим основные понятия комбинаторики – перестановки, размещения, сочетания.

Перестановки

Рассмотрим простейшую комбинаторную задачу. На полке расставляют по порядку книги. Их ставят вертикально друг за другом. Сколькими способами можно расставить на полке 2 книги? Очевидно, что двумя:

Либо синяя книжка будет первой слева, либо она будет находиться в конце полки, третьего варианта здесь нет. Здесь условно считается, что варианты, когда между книгами есть зазоры, идентичны вариантам без зазоров:

То есть нас интересует исключительно порядок, в котором стоят книги. Каждый из найденных вариантов называется перестановкой книг. Перестановкой называют любое конечное множество, для элементов которого указан порядок элементов.В комбинаторике перестановки являются одними из основных объектов изучения.

Например, если в забеге на 100 метров стартует 8 спортсменов, то они образуют множество участников забега. После финиша становится известно, кто занял 1-ое место, кто оказался вторым или третьим, а кто стал последним. Результат забега будет перестановкой, ведь он представляет собой список спортсменов с указанием их мест, то есть он определяет порядок между ними.

Вернемся к примеру с книгами. Обозначим количество возможных перестановок n элементов как Рn. Две книжки можно расставить двумя разными способами, поэтому Р2 = 2. Обозначим эти перестановки как АБ и БА. Сколько способов расстановки есть в случае трех книжек? Их все можно получить из вариантов с 2 книжками, добавляя между ними книгами ещё один том:

Видно, что между 2 книгами есть три позиции, на которые можно поставить 3-ий том. Общее количество вариантов равно произведению числа этих позиций и количества вариантов для 2 книг, то есть Р3 = 3•Р2 = 3•2 = 6:

Итак, мы имеем 6 перестановок для 3 книг:

А сколько перестановок существует для 4 книг? Снова-таки, между тремя книгами 4-ый том можно поставить четырьмя способами:

То есть из перестановки трех книг АБВ можно получить 4 перестановки:

Всего существует 6 перестановок для 3 книг (Р3 = 6), и для каждой из них можно построить 4 перестановки из 4 книг. Получается, что общее количество перестановок 4 книг равно

Продолжая подобные рассуждения, можно убедиться, что количество перестановок 5 предметов в 5 раз больше, чем перестановок для 4 объектов:

И вообще, если число перестановок n объектов равно Рn, то количество перестановок (n + 1)объекта равно в (n + 1)раз больше:

При этом отметим, что 1 книгу можно расставить на полке только одним способом:

То есть Р1 = 1. Теперь выпишем значения чисел Р при разном количестве переставляемых предметов, используя формулуРn+1 = (n + 1)Рn

Видно, что количество перестановок n объектов равно произведению всех натуральных чисел от 1 до n. В математике есть специальная функция для вычисления значения этого произведения. Она называется факториалом и обозначается восклицательным знаком.

Например, факториал 6 вычисляется так:

Мы убедились на примере с книгами, что количество перестановок из n различных объектов, которое обозначается как Рn, равно n!.

Относительно факториала надо заметить несколько важных моментов. Во-первых, очевидно, что факториал единицы равен 1:

Во-вторых, иногда в комбинаторных задачах приходится вычислять факториал нуля. По ряду соображений эта величина также принимается равной единице

Объяснить это можно так. Факториал числа можно представить как произведение этого числа и факториала предыдущего числа, например:

5! = 1•2•3•4•5 = (1•2•3•4)•5 = 4!•5

7! = 1•2•3•4•5•6•7 = (1•2•3•4•5•6)•7 = 6!•7

В общем случае формула выглядит так:

Из неё несложно получить, что

Подставив в эту формулу единицу, получим

Пример. Сколькими способами тренер может расставить 4 участников эстафеты 4х400 м по этапам эстафеты?

Решение. Количество таких способов равно числу перестановок 4 различных объектов Р4:

Пример. Вася решил изучать сразу 7 иностранных языков, причем на занятия по каждому из них он собирается выделить ровно один день в неделе. Сколько вариантов расписаний занятий может составить себе Вася?

Решение. В данном случае расписание занятий – это порядок, в котором Вася в течение недели будет изучать иностранные языки, например:

Такое расписание можно описать последовательностью символов:

Ф, Ан, И, К, Я, Ар, П

Создавая расписание, Вася переставляет 7 языков, поэтому общее количество расписаний равно 7!:

Пример. Сколько пятизначных цифр можно записать, используя цифры 0, 1, 2, 3, 4, причем каждую не более одного раза?

Решение. Общее количество перестановок 5 цифр составляет Р5. Однако нельзя начинать запись числа с нуля. Так как, перестановка 12340 – это пятизначное число (двенадцать тысяч триста сорок), а перестановка 03241 – не является пятизначным числом.

Расстановок, начинающихся с нуля, ровно Р4, поэтому общее количество допустимых цифр равно Р5 – Р4:

Р5 – Р4 = 5! – 4! = 120 – 24 = 96

Пример. На полке расставляют 7 книг, однако 3 из них образуют трехтомник. Тома трехтомника должны стоять друг за другом и в определенном порядке. Сколько существует способов расстановки книг?

Решение. Будем считать трехтомник одной книгой. Тогда нам надо расставить 5 книг

Пример. Необходимо расставить 7 книг на полке, но три из них принадлежат одному автору. Их надо поставить друг с другом, но они могут стоять в любом порядке. Сколько возможно перестановок книг.

Решение. Снова будем считать три книги как один трехтомник. Получается, что существует 5! = 120 вариантов. Однако каждому из них соответствует 3! = 6 расстановок книг внутри трехтомника, например:

В итоге на каждую из 120 расстановок приходится 6 вариантов расстановки трехтомника, а общее число расстановок равно, согласно правилу умножения, произведению этих чисел:

Перестановки с повторениями

До этого мы рассматривали случаи, когда все переставляемые объекты были различными. Однако порою некоторые из них не отличаются друг от друга. Пусть на полке надо расставить 3 книги, но две из них одинаковые. Сколько тогда существует перестановок? Общее число перестановок 3 книг составляет 3! = 6:

1-ая группа: БАА1А2, БАА2А1, БА1АА2, БА1А2А, БА2АА1, БА2А1А

2-ая группа: АБА1А2, АБА2А1, А1БАА2, А1БА2А, А2БАА1, А2БА1А

3-ая группа: АА1БА2, АА2БА1, А1АБА2, А1А2БА, А2АБА1, А2А1БА

4-ая группа: АА1А2Б, АА2А1Б, А1АА2Б, А1А2АБ, А2АА1Б, А2А1АБ

И снова для подсчета числа оригинальных перестановок надо из общее число расстановок поделить на количество дубликатов в каждой группе:

Для обозначения перестановок с повторениями используется запись

где n – общее количество объектов, а n1, n2, n3,… nk – количество одинаковых элементов. Например, в задаче с 4 книгами мы искали величину Р4(3, 1), потому что всего книг было 4, но они были разбиты на две группы, в одной из которых находилось 3 одинаковых тома (буквы А, А1, А2), а ещё одна книга (Б) составляла вторую группу. Мы заметили, что для вычисления числа перестановок с повторениями надо общее число перестановок делить на количество дублирующих перестановок. Формула в общем случае выглядит так:

Пример. Вася решил, что ему стоит изучать только два иностранных языка. Он решил 4 дня в неделю тратить на английский, а оставшиеся три дня – на испанский. Сколько расписаний занятий он может себе составить.

Решение. Вася должен расставить 3 урока испанского и 4 урока английского, тогда n1 = 3, а n2 = 4. Общее количество уроков равно 3 + 4 = 7. Тогда

Обратите внимание, что для удобства при делении факториалов мы не вычисляли их сразу, а пытались сократить множители. Так как в ответе любой комбинаторной задачи получается целое число, то весь знаменатель дроби обязательно сократится с какими-нибудь множителями в числителе.

Пример. У мамы есть 3 яблока, 2 банана и 1 апельсин. Эти фрукты она распределяет между 6 детьми. Сколькими способами она может это сделать, если каждый должен получить по фрукту?

Решение. Всего есть три группы фруктов. В первой находится 3 яблока, поэтому n1 = 3. Во второй группе 2 банана, поэтому n2 = 2. В третьей группе только 1 апельсин, поэтому nk = 1. Общее число фруктов равно 6. Используем формулу:

В знаменателе формулы для перестановок с повторениями мы записываем число объектов в каждой группе одинаковых предметов. Так, если переставляются 3 яблока, 2 банана и 1 апельсин, то в знаменателе мы пишем 3!•2!•1!. Но что будет, если в каждой группе будет находиться ровно один уникальный объект? Тогда мы запишем в знаменателе произведение единиц:

В итоге мы получили ту же формулу, что и для перестановок без повторов. Другими словами, перестановки без повтора могут рассматриваться просто как частный случай перестановок с повторами.

Размещения

Пусть в футбольном турнире участвуют 6 команд. Нам предлагают угадать те команды, которые займут призовые места (то есть первые три места). Сколько вариантов таких троек существует?

Сначала запишем ту команду, которая выиграет турнир. Здесь есть шесть вариантов, по количеству участвующих команд. Запишем эти варианты:

Далее выберем один из вариантов и для него укажем серебряного призера соревнований. Здесь есть только 5 вариантов, ведь 1 из 6 команд уже записана на 1-ом месте:

В данном случае из некоторого множества команд мы выбрали несколько и расположили их в каком-то порядке. То есть мы выбрали упорядоченное множество. В комбинаторике оно называется размещением.

Если общее число команд обозначить как n (в этом примере n = 6), а количество упорядочиваемых команд равно k, то количество таких размещений в комбинаторике обозначается как

В примере с командами количество размещений равнялось 120:

Для нахождения этого числа мы перемножили k (3)множителей. Первый из них был равен n(6), так как каждая из n команд могла занять первая место. Второй множитель был равен (n– 1), так как после определения чемпиона мы могли поставить на вторую позицию одну из (n– 1) команд. Третий множитель был равен (n– 2). По этой логике каждый следующий множитель будет меньше предыдущего на единицу. Например, чтобы вычислить число размещений из 7 по 4, надо перемножить 4 множителя, первый из которых равен 7, а каждый следующий меньше на 1:

Однако математически удобнее представлять это произведение как отношение двух факториалов. Для этого умножим количество размещений на дробь 3!/3!, равную единице. Естественно, число размещений из-за умножения на единицу не меняется:

Число 3 в данном случае можно получить, если из 7 вычесть 4. В общем случае из числа n надо вычесть число k. Тогда формула для вычисления количества размещений примет вид:

Решение. Для составления расписания нужно выбрать 5 предметов и расставить их по порядку. Поэтому нам необходимо найти размещение из 12 по 5:

Пример. В вагоне 10 свободных мест. В него зашло 6 пассажиров. Сколькими способами они могут расположиться в вагоне?

Решение. Из десяти мест надо выбрать шесть и указать для каждого, какому пассажиру оно соответствует. То есть каждый вариант рассадки пассажиров – это размещение из 10 по 6. Найдем их количество:

Заметим, что перестановка – это частный случай размещения, когда k = n. Действительно, если нам надо указать тройку призеров турнира, в котором участвуют 6 команд, то мы указываем размещение из 6 по 3. Но если мы указываем для каждой из 6 команд, какое место она займет в чемпионате, то это размещение из 6 по 6. С другой стороны, это расстановка одновременно является и перестановкой 6 команд. Убедимся, что в этом частном случае формула для подсчета количества размещений покажет тот же результат, что и формула для перестановок

Для примера с 6 командами это будет выглядеть так:

Здесь мы использовали тот факт, что факториал нуля принимается равным единице. Данное рассуждение можно, наоборот, использовать для того, чтобы доказать, что факториал нуля – это единица.

Сочетания

Однако порою этот порядок не имеет значения. Так, существует известная лотерея, где предлагается угадать 7 чисел из 49, которые выпадут во время розыгрыша из барабана. При этом порядок их выпадения не играет никакой роли. Игрок, выбирая эти 7 чисел, с точки зрения математики формирует сочетание из 49 по 7.

Количество возможных сочетаний из n по k обозначается буквой С:

Для вычисления количеств сочетаний из n по k сначала найдем количество аналогичных размещений. Оно вычисляется по формуле:

Однако ясно, что, как и в случае с перестановками с повторениями, некоторые сочетания мы посчитали несколько раз. Вернемся к примеру с командами. Если мы выбрали команды Л (Локомотив) , З (Зенит) и К (Краснодар), то мы можем составить ровно 3! = 6 размещений из них:

Однако все они соответствуют только одному сочетании – ЛКЗ. Таким образом, считая количество размещений, мы посчитали каждое сочетание не один, а 3! раз. Поэтому для нахождения количества сочетаний в комбинаторике надо поделить число размещений на число перестановок k элементов:

Эта формула связывает важнейшие понятия комбинаторики – перестановки, сочетания и размещения. Подставим в неё формулы для размещений и перестановок и получим:

Пример. Сколько троек призеров турнира можно составить, выбирая три футбольные команды из шести?

Решение. Посчитаем число сочетаний из 6 по 3:

Решение. В каждом из этих случаев игрок выбирает сочетание нескольких чисел. Посчитаем их число:

Ответ: 376992; 8145060; 85900584

Пример. На плоскости отмечены 8 точек, причем никакие три из них не лежат на одной прямой. Сколько различных прямых можно провести через них? Сколько треугольников и четырехугольников можно построить с вершинами в этих точках?

Решение. Для того чтобы провести прямую, достаточно выбрать любые 2 точки из 8. Общее количество прямых будет равно числу сочетаний из 8 по 2:

Заметим принципиальную важность того условия, что никакие три точки не лежат на одной прямой. Оно гарантирует, что при выборе двух различных точек мы будем получать различные прямые. Если бы, например, точки АВС лежали бы на одной прямой, то при выборе сочетаний АВ, ВС и АС мы получали бы одну и ту же прямую:

Это же условие гарантирует, что, выбрав любые 3 и 8 точек, мы сможем построить треугольник с вершинами в этих точках, а выбрав 4 точки, получим четырехугольник. Поэтому для подсчета количества треугольников и четырехугольников следует искать число сочетаний по 3 и 4:

Ответ: 28 прямых, 56 треугольников и 70 четырехугольников.

Пример. В одной урне находится 10 различных шаров с номерами от 0 до 9, а в другой – 8 различных шаров с первыми восемью буквами алфавита. По условиям лотереи ведущий вытаскивает из первой урны два шара с числами, а из второй – три шара с буквами. Для победы в лотерее надо угадать выпавшие шары. Сколько комбинаций шаров может выпасть в игре?

Решение. Посчитаем отдельно, сколькими способами можно выбрать 2 шара с цифрами из 10 и 3 шара с буквами из 8:

По правилу умножения мы должны перемножить эти числа, чтобы найти общее количество возможных вариантов:

Заметим, что выбирая, например, сочетание из 49 по 7, мы одновременно выбираем и сочетание из 49 по 49 – 7 = 42. Действительно, игрок, обводящий в кружок в лотерейном билете свои 7 счастливых чисел, одновременно и определяет остальные 42 числа, какие числа он НЕ считает счастливыми. Для наглядности запишем число сочетаний в обоих случаях:

Получили одну и ту же дробь, в которой отличается лишь последовательность множителей в знаменателе. Можно показать, что и в общем случае число сочетаний из n по k совпадает с количеством сочетаний из n по (n– k):


Кто нас сегодня посетил -->

1. В классе 15 мальчиков и 10 девочек. Сколькими способами можно выбрать двух дежурных (одну девочку и одного мальчика)?

Решение: Пятнадцатью способами можно выбрать на дежурство одного мальчика. Десять вариантов выбора девочки существует для каждого мальчика. Значит, существует 15 ∙ 10 = 150 способов выбора двух дежурных.

2. Государственные флаги многих стран состоят из горизонтальных или вертикальных полос разных цветов. Сколько существует различных флагов, состоящих из двух горизонтальных полос одинаковой ширины и разного цвета – белого, красного и синего?

12-4

Решение: Пусть верхняя полоса флага – белая (Б). Тогда нижняя полоса может быть красной (К) или синей (С). Получили две комбинации – два варианта флага. Если верхняя полоса флага – красная, то нижняя может быть белой или синей. Получим ещё два варианта флага. Пусть, наконец, верхняя полоса – синяя, тогда нижняя может быть белой или красной. Это ещё два варианта флага. Всего получили 3 • 2 = 6 комбинаций – шесть вариантов флагов.

3. Сколько трехзначных чисел можно составить из цифр 1, 3, 5, 7? Используя в записи числа каждую из них не более одного раза?

Решение: Чтобы ответить на этот вопрос, выпишем все такие числа. Пусть на первом месте стоит цифра 1. На втором месте может быть записана любая из цифр 3, 5, 7. Запишем, например, на втором месте цифру 3. Тогда в качестве третьей цифры можно взять 5 или 7. Получим два числа 135 и 137. Если на втором месте записать цифру 5, то в качестве третьей цифры можно взять цифру 3или 7. В этом случае получим числа 153 и 157. Если же, наконец, на втором месте записать цифру 7, то получим числа 173 и 175. Итак, мы составили все числа, которые начинаются с цифры 1. Таких чисел шесть: 135, 137, 153, 157, 173, 175. Аналогичным способом можно составить числа, которые начинаются с цифры 2,с цифры 5, с цифры 7. Полученные результаты запишем в четыре строки, в каждой из которых шесть чисел:
135, 137, 153, 157, 173, 175, 315, 317, 351, 357, 371, 375, 513, 517, 531, 537, 571, 573, 713, 715, 731, 735, 751, 753.
Таким образом, из цифр 1, 3, 5, 7 (без повторения цифр) можно составить 24 трехзначных числа.

12-5


Проведенный перебор вариантов проиллюстрирован на так называемом древе возможных вариантов. Ответ на вопрос, поставленный в задаче, можно получить, не выписывая сами числа. Рассуждая так. Первую цифру можно выбрать 4 способами. Так как после выбора первой цифры останутся 3, то вторую цифру можно выбрать уже 3 способами. Наконец, третью цифру можно выбрать (из оставшихся двух) 2 способами. Следовательно, общее число искомых трехзначных чисел равно произведению 4 • 3 • 2, = 24.
Ответ на поставленный в задаче вопрос мы нашли, используя комбинаторное правило умножения. Пусть имеется n элементов и требуется выбрать один за другим некоторые k элементов. Если первый элемент можно выбрать n1 способами, после чего второй элемент можно выбрать из оставшихся элементов n2 способами, затем третий элемент n3 способами и т. д., то число способов, которыми могут быть выбраны все k элементов, равно произведению n1 • n2 • n3 • …• nk.

4. Из города А в город В ведут две дороги, из города В в город С – три дороги, из города С до пристани – две дороги. Туристы хотят проехать из города А через города В и С к пристани. Сколькими способами они могут выбрать маршрут?

12-6


Решение: Путь из А в В туристы могут выбрать двумя способами. Далее в каждом случае они могут проехать из В в С тремя способами. Значит, имеются 2 • 3 вариантов маршрута из А в С. Так как из города С на пристань можно попасть двумя способами, то всего существует 2 • 3 • 2, т.е. 12 способов выбора туристами маршрута из города А к пристани.

5. Сколько существует флагов составленных из трёх горизонтальных полос одинаковой ширины и различных цветов – белого, зелёного, красного и синего? Есть ли среди них флаг Российской Федерации?

12-7


Решение: Таким образом, 4 • 3 • 2 = 24 флага. Ответ: 24 флага, да.

6. Сколько различных трехзначных чисел (без повторения цифр) можно составить из нечётных цифр, которые являются кратными 5?
Решение: Нечётные цифры: 1, 3, 5, 7, 9. В данном случае, чтобы число было кратным 5, оно должно оканчиваться на 5. Составим древо возможных вариантов.

12-8


Таким образом, 4 • 3 • 1 = 12 чисел.

7. В школьной столовой предлагают 2 первых блюда: борщ, лапша – и 4 вторых блюда: пельмени, котлеты, гуляш, рыба. Сколько обедов из двух блюд может заказать посетитель. Перечислите их.
Решение: Первое блюдо можно заказать 2 способами: борщ или лапша, а для заказа второго блюда есть 4 возможности: пельмени, котлеты, гуляш, рыба Таким образом, 2 • 4 = 8 различных обедов:
Борщ, пельмени;
Лапша, пельмени;
Борщ, котлеты;
Лапша, котлеты;
Борщ, гуляш;
Лапша, гуляш;
Борщ, рыба;
Лапша, рыба.

8. Учащиеся 6 класса решили обменяться фотографиями. Сколько фотографий для этого потребуется, если в классе 11 учащихся.
Решение: 11 человек по 10 фотографий. 11 • 10 = 110 (фотографий). Ответ: 110 фотографий.

9. Из села Ташла в село Переволоки ведут три дороги, а из села Переволоки в город Тольятти – четыре дороги. Сколькими способами можно попасть из села Ташла в город Тольятти через село Переволоки?
Решение: 3 дороги по 4 варианта, т.е. 3 • 4 = 12 (способов). Ответ: 12 способов.

10. В кафе имеются четыре первых блюда, пять вторых и два третьих. Сколькими способами посетители кафе могут выбрать обед, состоящий из первого, второго и третьего блюд?
Решение : 4 • 5 • 2 = 40 (способов) Ответ: 40 способов.

+

2 Смотреть ответы Добавь ответ +10 баллов


Ответы 2

+

+

Другие вопросы по Математике

Категория

Ребро одного куба равно 10 см, в другого в 2 раза больше. вычисли площадь поверхности каждого куба. на сколько меньше площадь поверхности маленького куба? во сколько раз.

Категория

За день ученик прочитал 9/13 книги.это на 25 стр. больше, чем половина книги.сколько всего стр.в книги.

Категория

Споиснением : у двух мышек родилось 15 детенышей. сколько детенышей родилось у каждой мышки, если у одной из них детенышей в два раза больше, чем у другой.

Категория

Трое медвежат накачали на пасеке мед. 7 бочонков они наполнили медом доверху, 7 - наполовину и 7 осталось пустыми. как можно разделить бочки, чтобы у каждого медвежонка было одинак.

Категория

Два пешехода находились на расстоянии 4.6км от друг друга. они пошли на встречу друг другу и встретились через 0.8ч. найдите скорость каждого пешехода, если скорость одного из них.

Категория

1-масса детеныша моржа в 9 раз меньше массы взрослого моржа.какова масса взрослого моржа,если вместе с детенышем их масса равна 0,9т? 2-постройте квадрат со сороной 43мм.вычислите.


Число всех сочетаний из n элементов по k обозначается символом и вычисляется по формуле:


(4)


В частности, что согласуется с тем, что у любого множества Х имеется только одно подмножество из нуля элементов ( пустое подмножество ), и только одно подмножество из n элементов (совпадающее с самим множеством X ).

При рассмотрении сочетаний очень мощно используется теория множеств!

Докажем формулу (4).


Пусть Y какое-либо произвольное подмножество множества Х , содержащее k элементов (то есть сочетание из n элементов по k ). Число таких подмножеств обозначим символом . Необходимо выяснить, чему равно это число.

Составляя, всевозможные перестановки из элементов этого множества Y получим k ! различных строк длиной k . Если указанную операцию проделать с каждым подмножеством Y содержащим k элементов, то получим всего различных строк, длиной k . С другой стороны, таким образом должны получиться все без исключения строки, длиной k без повторений, которые можно составить из элементов множества Х . Число таких строк равно , следовательно, . Выражая из этого равенства , получим:

. Формула (4) доказана.


Числа называют биномиальными коэффициентами – они входят в формулу бинома Ньютона, изучение которого также входит в программу по математике для профильных классов.


Числа обладают рядом замечательных свойств:


1. (доказывается непосредственно по формуле (4));


2. (можно доказать с помощью известной теоремы из теории множеств о том, что число различных подмножеств n - элементного множества равно 2 n ; другой способ доказательства - комбинаторный);

3. для любых (доказывается с помощью формулы (4)); на основе этого свойства строится знаменитый треугольник Паскаля.

Таблица 1.Треугольник Паскаля












Заметим, что Блез Паскаль называл числовой треугольник, начало которого содержится в таблице 1, арифметическим . Паскаль посвятил свойствам арифметического треугольника основополагающий "Трактат об арифметическом треугольнике" (1654). Справедливости ради, стоит упомянуть, что биномиальные коэффициенты были хорошо известны в Азии за много веков до рождения Паскаля. В Италии треугольник Паскаля называют треугольником Тартальи.

Пример. Во взводе 5 сержантов и 50 солдат. Сколькими способами можно составить наряд из одного сержанта и трёх солдат.

Решение. Одного сержанта из пяти можно выбрать 5-ю разными способами. Для любого из этих способов выбора сержанта трёх солдат (порядок тройки не важен) из 50-ти можно выбрать числом способов. Тогда по правилу произведения весь наряд, то есть одного сержанта и трёх солдат, можно выбрать способами.

Подобные задачи очень часто встречаются в комбинаторике и в теории вероятностей. Поэтому рассмотрим модель этой задачи и её решение.

Пусть имеется n объектов I типа и m объектов II типа. Сколькими способами можно выбрать из них k объектов I типа и s объектов II типа?

Условие задачи рекомендуется оформить таблицей, чтобы не запутаться в числах при составлении числа сочетаний.


объектов


объектов


объектов


объектов

Тогда объектов I типа из можно выбрать числом способов. Для каждого из этих способов выбора объектов I типа объектов II типа из имеющихся можно выбрать числом способов. Применяя правило произведения, получаем ответ:.

Аналогично решается задача для объектов трёх, четырёх и т.д. типов.

К подобной задаче сводятся задачи, в которых известно общее количество имеющихся объектов и общее количество тех, которые нужно выбрать.

Пример. В классе 36 человек, из которых 6 – отличники. Сколькими способами можно разбить класс на два класса по 18 человек так, чтобы отличников в каждом классе было поровну?

Решение. Разбить класс на две части по 18 человек – это всё равно, что выбрать 18 человек из 36. Отобранные 18 человек составляют один класс, оставшиеся – другой. Оформим условие задачи в указанном выше виде.

I тип - отличники

Есть 36 человек:

27 не отличников

15 не отличников


Ответ: способов.


1. Ф. У лесника 3 собаки: Астра (А), Вега (В) и Гриф (Г). На охоту лесник решил пойти с двумя собаками. Перечислить все варианты выбора лесником пары собак.


Это задача о выборе двух элементов из трех без учета порядка. Перечислим варианты выбора из А, Б, В по два: А, Б; А, В; Б, В. Если учащиеся знают формулу для числа сочетаний, то количе­ство вариантов равно: =3.

Ответ: 3 варианта.

2. Ф. Сколько существует способов выбрать троих ребят из четверых желающих дежурить по столовой?


Количество сочетаний из 4 по 3 (порядок выбора не имеет зна­чения) равно: = 4. Иначе можно рассуждать так. Вместо выбора троих дежурных выберем одного, который не будет дежурить, а трех оставшихся отправим на дежурство. Количество способов выбрать одного из четверых ребят равно 4.

Ответ: 4 способа.

М-задачи из уч. пособия А.Г.Мордковича

Т- под ред. С.А.Теляковского

3. Т. В классе 7 человек успешно занимаются матема­тикой. Сколькими способами можно выбрать из них двоих для уча­стия в математической олимпиаде?


Выбираем 2 учащихся из 7, порядок выбора не имеет значения (оба выбранных пойдут на олимпиаду как полностью равноправ­ные); количество способов выбора равно числу сочетаний из 7 по 2: способ.

Ответ: 21 способ.


Выбор из 8 по 3 без учета порядка: = 56 способов.

Ответ: 56 способов.

5. Т. Учащимся дали список из 10 книг, которые ре­комендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?


Выбор 6 из 10 без учета порядка: способов.

Ответ: 210 способов.

а) заведующий лабораторией должен ехать в командировку;

б) заведующий лабораторией должен остаться?

Из 11 человек 5 должны поехать в командировку.


а) Заведующий едет, нужно выбрать еще 4 из 10 оставшихся:способов.


в) Заведующий остается, нужно выбрать 5 из 10 сотрудников: способа.

Ответ: а) 210 способов; б) 252 способа.

7. Т. В библиотеке читателю предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими cnocoбами он может выбрать из них 3 книги и 2 журнала?

Нужно сделать два выбора: 3 книги из 10 ( способов) и 2 журнала из 4 ( способов) ; порядок выбора не имеет значения. Каждый выбор книг может сочетаться с каждым выбором журналов, поэтому общее число способов выбора по правилу произведения равно: способов.

Ответ: 720 способов.

а) Иванов и Петров должны пойти в наряд обязательно;

б) Иванов и Петров должны остаться;

в) Иванов должен пойти в наряд, а Петров – остаться?

Выбираем три элемента из 12; порядок выбора не имеет значения (все трое идут в наряд).


а) Иванов и Петров идут в наряд, еще одного нужно выбрать из других 10 солдат; количество способов: С= 10.


б) Иванов и Петров не идут в наряд; троих идущих в наряд нужно выбрать из других 10 солдат; количество способов: способов.


в) Иванов идет в наряд, а Петров остается. Еще двоих, идущих в наряд с Ивановым, нужно выбрать из других 10 солдат ( Иванова и Петрова не считаем); количество способов:

Ответ: а) 10способов; б) 120 способов; в) 45 способов.

9. Т. В классе учатся 16 мальчиков и 12 девочек. Для уборки территории требуется выделить четырех мальчиков и трех девочек. Сколькими способами это можно сделать?


Нужно сделать два выбора: 4 мальчиков из 16 ( всего способов); порядок выбора значения не имеет ( все идущие на уборку равноправны). Каждый вариант выбора мальчиков может сочетаться с каждым выбором девочек,

Поэтому по правилу произведения общее число способов выбора равно:


способов.

Ответ: 400 400 способов.

Выбор из трех совокупностей без учета порядка; каждый вари­ант выбора из первой совокупности () может сочетаться с каж­дым вариантом выбора из второй (С) и с каждым вариантом вы­бора из третьей (С); по правилу произведения получаем:


способов выбора учащихся

Ответ: 1 866 000 способов.

11. Т. Сколькими способами группу из 12 человек можно разбить на две группы: а) по 4 и 8 человек; б) по 5 и 7 чело­век?

Количество способов разбиения множества на две части равно количеству способов формирования одной из частей (любой). По­скольку порядок расположения элементов не учитывается, имеем:


а)способов разбиения на 4 и 8 элементов.


б) способов разбиения на 5 и 7 элементов.

Ответ: а) 495 способов; б) 792 способа.


Замечание. Задача иллюстрирует свойство биноминальных коэффициентов:

12. Т. В отделе работают 5 ведущих и 8 старших на­учных сотрудников. В командировку надо послать двух ведущих и трех старших научных сотрудников. Сколькими способами может быть сделан выбор сотрудников, которых надо послать в команди­ровку?

Выбор из двух разных совокупностей без учета порядка; каж­дый вариант выбора из первой совокупности (их С) может соче­таться с каждым вариантом выбора из второй совокупности (их С), по правилу произведения общее число способов выбрать со­трудников, уезжающих в командировку, равно:


= 560 способов.

Ответ: 560 способов.

13. М. Встретились 11 футболистов и 6 хоккеистов, и каждый стал по одному разу играть с каждым в шашки.

а) Сколько встреч было между футболистами?

б) Сколько встреч было между хоккеистами?

в) Сколько встреч было между футболистами и хоккеистами?

г) Сколько встреч было всего?


а) Выбираем пары из 11футболистов без учета порядка; количество возможных встреч:

б) Выбираем пары из 6 хоккеистов без учета порядка; количество встреч равно:


г) Общее количество встреч равно количеству пар из 11 + 6 = 17 элементов без учета порядка: Понятно, что сумма первых трех величин должна равняться по­следней: 55+ 15 + 66 = 136.

Ответ: а) 55; б) 15; в) 66; г) 136.

14. М. В правильном 17-угольнике провели все диаго­нали.

а) Сколько всего получилось отрезков?

б) Сколько имеется сторон?

в) Сколько провели диагоналей?

г) Сколько всего диагоналей в выпуклом n -угольнике?
Решение.

Правильный многоугольник имеет 17 вершин; никакие три из этих 17 точек не лежат на одной прямой.

а) Общее число отрезков равно количеству пар из 17 точек без учета порядка :

Можно рассуждать иначе. Пронумеруем вершины 17-уголь­ника. Из каждой вершины, начиная с первой, исходит сторона 17-угольника, которая заканчивается в следующей по номеру вер­шине. Сторона, исходящая из 17-й вершины, заканчивается в вершине № 1. Поэтому количество сторон равно количеству вершин, т. е. 17.

в) Диагональю 17-угольника будет отрезок, соединяющий каж­дую вершину с каждой из вершин, не являющихся соседними для данной, т. е. с 17 - 1 - 2 = 14 разными вершинами (мы вычли 1 -вершину, из которой исходит диагональ, и 2 - две соседние вершины). Таким образом, из каждой вершины 17-угольника исходит 14 диагоналей. Но произведение 17 будет включать каждую диагональ дважды (сначала как исходящую из i -й вершины в k -ю, потом как исходящую из k -й вершины в i -ю). Поэтому общее количество диагоналей равно = 119. Понятно, что количество сторон плюс количество диагоналей должно равняться количеству отрезков:


г) В выпуклом n -угольнике из каждой вершины можно провес­ти n - 1 - 2 = n -3 диагонали; общее количество диагоналей равно (объяснение такое же, как в пункте в).


Ответ: а) 136; б) 17; в) 119; г)

15. М. Встретились несколько человек и стали здоро­ваться друг с другом. Известно, что рукопожатий было от 60 до 70. Сколько человек встретились, если известно, что:

а) каждый здоровался с каждым;

б) только один человек не здоровался ни с кем;

в) только двое не поздоровались между собой;

г) четверо поздоровались только между собой.

а) Число рукопожатий равно числу различных пар из п элемен­тов без учета порядка выбора, поэтому: 60 ; 6070; 120 - n 140;

Можно решать двойное неравенство и выбрать натуральное п из полученного интервала. Однако в этом простейшем случае легко находится подбором: n = 12. При n = 11 n 2 - n = 110, а при n = 13 n 2 - n = 156.

б) Если один человек не здоровался ни с кем, то пары образо­вывались из n - 1 элемента, т. е. 60; 120 ( n - 1) ( n - 2) 140; поскольку 1211 =132, то n = 13.

в) Если двое не поздоровались между собой, то количество рукопожатий было на 1 меньше: 60; 61
122п(п-1)142. Поскольку 1211 = 132, то n = 12.

Ответ: а) 12; б) 13; в) 12; г) 15.

Афанасьев В.В. Теория вероятностей в примерах и задачах, - Ярославль: ЯГПУ , 1994.

Баврин И. И. Высшая математика: Учебник для студентов химико-математических специальностей педагогических вузов-2-е издание, переработанное. - М.:Просвещение, 1993.

Бунимович Е. А., Булычёв В.А. Вероятность и статистика. 5-9 классы: Пособие для общеобразовательных учебных заведений, - М.:Дрофа , 2005.

Виленкин Н. Я. и другие. Алгебра и математический анализ для 10 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики. - М.:Просвещение,1992.

Виленкин Н. Я. и другие. Алгебра и математический анализ для 11 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики - М.:Просвещение, 1990.

Глейзер Г.И. История математики в школе: 9-10 класс. Пособие для учителей. - М.: Просвещение 1983.

Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. Математика 9:Алгебра. Функции. Анализ данных - М.: Дрофа, 2000.

Колягин и другие. Алгебра и начала анализа 11 класс. Математика в школе - 2002 - №4 - с.43,44,46.

Люпшкас В.С. Факультативные курсы по математике: теория вероятностей: Учебное пособие для 9-11 классов.- М.,1991.

Макарычев Ю.Н., Миндюк Н.Г. Элементы статистики и теории вероятностей: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

Мордкович А.Г., Семенов П.В. Алгебра и начала анализа 10 класс: Учебник для общеобразовательных учреждений (профильный уровень) – М.: Мнемозина, 2005.

Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

Читайте также: