Краткое содержание sio2 в ультраосновных породах

Обновлено: 04.07.2024

Основой классификаций магматических горных пород являются условия их образования и вещественный состав. По условиям образования магматические породы делятся на интрузивные (глубинные) и эффузивные (излившиеся). Интрузивные, в свою очередь, подразделяются на гипабиссальные (полуглубинные) и абиссальные (глубинные). Главным отличием интрузивных пород от эффузивных, которые могут обладать одним и тем же вещественным составом, является структура — внутреннее строение породы, определяющееся размером и формой образующих ее минералов. При кристаллизации интрузивных пород охлаждение магмы происходит медленно, температура ее долго держится вблизи точки плавления с образованием редких центров кристаллизации и образуются полнокристаллические крупнозернистые структуры пород. При быстром охлаждении магмы затвердевание основной части расплава происходит с образованием большого количества центров кристаллизации, что приводит к формированию мелкозернистых структур. При неравномерном охлаждении магмы возникают порфировые структуры: крупные кристаллы-порфиры образуются при медленном охлаждении, а основная масса — быстрозатвердевший расплав — приобретает скрытокристаллическое строение. При очень быстром охлаждении (например, лавы на океаническом дне) лава не кристаллизуется, а затвердевает в виде однородной изотропной массы вулканического стекла. Таким образом, для интрузивных пород, образующихся при медленном охлаждении магмы, характерны полнокристаллические, крупнозернистые структуры, а для эффузивных, образующихся из быстро остывающих магм, — неполнокристаллические, порфировые и стекловатые.

Основными химическими элементами, входящими в состав магматических пород, являются следующие: О, Si, Al, Fe, Mg, Ca, Na, К. Их называют петрогенными, т. е. образующими породы. Химический состав магматических пород представляют в виде процентного содержания основных окислов: SiO2, Al,O3, Fe2O3, MgO, CaO, Na2O, K2O и H2O.

Поскольку кремнезем преобладает среди всех остальных окислов, то именно его содержание положено в основу классификации магматических пород по химическому составу. По процентному содержанию кремнекислоты все магматические горные породы делятся на кислые (75—65%), средние (65—52%), основные (52—40%) и ультраосновные ( 1).

Основные разновидности магматических горных пород представлены в табл. 11.2.

Группа перидотита — пироксенита. По содержанию SiO2 (40—45 %) породы этой группы относятся к ультраосновным, бесполевошпатовым. Они состоят только из цветных минералов: оливина, роговой обманки и пироксена. Отсюда и окраска их темно-зеленая, буровато-черная до черной. Второстепенными и акцессорными минералами являются хромит, магнетит, ильменит, самородная платина и др. Все ультраосновные породы тяжелые, с удельным весом около 3,0—3,4. Они распространены редко и составляют менее 0,4% от всей массы магматических пород. Породы этой группы встречаются в основном в интрузивных телах; излившиеся аналоги их редки. По минеральному составу различают пироксениты, перидотиты и оливиновые породы — дуниты.

Перидотиты — породы, состоящие из оливина (желтовато-зеленые зерна неправильной формы) и пироксена (таблитчатые кристаллы черного цвета с металловидным блеском). Структура полнокристаллическая, средне- и крупнозернистая, цвет темно-зеленый, темно-серый до черного.

Дуниты — почти мономинеральные породы, состоящие из оливина. Цвет породы желтовато-зеленый, при серпентинизации оливина цвет становится темно-зеленый до черного. Структура полнокристаллическая.

Пироксениты — породы, как и перидотиты, состоящие из оливина и пироксена, но в отличие от последних, пироксен в составе пироксенитов является преобладающим минералом. Структура полнокристаллическая, средне- и крупнозернистая. Цвет черный. Ультраосновные породы залегают в виде штоков и небольших батолитов. Различные ультраосновные породы обычно встречаются вместе, нередко образуя сложные, зонального строения массивы.

Кимберлиты также относятся к группе бесполевошпатовых пород, однако они несколько отличаются тем, что в их составе содержится биотит. Весьма интересной является брекчиевая структура кимберлитов. Обломки ультраосновных пород, чаще всего пироксенитов, в них сцементированы основной серпентинизированной сильно карбонатизированной массой. Кроме серпентина в основной массе присутствуют зерна оливина, пироксена, фаната, ильменита, биотита, хромита и нередко алмаза.

Кимберлиты выполняют трубкообразные тела, трубки располагаются группами, рядами или цепью. С глубиной их диаметр уменьшается. Отдельные трубки часто соединены дайками. На поверхности трубки проявляются в виде замкнутых понижений. Наиболее обогащены алмазом верхние части трубок.

Мономинеральные дуниты служат для изготовления огнеупоров. Используются ультраосновные породы в качестве естественного каменного строительного материала, для изготовления щебня, как облицовочный материал и т. д. С породами этой группы связаны месторождения меди, хрома, платины, никеля.

Практический интерес представляют кимберлиты, с которыми связаны месторождения алмазов.

Группа габбро — базальта. По содержанию SiO2 (45—52 %) породы данной группы относятся к основным полевошпатовым. Главными породообразующими минералами являются основной плагиоклаз и пироксен (изредка к ним добавляются оливин, роговая обманка и биотит). Темноцветных минералов в породе содержится 45—50%. Породы этой группы преимущественно темно-серые, темно-зеленые до черных. Изменение минерального состава приводит к образованию пород промежуточных, переходных к другим группам. Так, с увеличением содержания темноцветных минералов наблюдается переход к группе перидотита — пироксенита, при замещении основных плагиоклазов средними — к группе диорита — андезита, а появление в их составе нефелина приводит к образованию щелочных габброидов.

К интрузивной подфуппе данных пород относятся габбро, нориты, анортозиты и лабрадориты; подгруппу излившихся пород составляют базальты, базальтовые порфириты. Среди жильных образований наиболее распространен диабаз.

Габбро — полнокристаллические крупно- и среднезернистые породы, сложенные таблитчатыми кристаллами плагиоклаза серого и зеленовато-серого цветов и моноклинным пироксеном. В качестве акцессорных минералов присутствуют апатит, ильменит, магнетит, иногда хромит. Текстура обычно массивная, иногда пятнистая или полосчатая. Разновидности габбро, лишенные темноцветных минералов, называют анортозитами. Анортозиты, в которых слагающий их плагиоклаз представлен лабрадором, называют лабрадоритами. Габбро, содержащие в качестве темноцветного минерала ромбические пироксены, называют норитами. Для габбро характерны пластовая, глыбовая и параллелепипедальная отдельности. Габбро залегают в виде крупных лакколитов, интрузивных залежей, даек и штоков в отложениях всех геологических возрастов.

Базальты — плотные, мелкозернистые или скрытокристаллические серые, темно-серые до черных породы. По составу они аналогичны габбро, но часто содержат вулканическое стекло. Под лупой можно видеть мелкие порфировые вкрапленники оливина и немногочисленные поры. Излом шероховатый. Характерна для базальтов пластовая и столбчатая отдельности. Базальтовые порфириты отличаются от базальтов тем, что в них существенно развиты вторичные минералы — хлорит и вторичная роговая обманка. В порфировых выделениях — плагиоклазы и авгит. Наблюдаются изменения плагиоклазов. Хлорит и роговая обманка придают базальтовым порфиритам темно-зеленый цвет. Вулканическое стекло раскристаллизовано. Структура часто порфировая. Излом обычно ровный, лишенный шероховатости. В базальтовых порфиритах часто развита шаровая отдельность. Базальты и базальтовые порфириты залегают в виде покровов и потоков. Наслаиваясь друг на друга при повторных излияниях магмы, они образуют траппы. Мощность последних нередко более километра, а площади распространения измеряются сотнями тысяч квадратных километров. Так, сибирские траппы занимают около 1,5 млн км2. Установлено, что значительная площадь дна Тихого океана представлена покровами базальтовых излияний.

С породами группы габбро-базальта генетически связаны различные полезные ископаемые. Так, с ними связаны собственно магматические месторождения титаномагнетитовых руд (например, Кусинское месторождение на Урале), руд никеля и меди (Норильское месторождение).

Породы группы габбро-базальта благодаря высокой их прочности широко используются в качестве строительных материалов; особенно высокой прочностью на сжатие (3000—4000 кг/см2) обладают диабазы. По трещинам отдельности диабазы раскалываются на куски сравнительно правильной формы, которые используются для изготовления высококачественной брусчатки и шашки для мощения дорог. Базальты используются в камнелитейной промышленности. Лабрадориты — ценный облицовочный материал.

Группа диорита — андезита. Содержание SiO2 в породах этой группы 52—65 %. Главными породообразующими минералами являются средний плагиоклаз и роговая обманка, реже присутствуют пироксен, биотит и кварц. Темноцветных минералов в породах около 25%. Типичными представителями глубинных пород данной группы являются диориты.

Диориты — плотнокристаллические, обычно среднезернистые породы пестрой или серой с зеленоватым оттенком окраски. Текстура, как правило, массивная. Между диоритами и породами состава габбро, с одной стороны, и гранитами и сиенитами — с другой, существуют постепенные переходы. Переход от габбро осуществляется по мере увеличения основности плагиоклазов и повышения содержания цветных минералов через так называемые габбро-диориты. Появление кварца приводит к образованию пород промежуточного типа: гранодиорита, содержащего кварц и калиевые полевые шпаты, и кварцевого диорита, содержащего только кварц. Сиенито-диориты отличаются от нормальных диоритов наличием в их составе калиевого полевого шпата. Диориты весьма часто встречаются в краевых частях гранитных батолитов, а также образуют самостоятельные тела — небольшие массивы, штоки, жилы.

Андезиты и андезитовые порфириты — излившиеся аналоги диоритов. Внешне они похожи на базальты и базальтовые порфириты. Цвет их серый до черного. Структура андезитов чаще всего порфировая. В порфировых выделениях — свежий плагиоклаз и роговая обманка. Текстура нередко пористая. На ощупь порода шероховатая. Андезитовые порфириты отличаются от андезитов вторичными изменениями. Цвет часто темно-зеленый (за счет вторичных минералов-хлоритов и эпидота), порфировые вкрапленники в них в результате вторичных изменений становятся мутными и приобретают сероватую окраску.

Залегают андезиты и андезитовые порфириты в виде покровов, потоков, интрузивных залежей, куполов и даек. Весьма часто они сопровождаются вулканическими туфами и широко распространены в области молодой вулканической деятельности. Эффузивными аналогами гранодиоритов и кварцевых диоритов являются дациты и дацитовые порфириты. Роль диоритов в процессах рудообразования не очень значительна, но иногда с ними связаны месторождения полиметаллов. Используются породы этой группы (как глубинные, так и эффузивные) в качестве кислотоупорного и каменного строительного материала.

Группа гранита—липарита. Породы этой группы образуются из магм кислого состава (содержание SiO2 более 60 %). Главными породообразующими минералами являются кварц, калиевые полевые шпаты, кислые плагиоклазы и биотит (иногда содержатся мусковит и роговая обманка). Из акцессорных минералов типичны апатит, циркон, турмалин. Содержание темноцветных минералов не более 10%, поэтому общая окраска пород в большинстве случаев светлая. Глубинные породы кислой магмы чрезвычайно широко распространены и встречаются гораздо чаще излившихся. Типичными представителями глубинных пород этой группы являются граниты, излившихся — липариты (риолиты) и липаритовые порфиры (кварцевые порфиры). Широко известны жильные аналоги гранитов — гранитные пегматиты и аплиты.

Граниты — массивные, полнокристаллические, средне- и крупнозернистые породы. Характерный для них светло-серый, желтоватый, розоватый или мясо-красный цвет определяется окраской полевых шпатов, составляющих до 60% всей массы породы. По химическому составу различают граниты нормальные (калиево-натриевые) и щелочные (безкальциевые) граниты с альбитом и щелочными амфиболами. Минералы, составляющие граниты, в том числе зерна кварца, хорошо различимы невооруженным глазом или под лупой. Из темноцветных минералов чаще всего присутствует биотит. Встречаются двуслюдяные (биотит-мусковитовые), мусковитовые и роговообманковые граниты и др.

Из разновидностей кислых пород можно отметить плагиограниты — почти лишенные калиевых полевых шпатов и аляскиты — почти без темноцветных минералов.

Гранодиориты и кварцевые диориты, о которых говорилось выше, при макроскопическом их изучении часто объединяют под общим наименованием гранитоидов. Граниты вместе с гранодиоритами самые распространенные породы земной коры (встречаются в толщах всех геологических возрастов). Залегают граниты чаще всего в форме батолитов, реже образуют штоки, дайки и жилы. Для гранитов характерна пластовая матрацевидная и параллелепипедальная отдельности.

Высокая прочность (временное сопротивление сжатию 1200—3000 кг/см2) и высокая морозостойкость делают граниты высококачественным строительным материалом. Гранит хорошо обтесывается и полируется, поэтому его применяют в качестве облицовочного материала и для скульптурных работ.

Липариты (риолиты) — светлые, почти белые породы, обычно пористые. Вследствие мелкой пористости основная масса шероховата на ощупь. Структура порфировая. В порфировых выделениях — кварц, водяно-прозрачные блестящие таблички калиевого полевого шпата — санидина и темные листочки биотита. Разности липаритов, имеющие стекловатую структуру, называются обсидианами. Они часто темного, бурого, коричневого или даже черного цвета. Скорлуповатые разности обсидианов называются перлитами. Светлые, очень пористые и поэтому очень легкие кислые излившиеся породы называют пемзами. Пемзы — продукт подводных излияний.

Липаритовые порфиры (кварцевые порфиры) — палеотипный аналог липарита. Структура порфировая. Порфировые вкрапленники часто замутненные, несвежие. Основная масса плотная, различной окраски, нередко темная, с пятнами и потеками. Липариты и липаритовые порфиры менее распространены, чем граниты. Залегают они в форме потоков, куполов, пластовых залежей, реже лакколитов и даек.

Гранитные пегматиты — крупнозернистые и довольно часто гигантозернистые породы. Состоят они в основном из полевых шпатов, чаще всего калиевых, кварца и слюды. Кроме основных минералов, для пегматитов характерны берилл, турмалин. В пегматитах часто развиваются своеобразные структуры закономерного прорастания полевого шпата правильно ориентированными зернами кварца. Пегматиты залегают в виде жил, штоков, неправильных тел. С ними связаны месторождения слюды (мусковита), редких металлов — лития, бериллия, олова, цезия, тантала, ниобия, редких земель, месторождения пьезооптического кварца и керамического сырья. Размеры пегматитовых жил сильно варьируют и могут достигать нескольких километров в длину при нескольких метрах по мощности.

Группа сиенита — трахита. Породы этой группы по кислотности относятся к средним (содержание SiO2 от 52 до 65 %). Главные породообразующие минералы — калиевые полевые шпаты, средние плагиоклазы и роговая обманка; нередко присутствует также авгит. Типичной глубинной породой данной группы является сиенит. Эффузивными аналогами сиенитов являются трахиты и трахитовые порфиры (ортофиры, бес кварцевые порфиры). Площадь распространения пород составляет всего 0,6 % от всей площади распространения магматических пород.

Сиениты состоят из калиевого полевого шпата (70—80 %), средних плагиоклазов (10—15 %) и роговой обманки, нередко присутствует авгит. Темноцветных минералов в среднем 15 %, поэтому породы светлоокрашенные, сероватые и розоватые. Структура полнокристаллическая, чаще всего мелко- и реже среднезернистая. Сиениты от гранитов отличаются отсутствием кварца. Как и граниты, сиениты разделяются на нормальные, содержащие плагиоклаз, и щелочные — без известковистого плагиоклаза. Кроме того, в щелочных сиенитах хотя бы в небольшом количестве присутствуют щелочные пироксены или амфиболы, иногда нефелин. Увеличение содержания этих минералов дает переходы к группе нефелиновых сиенитов. Щелочные сиениты распространены несколько более широко, чем нормальные. Для сиенитов характерна пластовая или параллелепипедальная отдельность. Залегают они в виде даек и штоков. Нередко сиениты (подобно диоритам) слагают краевые части крупных гранитных интрузий. Используются сиениты в качестве каменного строительного материала.

Трахиты — светлоокрашенные породы скрытокристаллического или порфирового строения. Порфировые вкрапленники представлены небольшими табличками санидина (водяно-прозрачная разновидность ортоклаза), плагиоклаза, иголочками роговой обманки, иногда — листочками биотита. Характерна текстура течения (флюидальная). Основная масса трахитов светло-серая, желтоватая и розоватая, большей частью с шероховатым изломом. Трахиты макроскопически очень похожи на липариты, и отличать их следует по отсутствию порфировых выделений кварца. Трахиты и трахитовые порфиры залегают в форме потоков, куполов, лакколитов. Для них особенно характерно залегание в форме куполов.

Группа нефелинового сиенита. В составе пород данной группы присутствуют недосыщенные кремнекислотой алюмосиликаты — фельдшпатиды, главным образом нефелин. Кроме нефелина в состав этих пород входят щелочные полевые шпаты, биотит, щелочные амфиболы и пироксен. Щелочные породы очень редки. Считают, что среди изверженных пород они составляют около 1 %. Наиболее распространенной глубинной породой этой группы являются нефелиновые сиениты.

Нефелиновые сиениты — кристаллически-зернистые породы, состоящие из нефелина, щелочного полевого шпата, цветных минералов — биотита и щелочного пироксена (эгирин, авгит) или амфибола. Из акцессорных минералов встречаются магнетит, ильменит, апатит, циркон, титанит. Макроскопически породы светлые, светло-серые, иногда с зеленоватым, реже с красноватым оттенком. Нефелин определяется в породах по жирному блеску. От кварца, внешне очень похожего на нефелин, последний отличим по более низкой твердости (твердость кварца — 7, нефелина — 6). Структура породы чаще всего среднезернистая, текстура массивная. Нередки полосчатые нефелиновые сиениты с чередующимися полосками цветных и светлых минералов. Минеральный состав нефелиновых сиенитов разнообразен и поэтому выделяют ряд разновидностей.

Массивы нефелиновых сиенитов часто сопровождаются жилами нефелиново-сиенитовых пегматитов. Это грубозернистые породы, состоящие из щелочного полевого шпата и нефелина, а также биотита и пироксена. В них иногда содержатся ильменит, циркон и апатит. Эффузивные аналоги нефелиновых сиенитов называются фонолитами.

С нефелиновыми сиенитами связаны месторождения апатита, редкоземельных элементов, титановых руд, циркона. Нефелин — главный породообразующий минерал нефелиновых сиенитов — является важным полезным ископаемым (используется как руда для получения алюминия).



Диокси́д кре́мния (оксид кремния (IV), кремнезём, SiO2) — бесцветные кристаллы, tпл 1713—1728 °C, обладают высокой твёрдостью и прочностью.

Содержание

Свойства

  • Относится к группе кислотных оксидов.
  • При нагревании взаимодействует с основными оксидами и щелочами.
  • Растворяется в плавиковой кислоте.
  • SiO2 относится к группе стеклообразующих оксидов, то есть склонен к образованию переохлажденного расплава — стекла.
  • Один из лучших диэлектриков (электрический ток не проводит).

Полиморфизм

Диоксид кремния имеет несколько полиморфных модификаций.

Самая распространенная из них на поверхности земли — α-кварц — кристаллизуется в тригональной сингонии

При нормальных условиях диоксид кремния чаще всего находится в полиморфной модификации α-кварца, которая при температуре выше 573 °C обратимо переходит в β-кварц. При дальнейшем повышении температуры кварц переходит в тридимит и кристобалит. Эти полиморфные модификации устойчивы при высоких температурах и низких давлениях. При высоких температуре и давлении диоксид кремния сначала превращается в коэсит, а затем в стишовит (который впервые был обнаружен на месте эпицентра ядерного взрыва). Согласно некоторым исследованиям стишовит слагает значительную часть мантии, так что вопрос о том какая разновидность SiO2 наиболее распространена на Земле, пока не имеет однозначного ответа.

Также имеет аморфную модификацию — кварцевое стекло.

Химические свойства

Диоксид кремния SiO2 — кислотный оксид, не реагирующий с водой.

Химически стоек к действию кислот, но реагирует с плавиковой кислотой:

Эти две реакции широко используют для травления стекла.

При сплавлении SiO2 с щелочами и основными оксидами, а также с карбонатами активных металлов образуются силикаты — соли не имеющих постоянного состава очень слабых, нерастворимых в воде кремниевых кислот общей формулы xH2O·ySiO2 (довольно часто в литературе упоминаются не кремниевые кислоты, а кремниевая кислота, хотя фактически речь при этом идет об одном и том же).

Например, может быть получен ортосиликат натрия:

или смешанный силикат кальция и натрия:

Из силиката Na2O·CaO·6SiO2 изготовляют оконное стекло.

Следует отметить, что большинство силикатов не имеет постоянного состава. Из всех силикатов растворимы в воде только силикаты натрия и калия. Растворы этих силикатов в воде называют растворимым стеклом. Из-за гидролиза эти растворы характеризуются сильно щелочной средой. Для гидролизованных силикатов характерно образование не истинных, а коллоидных растворов. При подкислении растворов силикатов натрия или калия выпадает студенистый белый осадок гидратированных кремниевых кислот.

Главным структурным элементом как твердого диоксида кремния, так и всех силикатов выступает группа [SiO4/2], в которой атом кремния Si окружен тетраэдром из четырех атомов кислорода О. При этом каждый атом кислорода соединен с двумя атомами кремния. Фрагменты [SiO4/2] могут быть связаны между собой по-разному. Среди силикатов по характеру связи в них фрагментов [SiO4/2] выделяют островные, цепочечные, ленточные, слоистые, каркасные и другие.

Получение

Синтетический диоксид кремния получают нагреванием кремния до температуры 400—500°C в атмосфере кислорода, при этом кремний окисляется до диоксида SiO2.

В лабораторный условиях синтетический диоксид кремния может быть получен действием кислот на силикатные соли. Например:

кремниевая кислота сразу разлагается на воду и SiO2, выпадающий в осадок.

Натуральный диоксид кремния в виде песка используется там, где не требуется высокая чистота материала.

Применение

Диоксид кремния применяют в производстве стекла, керамики, абразивов, бетонных изделий, для получения кремния, как наполнитель в производстве резин, при производстве кремнезёмистых огнеупоров, в хроматографии и др. Кристаллы кварца обладают пьезоэлектрическими свойствами и поэтому используются в радиотехнике, ультразвуковых установках, в зажигалках.

Диоксид кремния — главный компонент почти всех земных горных пород, в частности, кизельгура. Из кремнезёма и силикатов состоит 87% массы литосферы.

Аморфный непористый диоксид кремния применяется в пищевой промышленности в качестве вспомогательного вещества E551, препятствующего слёживанию и комкованию, парафармацевтике (зубные пасты), в фармацевтической промышленности в качестве вспомогательного вещества (внесён в большинство Фармакопей), а также пищевой добавки или лекарственного препарата в качестве энтеросорбента.

Искусственно полученные плёнки диоксида кремния используются в качестве изолятора при производстве микросхем и других электронных компонентов.

Также используется для производства волоконно-оптических кабелей. Используется чистый плавленый диоксид кремния с добавкой в него некоторых специальных ингредиентов.

Пористые кремнезёмы

Пористые кремнезёмы получают различными методами.

Силохром получают путём агрегирования аэросила, который, в свою очередь, получают сжиганием силана (SiH4). Силохром характеризуется высокой чистотой, низкой механической прочностью. Характерный размер удельной поверхности 60—120 м²/г. Применяется в качестве сорбента в хроматографии, наполнителя резин, катализе.

Силикагель получают путём высушивания геля кремневой кислоты. В сравнении с силохромом обладает меньшей чистотой, однако может обладать чрезвычайно развитой поверхностью: до 320 м²/г.

Кремниевый аэрогель приблизительно на 99,8 % состоит из воздуха может иметь плотность до 1,9 кг/м³ (всего в 1,5 раза больше плотности воздуха).

1.Ультраосновные горные породы — силикатные горные породы с содержанием SiO2 менее 45 %. В большинстве случаев содержат много MgO. Среди ультраосновных пород по минеральному составу выделяются дуниты и оливиниты, в которых вместо хромита присутствует магнетит, перидотиты и пироксениты. Эффузивные разновидности ультраосновыных пород весьма редки. К ним относятся пикриты, меймечиты, кимберлиты и лампроиты.

Ультраосновные породы широко распространены в мантии. В земной коре они часто встречаются в составе расслоенных интрузий.

Дунит -интрузивная ультраосновная горная порода.

Дунит [по названию горы Дун (Dun) в Новой Зеландии], магматическая горная порода, ультраосновная, чёрного, тёмно- или светло-зелёного цвета; состоит на 85—100% из оливина, в качестве примесей содержит хромит, иногда совместно с магнетитом. Дунит очень богат магнием и содержит мало кремнезёма.

Перидотит - интрузивная ультраосновная горная порода.

Перидотит (от франц. péridot — перидот, или оливин), ультраосновная интрузивная горная порода, состоящая главным образом из оливина (70—30%) и пироксенов (30—70%), иногда с роговой обманкой. Содержание SiO2 колеблется в пределах 40—46% и Mg0 34—46%. В виде второстепенных минералов в перидотите встречаются: магнетит, ильменит, пирротин, хромит.

Пикрит- ультраосновная эффузивная кайнотипная горная порода.

Пикрит, эффузивная горная порода, состоящая из авгита и оливина; в виде примесей встречаются роговая обманка, биотит, ромбический пироксен и второстепенные минералы: ильменит, магнетит и апатит.

Пироксенит-ультраосновная горная порода, состоящая главным образом из одного или нескольких пироксенов ; иногда в ней наблюдается небольшая примесь оливина, реже полевых шпатов и магнетита или титаномагнетита. Тип присутствующего в породе пироксена и рудного минерала является основанием для выделения разновидностей П. Породы, сложенные бронзитом, называются бронзититами, гиперстеном — гиперстенитами. П., состоящие из равномерной смеси ромбического пироксена и диопсида, называются вебстеритами (лерцолитами). П. содержат 43—53% SiO2, 4—10% AI2O3, 5—13% FeO + F2O3, 13—24% MgO и 9—20% CaO.

Кимберлит - ультраосновная горная порода брекчиевидного строения, выполняющая трубки взрыва. Состоит из оливина, флогопита, пиропа и других минералов. Чёрный, с синеватым и зеленоватым оттенком. Известно свыше 1500 тел кимберлита, из которых около 8—10% алмазоносны. Основные алмазоносные кимберлиты в ЮАР и России.

Пикритовые порфириты-ультраосновная эффузивная палеотипнаягорная порода. Под пикритовым порфиритом-нередко описывают бесполевошпатовые (или с небольшим количеством плагиоклаза) порфировидные ультраосновные породы. дайковой фации (редко — эффузивной).

УЛЬТРАОСНОВНЫ́Е ГО́РНЫЕ ПОРО́ДЫ (ульт­ра­ба­зи­ты, ги­пер­ба­зи­ты), маг­ма­тич. гор­ные по­ро­ды, со­дер­жа­щие ме­нее 45% по мас­се крем­не­зё­ма (SiO2). Гл. ми­не­ра­лы – тем­но­цвет­ные: оли­вин , ор­то­пи­рок­сен (эн­ста­тит, брон­зит) и кли­но­пи­рок­сен (ди­оп­сид, ав­гит). Раз­ли­ча­ют плу­то­нич. и вул­ка­нич. (в т. ч. суб­вул­ка­нич.) У. г. п. нор­маль­но­го и ще­лоч­но­го ря­дов, гра­ни­цей ме­ж­ду ко­то­ры­ми яв­ля­ет­ся сум­мар­ное со­дер­жа­ние ок­си­дов ще­лоч­ных ме­тал­лов 1,5%. Боль­шин­ст­во У. г. п. яв­ля­ют­ся ульт­ра­ма­фи­та­ми – бес­по­ле­во­шпа­то­вы­ми (пла­ги­ок­ла­за ос­нов­но­го со­ста­ва не бо­лее 10%) по­ро­да­ми нор­маль­ной щё­лоч­но­сти, не со­дер­жа­щи­ми фельд­шпа­тои­дов; со­дер­жа­ние тем­но­цвет­ных ми­не­ра­лов св. 90%. Ис­клю­че­ние со­став­ля­ют ще­лоч­ные У. г. п. – ур­ти­ты, не­фе­ли­но­ли­ты и т. д., в ко­то­рых мо­жет при­сут­ст­во­вать зна­чит. ко­ли­че­ст­во фельд­шпа­тои­дов. К плу­тонич. (ин­тру­зив­ным) У. г. п. нор­маль­ной щё­лоч­но­сти от­но­сят се­мей­ст­ва пе­ри­до­ти­тов и ду­ни­тов – оли­ви­ни­тов (св. 90% оли­ви­на); к вул­ка­нич. и суб­вул­ка­ни­че­ским – се­мей­ст­ва пик­ри­тов ( пик­ри­ты , ко­ма­тии­ты , мей­ме­чи­ты). Сре­ди ще­лоч­ных плу­то­нич. У. г. п. раз­ли­ча­ют по­ро­ды: фельд­шпа­то­ид­ные (со­дер­жат не­фе­лин, каль­си­лит и др. ми­не­ра­лы) – се­мей­ст­во ульт­ра­ос­нов­ных фои­до­ли­тов (ий­о­лит, ур­тит, мис­су­рит); ме­ли­ли­то­вые – се­мей­ст­во ме­ли­ли­то­ли­тов (ме­ли­ли­то­лит, ку­гдит, турь­яит); сре­ди вул­ка­нич. и суб­вул­ка­ни­че­ских – се­мей­ст­ва фои­ди­тов (ме­ла­не­фе­ли­нит, не­фе­ли­нит и др.) и ме­ли­ли­ти­тов (био­тит-не­фе­ли­но­вый ме­ли­ли­тит, но­зеа­но­вый ми­ли­ли­тит и др.), ба­за­ни­тов, ким­бер­ли­тов , ще­лоч­ных лам­прои­тов и ульт­ра­ос­нов­ных лам­про­фи­ров . При вто­рич­ных из­ме­не­ни­ях по У. г. п. об­ра­зу­ют­ся сер­пен­ти­ни­ты , таль­ко­вые слан­цы и др. ме­та­мор­фич. по­ро­ды.

Читайте также: