Ромашов диофантовы уравнения краткое содержание

Обновлено: 04.07.2024

Ромашов А. Одолень-трава. Первый снег. Диофантовы уравнения. Повести. Свердловск Средне-Уральское книжное издательство 1983г. 256с. Твердый переплет, Обычный формат. Цена без доставки
(Читайте описание продавца BS - Yuraum, Самарская обл. г.Сызрань.) Цена: 200 руб. Купить
В сборник вошли три исторические повести, две из которых посвящены прошлому Урала (*Одолень-трава* и *Первый снег*), а одна (*Диофантовы уравнения*) древней Александрии. Автор послесловия В.Лукьянин.
Состояние: Отличное.

.

И высокие оценки справедливы.

Произведение уносило тогдашнего читателя из советской действительности в самую глубь веков – в древнюю Александрию, на полторы тысячи лет назад. Один из персонажей – реальное историческое лицо, выдающаяся женщина античной эпохи, математик и философ Гипатия.

Ромашов вообще тяготел к исторической прозе, забираясь и в удаленные на века заповедные уголки родного края.

Он и закончил историко-филологический факультет. В его послужном списке значатся самые разные профессии: плотник и геолог, учитель и корреспондент радио, рабочий и редактор студии телевидения.

Андрей Ромашов – коренной уралец из крестьян, фронтовик, получивший тяжелую контузию. Публиковаться начал в 1950-е годы.

Невыход его на большую писательскую арену, отсутствие широкой известности труднообъяснимы.


Дорога к людям : рассказы. — Пермь : Пермское книжное издательство, 1962. — 136 с.

Земля для всех : исторические повести. — Свердловск : Средне-Уральское книжное издательство, 1986. — 143 с.

Золотой исток : [повесть]. — Пермь : Пермское книжное издательство, 1962. — 80 с. — (Библиотека путешествий и приключений. вып. 11).

Лесные всадники. Кондратий Рус. — Пермь : Пермское книжное издательство, 1973. — 203 с. — (Библиотека путешествий и приключений. вып. 41-42).

Невеста : [рассказ]. — Пермь : Пермское книжное издательство, 1959. — 20 с.— (Рассказы о советских людях).

Одолень-трава : повести. — Свердловск : Средне-Уральское книжное издательство, 1991. — 318 с. — (Уральская библиотека. вып. 2).

Раннее утро : повесть. — Молотов : Молотовское книжное издательство, 1957. — 119 с.

Старая пашня. Первый снег : повести. — Пермь : Пермское книжное издательство, 1968. — 208 с.

Ромашов, Андрей Павлович.
Диофантовы уравнения : ист. повести / Андрей Ромашов. - Екатеринбург : Сократ, 2004. - 518, [2] с. : ил.; 20 см. - (Мой исторический роман).; ISBN 5-88664-179-3 (в пер.)

(Мой исторический роман)
Охватывающие различные эпохи - от глубокой древности до 20-х годов XX века, - исторические повести объединены присущими автору добрым отношением к людям, верой в торжество справедливости и стремлением правдиво показать жизнь в ее диалектическом развитии.
Филологические науки. Художественная литература -- Российская Федерация -- Русская литература -- с сер. 50-х гг. 20 в. -- Произведения художественной литературы -- Художественная проза -- Романы. Повести. Рассказы -- Исторические романы, повести, рассказы
Шифр хранения:
FB 10 04-31/192
FB 10 04-31/191
Электронный заказ

К классическим операциям в математике относят решение элементарных выражений с несколькими неизвестными. Называют их линейные диофантовые уравнения. Разработанная теория древнегреческим учёным позволяет вычислять равенства без использования сложных формул. Метод базируется на рассуждениях и чётком понимании числовой теории, связанной в логическую конструкцию. В школе о нём рассказывают в восьмом классе. Его широко применяют на практике.

Диофантовы уравнения

Основные понятия

Диофантовыми уравнениями принято называть линейные выражения вида: a1x1 + a2x2 + … + anxn = c. В этих равенствах икс обозначает искомое неизвестное, а коэффициенты a и c являются целыми числами. Греческий учёный предложил несколько способов решения таких уравнений:

Диофант Александрийский.

  • полный перебор;
  • разложение на множители;
  • выражение одной переменной через другую с выделением целой части при решении системы;
  • поиск частного решения;
  • алгоритм Евклида;
  • геометрический метод.

Методы решения диофантовых уравнений позволяют найти целые или рациональные решения для алгебраических равенств или их систем. Но при этом число переменных в выражении не должно превышать двух. Как правило, такие уравнения имеют несколько решений, поэтому их другое популярное название — неопределённые.

Чтобы воспользоваться способами, предложенными математиком при рассмотрении задач, нужно попробовать проанализировать исходные данные и свести их к линейному равенству или системе уравнений. При этом коэффициенты, как стоящие возле неизвестных, так и свободные, должны быть целыми. Ответом же должно получиться тоже целое число, обычно натуральное.

Методы решения

Для начала следует рассмотреть однородное линейное уравнение вида: ax + by = 0. Это простой многочлен первой степени. Для него характерно то, что если для коэффициентов можно подобрать один делитель, то обе части возможно сократить на его величину не нарушив принципы записи. Наиболее простым способом определить этот делитель является метод разработанный великим математиком своего времени Евклидом.

Решение диофантовых уравнений

Решение диофантовых уравнений по алгоритму Евклида заключается в нахождении общего делителя натуральных чисел с использованием деления с остатком. Для этого нужно взять большее число и просто разделить его на наименьшее. Затем полученный остаток нужно снова разделить на меньшее из чисел. Это действие необходимо повторять до тех пор, пока результатом операции не станет единица, то есть выполнится деление без остатка. Последнее полученное число и будет являться наибольшим общим делителем (НОД).

Существует три теоремы, которые используются при решении уравнений первой степени:

  1. В случае, когда НОД равняется единице, выражение будет обязательно иметь хотя бы одну пару целого решения.
  2. Если коэффициенты выражения больше единицы, и при этом свободный член нельзя нацело разделить на них, то корни равенства не имеют целого значения.
  3. Когда коэффициенты равняются единице, все решения, состоящие из целых чисел, находятся с помощью формул: x = x0c + bt и y = y0c — at, где: х0, y0 — целые ответы, t — множество чисел.

Например, пусть есть равенство вида 54x + 37y = 1. Используя то, что a = 54, а b =37, можно записать: 54 — 37 *1 = 17. Теперь можно выполнить следующие вычисления:

  • 37 — 17 * 2 = 3;
  • 71 — 3 * 5 = 2;
  • 3 — 2 * 1 = 1.

Далее нужно выразить значения коэффициентов через остаток:

Выраение значения коэффициентов через остаток

  • 3 — (17 — 3 * 5) = 1;
  • 1 = 17 — 3 * 4;
  • 1 = 17 — (37- 17 * 2) * 4;
  • 1 = 17 — 37 * 4+17 * 8;
  • 1 = 17 * 9 — 37 * 4;
  • 1 = (54 — 37 * 1) * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 13;
  • 1 = 54х + 37у.

Исходя из приведённого следует, что x0 равняется девяти, а игрек нулевой — минус тринадцать. Таким образом, рассматриваемое уравнение будет иметь вид:

Этим же способом можно и определить, что целых решений в выражении быть не может, как, например, для равенства 17x + 36y = 7. В этом случае НОД не делится на два, поэтому и целых решений нет.

Способ подбора и разложения

Метод подбора используется для нахождения корней простых уравнений. Пожалуй, это самый простой способ, но вместе с тем и требующий повышенного внимания и большого количества операций. Его суть заключается в полном переборе всех допустимых значений переменных, входящих в равенство. Например, эта задача которая будет интересна и школьникам, только знакомящимся с уравнениями.

Пусть имеется зоопарк, в котором находятся птицы и млекопитающие. Всего у животных двадцать лап. Определить, какое количество может быть птиц, а какое — млекопитающих. Для нахождения ответа методом перебора следует принять число одних животных, равное x (пусть это будут четырёхпалые), а других — y (птицы). Таким образом, получится уравнение: 2x + 4 y = 20. Для простоты выражение можно упростить, сократив на два: x + 2y = 10.

Метод подбора

Полученное выражение нужно преобразовать, разделив неизвестные знаком равно: x = 10 — 2y. Зная, что ответом могут быть только целые числа, вместо y нужно пробовать подставлять возможные варианты: 1 — 8; 2 — 6; 3 — 4; 4 — 2; 5 — 0. Это и есть все возможные ответы на поставленную задачу.

Разложение выражения на множители можно выполнять различными способами. Вот основные из них:

  • вынесение общего множителя: если каждый член многочлена можно разделить на одно и то же число, то его можно вынести за скобку;
  • использование формулы сокращённого умножения: оно выполняется по формуле: an — bn = (a-b) * (an-1 + an-2 * b +… a2bn-3 + abn-2 + bn-1);
  • применение свойства полного квадрата: это самый эффективный способ, заключающийся в вынесении полного квадрата за скобку с последующим использованием формул разности квадратов;
  • группировкой — в его основе лежит вынесение общего множителя таким образом, чтобы появилась возможность перегруппировки выражения, после которой получится значение, присутствующее во всех членах равенства.

Например, пусть имеется нелинейное уравнение вида: 8x4 + 32x2 = 8. Все его члены можно перенести в одну сторону, а равенство приравнять к нулю, при этом сократив каждый член на восемь: x4 + 4x2 — 1 = 0. Для преобразования такого выражения удобнее всего применить метод квадратов. Таким образом, уравнение можно расписать следующим образом: x4 + 2 * 2 * x2 + 4 — 4 — 1 = (x2 + 2)2 — 5 = (x2 + 2 — √5) * (x2 + 2 +√5).

Геометрический подход

Этот метод удобно применять для системы уравнений. Его принцип построен на изображении графиков уравнений и определения их точки пересечения. При этом координаты этой точки и будут являться корнями рассматриваемой системы.

Из этого утверждения можно сделать следующие выводы:

Изображение графиков уравнений

  • если графики уравнений представляют пересекающиеся прямые, то решением будет только одно число;
  • когда графики уравнений не имеют общих точек, то решения у системы уравнений нет;
  • в случае, когда графики совпадают, система будет иметь бесконечное множество корней.

Применять этот метод можно для уравнений, порядок которых не превышает единицы. В равенствах высшего порядка построить график обычно сложно. Например, дана система:

Из первого и второго равенства можно выразить одно неизвестное через другое, используя несколько произвольных чисел. Затем, подставляя их вместо неизвестного, можно построить график. Как только две прямые будут построены, можно будет определить, что точка их пересечения имеет координаты -2; 5. Эти значения и будут искомыми корнями.

Занимательная задача

На самом деле примеры диофантовых уравнений можно встретить в повседневной жизни. Например, при покупке чего-либо в магазине. На эту тему математики смогли придумать интересные задачи, обычно предлагающиеся ученикам на дополнительных занятиях.

Примеры диофантовых уравнений

Вот одна из них, появившаяся из реальной истории. Однажды математик пришёл в магазин приобрести свитер. Его цена составляла 19 рублей. У учёного же были с собой только купюры номиналом три рубля, а у кассира — пятирублёвки. Задача состоит в том, чтобы выяснить, сможет ли состояться сделка. Иными словами, необходимо найти, сколько нужно математику дать купюр, и какое их количество он получит от кассира.

Рассуждать нужно следующим образом. В задачи есть два неизвестных: количество трёхрублёвых и пятирублёвых купюр. Поэтому можно составить уравнение: 3x — 5y = 19. По сути, уравнение с двумя неизвестными может иметь бесчисленное число решений, но не всегда из них может найтись хотя бы одно целое положительное.

Итак, зная, что неизвестные должны быть целыми положительными числами, нужно выразить неизвестное с меньшим коэффициентом через остальные члены. Получится равенство: 3 x = 19 + 5 y. Левую и правую часть можно разделить на три, а после выполнить простейшие преобразования: x = (19 + 5y) / 3 = 6 + y + (1 + 2y) / 3. Учитывая, что неизвестные и свободный член это целые числа, выражение (1 + 2y) / 3 можно заменить буквой r, также являющимся каким-то целым числом.

Тогда уравнение можно переписать как x = 6 + y + t. Отсюда t = (1 + 2y) / 3 или y = t + (t — 1) / 2. Снова можно сделать вывод, что (t — 1) / 2 — какое-то целое число. Если заменить его на t1, выражение примет вид: y = t + t1.

Подставив t = 2t1 + l в равенство можно получить, что x = 8 + 5t1, а y = 1 + 3t1. Таким образом, решением уравнения будут полученные равенства. Исходя из того, что результат должен быть положительным, равенства можно переписать в неравенства вида:8 + 5t1> 0, 1 + 3t1 > 0. Отсюда определить диапазон, ограничивающий t1. Беря во внимание только плюсовую часть диапазона, можно сделать заключение, что возможные варианты решения лежать в пределе от нуля до плюс бесконечности.

Подставляя по очереди числа, можно определить значения x и y. Искомый ряд будет выглядеть следующим образом: 1 = 8, 13, 18, 23, …, n; 1 = 1, 4, 7, 10,…, m. То есть математик, дав восемь купюр, получит одну на сдачу, а если он отдаст 13 купюр, то продавец должен будет ему выдать четыре пятирублёвки. Этот ряд можно продолжать до бесконечности.

Использование онлайн-калькулятора

Существуют сайты, рассчитывающие линейные уравнения в автоматическом режиме. Они называются математическими онлайн-калькуляторами. Пользователю, желающему воспользоваться их услугами, нужно иметь лишь подключение к интернету и любой веб-браузер.

Свои услуги сервисы предоставляют бесплатно. При этом часто на их страницах содержится краткий теоретический материал, посвящённый решению диофантовых уравнений. Кроме того, пользователю предоставляется возможность ознакомиться с решением типовых примеров.

Из нескольких десятков таких сайтов на русском языке можно отметить следующие:

  • HostCiti;
  • PocketTeacher;
  • Upbyte;
  • Planetcalc;
  • Math24.

Онлайн калькулятор Planetcalc

Все приведённые сайты имеют интуитивно понятный интерфейс и бесплатны. После того как пользователь введёт в предложенную форму нужные уравнения и запустит расчётчик, онлайн-сервисы не только выдадут ответ, но и выведут на экран пошаговое решение с объяснениями. Таким образом, эти сервисы помогают не только быстро и верно найти решение, но и дают возможность пользователю понять принципы вычисления, проверить самостоятельно выполненный расчёт.

Читайте также: