Краткое содержание цепная реакция

Обновлено: 05.07.2024

Цепная реакция — химическая и ядерная реакция, в которой появление активной частицы (свободного радикала или атома в химическом, нейтрона в ядерном процессе) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы и многие атомы, в отличие от молекул, обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к их взаимодействию с исходными молекулами. При столкновении свободного радикала (R • ) с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал, который, в свою очередь, реагирует с другой молекулой — происходит цепная реакция.

К цепным реакциям в химии относятся процессы окисления (горение, взрыв), крекинга, полимеризации и другие, широко применяющиеся в химической и нефтяной промышленности.

В ядерной цепной реакции (которая была так названа по аналогии с химической) активными частицами являются нейтроны, которые инициируют один из видов ядерной реакции — деление ядер. Цепная ядерная реакция является основой для ядерной энергетики и ядерного оружия.

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проставив сноски, внести более точные указания на источники.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Цепная реакция" в других словарях:

ЦЕПНАЯ РЕАКЦИЯ — ЦЕПНАЯ РЕАКЦИЯ, самоподдерживающийся процесс ядерного ДЕЛЕНИЯ, при котором одна реакция приводит к началу второй, вторая третьей и так далее. Для начала реакции необходимы критические условия, то есть масса материала, способного к расщеплению,… … Научно-технический энциклопедический словарь

цепная реакция — Всякий биологический (или химико физический) процесс, составленный серией взаимосвязанных процессов, где продукт (или энергия) каждого этапа является участником следующего этапа, что приводит к поддержанию и (или) ускорению цепочки… … Справочник технического переводчика

цепная реакция — 1) Реакция, вызывающая большое число превращений молекул исходного вещества. 2) Самоподдерживающаяся реакция деления атомных ядер тяжёлых элементов под действием нейтронов. 3) разг. О ряде поступков, состояний и т.п., при котором один или одно… … Словарь многих выражений

цепная реакция — chain reaction цепная реакция. Всякий биологический (или химико физический) процесс, составленный серией взаимосвязанных процессов, где продукт (или энергия) каждого этапа является участником следующего этапа, что приводит к поддержанию и (или)… … Молекулярная биология и генетика. Толковый словарь.

цепная реакция — grandininė reakcija statusas T sritis chemija apibrėžtis Cheminė ar branduolinė reakcija, kurios aktyvusis centras sukelia ilgą kitimų grandinę. atitikmenys: angl. chain reaction rus. цепная реакция … Chemijos terminų aiškinamasis žodynas

цепная реакция — grandininė reakcija statusas T sritis fizika atitikmenys: angl. chain reaction vok. Kettenkernreaktion, f; Kettenreaktion, f rus. цепная реакция, f pranc. réaction en chaîne, f … Fizikos terminų žodynas

Цепная реакция — Разг. О непрекращающемся, бесконтрольном процессе вовлечения кого л., чего л. во что л. БМС 1998, 489; БТС, 1462 … Большой словарь русских поговорок

Цепная реакция (фильм — Цепная реакция (фильм, 1963) У этого термина существуют и другие значения, см. Цепная реакция (значения). Цепная реакция Carambolages … Википедия

ЦЕПНЫЕ РЕАКЦИИ – химические реакции, идущие путем последовательности одних и тех же элементарных стадий, на каждой из которых возникает одна или несколько активных частиц (атомов, свободных радикалов, ионов, ион-радикалов). По цепному механизму протекают реакции крекинга, горения, полимеризации и ряд других реакций

Цепи Боденштейна – Нернста.

К концу 19 в. была разработана важнейшая глава физической химии – учение о равновесиях химических реакций (химическая термодинамика). Стало возможным рассчитывать, на какую максимально возможную глубину может пройти конкретная реакция при данных условиях. Одновременно создавалось учение о скоростях химических процессов – химическая кинетика. Накопленные ко второй половине 19 в. многочисленные экспериментальные данные можно было объяснить на основании закона действующих масс и уравнения Аррениуса. В то же время появлялись факты, которые невозможно было объяснить ни одной из существовавших теорий. Одной из самых загадочных оказалась очень простая с виду реакция водорода с хлором: H2 + Cl2 → 2HCl.

Боденштейном были сформулированы и основные принципы протекания нового типа химических превращений – цепных реакций. Эти реакции обязательно имеют три стадии: 1) зарождение цепи, когда происходит образование активных частиц; 2) продолжение (развитие) цепи; 3) обрыв цепи. Зарождение цепей в тепловой реакции происходит в результате диссоциации молекул при нагревании. В фотохимической реакции зарождение цепей происходит при поглощении кванта света. На стадии продолжения цепи образуются молекулы продуктов реакции и одновременно появляется новая активная частица, способная продолжать цепь. На стадии обрыва происходит исчезновение (дезактивация) активной частицы.

При сильном нагреве или при интенсивном освещении ультрафиолетовым светом цепная реакция водорода с хлором идет со взрывом. Но если температура не очень высокая или интенсивность света невелика, реакция идет спокойно. Основываясь на этом факте, Боденштейн выдвинул очень важный принцип стационарной концентрации промежуточных продуктов цепных реакций. В соответствии с этим принципом, скорость генерирования активных частиц на стадии зарождения равна скорости их исчезновения на стадии обрыва. Действительно, если бы скорость обрыва была больше скорости зарождения цепей, число активных частиц снизилось бы до нуля, и реакция прекратилась бы сама собой. В случае же преобладания скорости зарождения, число активных частиц росло бы со временем, что привело бы к взрыву.

В последующем было показано, что атомы водорода намного активнее атомов хлора; соответственно атомы водорода реагируют намного быстрее и потому их стационарная концентрация значительно ниже. Так, при комнатной температуре стационарная концентрация атомов водорода примерно в 100 раз меньше, чем атомов хлора. В результате вероятность встречи двух атомов водорода или атомов водорода и атомов хлора намного меньше, чем для двух атомов хлора, поэтому практически единственной реакцией обрыва цепей является рекомбинация атомов хлора: Cl + Cl → Cl2. Если давление в реакционном сосуде очень мало, а его размеры невелики, активные частицы могу достигнуть стенки сосуда еще до того, как прореагируют с молекулами H2 и Cl2; в этих условиях важную роль может приобрести обрыв цепей на стенках реакционного сосуда.

Схема Нернста была подтверждена разными экспериментами. Один из самых остроумных провел английский физикохимик Майкл Поляни. В его опытах струя водорода проходила над слегка подогретым металлическим натрием и уносила с собой некоторое очень небольшое количество его паров. Затем струя попадала в темноте в сосуд с хлором. При температуре опыта чистый водород с хлором не реагировал, но ничтожная примесь паров натрия полностью меняла дело: шла быстрая реакция образования хлороводорода. Здесь роль инициатора цепной реакции вместо света играет натрий: Na + Cl2 → NaCl + Cl. Подобно тому, как в фотохимической реакции на каждый поглощенный квант света приходится очень много прореагировавших молекул, так и здесь на каждый прореагировавший атом натрия приходится много образовавшихся молекул HCl. Аналогичные результаты Поляни получил для реакции хлора с метаном. В этом случае реакции инициирования и обрыва цепей были такими же, как в реакции хлора с водородом, а реакции продолжения цепи выглядели так: Cl· + CH4 → HCl + ·CH3 и ·CH3 + Cl2 → CH4 + Cl·. В этих реакциях также участвуют частицы с неспаренными электронами (обозначены точкой) – свободные радикалы.

Цепи Семенова – Хиншелвуда.

В конце 1924 в Ленинградском Физико-техническом институте, в Лаборатории электронной химии, которой заведовал Н.Н.Семенов, начали измерять интенсивность свечения паров фосфора при их окислении кислородом. В первых же опытах молодая выпускница университета Зинаида Вальта и ее непосредственный руководитель, Ю.Б.Харитон натолкнулись на совершенно неожиданное явление. Оказалось, что когда кислорода мало, реакция окисления фосфора вообще не идет. Но стоит давлению кислорода превысить некоторое критическое значение, начиналось интенсивное окисление с испусканием света. До этого теория предполагала, что скорость реакции должна плавно увеличиваться с увеличением концентрации. Здесь же – резкий переход от полного отсутствия реакции к очень быстрому процессу при ничтожном изменении давления. Выяснился еще один, совсем уже странный факт: при давлении ниже критического, т.е. в отсутствие реакции, достаточно было ввести в сосуд аргон, чтобы произошла яркая вспышка. Получалось, что инертный газ аргон, не способный ни к каким химическим реакциям, делал кислород реакционноспособным! Это было уже настоящим чудом.

Все эти новые явления были объяснены Семеновым (и независимо Хиншелвудом) в предположении о разветвляющихся цепях. Если в реакции водорода с хлором на каждой стадии продолжения цепи одна активная частица расходуется и одна – появляется (неразветвленная цепь), то в реакции водорода (и других реагентов) с кислородом на одну исчезнувшую активную частицу образуется две или более новых, например,

Если сложить эти три последовательные реакции, получим Н + О2 + 2Н2  ОН + 2Н, то есть одна активная частица превращается в три. В результате число активных центров стремительно нарастает (цепи разветвляются), и если скорость обрыва цепей недостаточно велика, реакция очень быстро переходит во взрывной режим (при небольшом давлении вместо взрыва наблюдается вспышка). Такие реакции, идущие с увеличение числа активных частиц, назвали разветвленно-цепными. Если учесть, что эти процессы сильно экзотермичны, а для реакции каждой активной частицы с молекулой исходного вещества требуются миллиардные доли секунды, то легко понять, почему разветвленно-цепные реакции при больших концентрациях (давлениях) реагентов вызывают разрушительные взрывы.

Теория разветвленно-цепных реакций имеет большое практическое значение, так как объясняет поведение многих промышленно важных процессов, таких как горение, крекинг нефти, воспламенение горючей смеси в двигателях внутреннего сгорания. Наличие верхнего и нижнего пределов по давлению означает, что смеси кислорода с водородом, метаном, другими горючими газами взрываются лишь при их определенных соотношениях. Например, смеси водорода с воздухом взрываются при содержании водорода от 4 до 75%, а смеси метана с воздухом – при содержании метана от 5 до 15%. Вот почему так опасны утечки газа: если метана в воздухе окажется больше 5%, взрыв может наступить даже от крошечной искры в выключателе при включении или выключении света на кухне.

Особое значение цепные процессы приобрели в связи с работой физиков по получению ядерной энергии. Оказалось, что деление урана, плутония, других расщепляющихся материалов подчиняется тем же закономерностям, что и разветвленно-цепные химические реакции. Так, реакция деления урана вызывается нейтронами, которые расщепляют ядра урана с выделением огромной энергии. Разветвление цепи происходит за счет того, при расщеплении ядра выделяются несколько активных частиц – нейтронов, способных к расщеплению новых ядер.

Реакции с вырожденным разветвлением.

При окислении некоторых соединений получаются пероксиды, которые сами способны в определенных условиях распадаться с образованием активных частиц – свободных радикалов. В результате происходит разветвление цепей, хотя и не такое быстрое: ведь чтобы распад пероксидов шел с заметной скоростью, они должны сначала накопиться. Такие процессы назвали вырожденными разветвлениями.

Типичный пример разветвленно-цепной реакции с вырожденным разветвлением – реакция окисления углеводородов. Она начинается с того, что молекула кислорода отрывает от молекулы органического соединения атом водорода: RH + O2  R· + HO2·. Гидропероксидный радикал, образовавшийся на стадии инициирования, в результате реакции HO2· + RH  H2O2 + R· превращается в радикал R· с неспаренным электроном на атоме углерода. Так что радикал HO2· далее в реакции не участвует. У радикала R· несколько возможностей. Во-первых, он может соединяться (рекомбинировать) с другими радикалами, в том числе и себе подобными: R· + R·  R2. Во-вторых, может отрывать атом водорода от молекулы исходного вещества: R· + R'H  RH + R'·. Наконец, он может присоединяться по двойной связи молекулы кислорода: R· + O=O  R–O–O·. Первую реакцию можно не принимать во внимание: вероятность встречи двух активных радикалов очень мала, так как их концентрация ничтожна. Вторая реакция приводит лишь к обмену атомом водорода. А вот в результате третьей реакции образуется пероксидный радикал RO2·, который вместе с радикалом R· ведет цепь. Она состоит из двух повторяющихся стадий цепной реакции окисления: RO2· + RH  ROOH + R· и R· + O2  RO2·.

Видно, что цепь ведут радикалы RO2· и R·, поскольку именно они постоянно рождаются в ходе реакции. Радикалы RO2· менее активные, их концентрация намного выше, поэтому цепь обрывается, когда встречаются два пероксидных радикала. Эта встреча может дать различные продукты, в числе которых пероксиды ROOR (они образуются при рекомбинации пероксидных радикалов), спирты, карбонильные соединения. Если цепи длинные, этих веществ – продуктов рекомбинации – будет немного, а основным продуктом цепной реакции станет гидропероксид ROOH, который иногда удается получить с высоким выходом. Связь О–О в гидропероксидах относительно слабая (более чем вдвое слабее связи С–О в спиртах). При ее разрыве образуются сразу два радикала – RO· и OH·, которые инициируют новые цепи. Получается, что продукт реакции, гидропероксид, одновременно ускоряет ее. Такие реакции называются автокаталитическими.

F2 + H2  H + HF + F – медленная стадия зарождения цепи

F + H2  HF + H – две реакции

H + F2  HF* + F – продолжения цепи

HF* + H2  HF + H2* – передача возбуждения

H2* + F2  H + HF* + F – разветвление цепи

Обрыв цепей происходит на молекулах примесей или на стенках сосуда. Исследование механизма этой реакции позволило создать химический фтор-водородный лазер, в котором источником света (в инфракрасном диапазоне) являются возбужденные молекулы HF.

Илья Леенсон

Симона Элькелес - Цепная реакция

Симона Элькелес - Цепная реакция краткое содержание

Цепная реакция - читать онлайн бесплатно полную версию (весь текст целиком)

Данная книга предназначена только для предварительного ознакомления! Просим Вас удалить этот файл с жесткого диска после прочтения. Спасибо.

Симона Элькелес

Цепная реакция

Идеальная химия 3

Перевод : JennyMH, Albina1992, Xeqtr, Mantrik, Nymphadora, Kamila3012, MeRain, Parara99, Tori12, Monica, Nynaeve, NikitaM

Редакторы и оформители: Aileen , Marochka

Переведено специально для групп:

Любое копирование без ссылки

на переводчиков, редакторов и группы

Пожалуйста, уважайте чужой труд!

Аннотация

Как и его братья, Луис Фуэнтес любит рисковать; неважно, карабкается ли он по горам, или мечтает о будущем астронавта, он всегда готов к новым приключениям.

Никки Круз живет по своим собственным правилам:

2) и никогда не встречаться с парнем, который живет в южной части Фейрфилд.

Но она встречает Луиса на свадьбе его брата Алекса, и, внезапно, ей хочется нарушить все свои правила.

Главной целью для Луиса становится заставить Никки дать ему шанс, но в то же время его начинает преследовать главарь банды, которая когда-то чуть не разрушила жизнь его брата.

Хватит ли тех чувств, которые Луис испытывает к Никки, чтобы помочь ему избежать вступления в темный и жестокий мир, что может оказаться его последним рискованным делом?

Симона Элькелес

Цепная реакция

Идеальная химия — 3

Глава 1

Луис

Мои друзья знают, что я склонен к сумосбродности и бунтарству, но моя семья нет. Я ничего с этим не могу поделать, я Фуэнтес, и мятежность глубоко укоренилась в моих генах. Парень, которого видит моя семья снаружи это не обязательно то, что у меня внутри, и я намерен сохранить этот секрет. Я поклялся никогда не отклоняться от моей конечной цели — пойти в колледж и изучать аэронавтику, но, время от времени, я делаю что-то рискованное, и это подпитывает мою постоянную жажду адреналина.

Я и еще четверо моих друзей стоим у подножия скалы в Боулдер-Каньон. Джек Рейерсон принес снаряжение для скалолазания, но я не собираюсь надевать страховку. Я хватаю один из канатов и прикрепляю его к карабину на моем поясе, когда заберусь на вершину, я закреплю его там для остальной группы.

— Луис, лезть без страховки опасно, — ворчит Брук. — Но ты ведь знаешь это, так?

Я начинаю взбираться, выбирая свой путь к вершине скалы. Это не первое моё восхождение в одиночку в каньоне Болдер, плюс, я достаточно натренирован, чтобы понимать, что делаю. Это не значит, что риск отсутствует, это лишь значит, что он просчитан.

Я лезу всё выше, а Джейми Блумфилд кричит откуда-то снизу:

— Ты псих Луис! Ты же разобьешься, если свалишься!

— Хочу, чтобы все знали, — говорит Джек. — Я не буду нести ответственность за твои сломанные кости. Нужно было заставить тебя подписать отказ от претензий.

Джек сын юриста, поэтому у него есть дурацкая привычка оповещать нас, что он не несёт ответственности практически за всё, что мы делаем.

Я не говорю им, что восхождение без страховки наполняет мое тело адреналином. На самом деле, это даже заставляет меня хотеть сделать что-то посерьезнее и более рискованное. В Вейле на зимних каникулах в прошлом году Джейми назвала меня искателем острых ощущений, после того как я спустился на сноуборде вниз по склону, отмеченному черным алмазом. Я не сказал ей, что получал те же ощущения, когда зажимался с девушкой, которую встретил в холле отеля той ночью. Интересно, попадает ли это в одну и ту же категорию?

Я уже на полпути к вершине, хватаюсь рукой за выступ повыше, ногу ставлю в небольшую расщелину. Здесь достаточно высоко, и когда я смотрю вниз, понимаю, что может произойти, если я потеряю хватку.

— Не смотри вниз! — говорит Джек в панике. — У тебя закружится голова, и ты упадешь.

— И умрешь! — добавляет Джейми.

Dios mío[1]. Моим друзьям явно нужно остыть. Они белые и росли не в мексиканской семье среди пацанов, которые не знают жизни без риска. Даже несмотря на то, что я единственный из братьев Фуэнтес, кто достаточно умён, чтобы не рисковать, я чувствую себя по-настоящему живым, только когда делаю это. Вершина находится всего лишь в нескольких футах от меня. Я останавливаюсь и вглядываюсь в пейзаж с высоты птичьего полета.

Это чертовски восхитительно. Я жил в Иллинойсе, где все абсолютно плоское, за исключением небоскребов. Вид Колорадских гор заставляет меня ценить природу. Ветер дует в спину, солнце свет на небе, и я чувствую себя непобедимым.

Примерно в десяти футах от вершины протягиваю левую руку и хватаюсь за трещину в скале. Я почти у цели. Прощупываю скалу в поисках места, куда можно поставить ногу, и чувствую, как что-то острое вонзается в руку.

Вот чёрт. Это не хорошо.

Меня только что кто-то укусил.

Как можно быстрее, я переношу вес на обе ноги, инстинктивно отдёргиваю руку и смотрю на неё. На тыльной стороне ладони я замечаю две маленькие отметины, из которых идёт кровь.

4.2. В июне 1940 г. почти вся работа по вопросам цепной реакции была сосредоточена в Колумбии под общим руководством Пеграма и при ближайшем участии Ферми и Сциларда. Было установлено, что самыми благоприятными условиями для цепной реакции являются, вероятно, те, в которых деление происходит в неоднородной смеси графита и урана под действием тепловых нейтронов. Весной 1940 года Ферми, Сцилард и Г.Л. Андерсон повысили точность измерения поперечного сечения захвата нейтронов углеродом, резонансного поглощения нейтронов (промежуточных скоростей) изотопом U-238 и более детально изучили замедление нейтронов в углероде.

4.4. На собрании 15 июня (см. главу III) были обсуждены эти результаты и было рекомендовано, чтобы: (А) были проведены дальнейшие измерения ядерных постоянных и (В) были произведены опыты над решетками из урана и углерода, содержащими уран в количествах 1/3-1/4 вычисленных критических количеств.

РЕЗУЛЬТАТЫ, ДОСТИГНУТЫЕ К 15 ФЕВРАЛЯ 1941 г

4.5. Доклад Пеграма от 15 февраля 1941 г. показывает, что большая часть работ, выполненных к этому времени, относилась к пункту (А), тогда как работы по пункту (В) — так называемому промежуточному эксперименту — задерживались из-за недостатка материалов.

4.6. Перефразируя доклад Пеграма, можно представить главные результаты в следующем виде:

(а) Замедление нейтронов в графите было исследовано путем изучения интенсивности активации различных детекторов (родий, индий, йод), расположенных различным образом внутри прямоугольной графитовой колонны, имеющей размеры 338 футов, когда в нее помещался источник нейтронов. Подбирая соответствующие кадмиевые экраны, можно было исследовать действия резонансных и тепловых нейтронов в отдельности.[2]

Математический анализ экспериментальных данных, основанный на теории диффузии, позволил предсказать результаты, ожидаемые в других расположениях. Эти результаты в сочетании с теоретическим изучением диффузии тепловых нейтронов послужили основой для расчета числа тепловых и резонансных нейтронов, обнаруживаемых в какой-нибудь точке в массе графита заданной формы, если источник нейтронов помещается в определенном положении внутри графита или вблизи него.

(b) Число нейтронов, испускаемых при делении. Опыты по замедлению нейтронов показали, что практически почти все нейтроны, обладающие большой энергией (быстрые), как, например, нейтроны, получающиеся при делении, снижают свою энергию до тепловой, проходя через слой графита толщиною в 40 см или более. Уран, помещенный в область образования тепловых нейтронов, поглощает их и — поскольку происходит деление — сам испускает быстрые нейтроны, легко отличимые от тепловых нейтронов. Производя ряд измерений, в присутствии урана и без него, с помощью разного рода детекторов и поглотителей можно получить значение константы ? — числа нейтронов, испускаемых на один тепловой нейтрон, поглощенный ураном. Эта величина не есть число испускаемых нейтронов, приходящихся на деление, она несколько меньше этого числа, так как не каждое поглощение вызывает деление урана.

(c) Теория решетки. Производились обширные вычисления ожидаемого числа нейтронов, вылетающих за пределы решеток различных конструкций и размеров. Эти вычисления служили основой для так называемого промежуточного эксперимента, упомянутого выше в пункте (В).

НАЧАЛО ВЫПОЛНЕНИЯ НОВЫХ ПРОГРАММ

4.7. Интерес, проявленный отдельными учеными институтов в Принстоне, Чикаго и Калифорнии к проблеме цепной реакции, привел к постановке ряда исследований в этих институтах. С тех пор работа этих групп согласовывалась с работой в Колумбии, образуя части единой большой программы.

РАБОТА ПО РЕЗОНАНСНОМУ ПОГЛОЩЕНИЮ

4.9. Эксперименты такого рода были начаты в Колумбии и продолжены в Принстоне в феврале 1941 г. Опыты состояли в изучении поглощения нейтронов в интервале энергий от нескольких тысяч электрон-вольт до долей электрон-вольта (тепловые энергии), причем поглощение имело место в различных слоях сфер из урана или окиси урана, уложенных в графите.

4.11. Эксперименты, требующие применения сфер разных размеров, различных плотностей и в различных расположениях, продолжались до весны 1942 года. когда большинство членов группы было переведено в Чикаго. Аналогичные эксперименты, проделанные позднее в университете Индианы А.Ч.Г. Митчелом и его сотрудниками, подтвердили и в некоторых случаях исправили данные, полученные в Принстоне, но летом 1941 года принстонские данные были достаточно точны для использования в планировании опытов с полузаводскими котлами, а впоследствии с промышленными котлами.

4.12. Опыты по резонансному поглощению в Принстоне были выполнены Р.Р. Вильсоном, Э.К. Кройтцем и их сотрудниками, под общим руководством Г.Д. Смита; им постоянно помогали Вигнер и Уилер, и они часто совещались с колумбийской группой.

ПЕРВЫЕ ПРОМЕЖУТОЧНЫЕ ЭКСПЕРИМЕНТЫ

4.13. Приблизительно в июле 1941 г. в Колумбии впервые был произведен в большом масштабе опыт с решеткой из урановых блоков в графите. Был сложен графитовый куб с ребром в 8 футов, содержавший около 7 тонн окиси урана в железных коробках, расположенных в графите с равными промежутками. Предварительная серия измерений на этой конструкции была выполнена в августе 1941 г. Аналогичные конструкции несколько более значительных размеров были установлены и исследованы в течение сентября и октября, и впервые был разработан и применен так называемый экспоненциальный метод определения коэффициента размножения (описанный ниже). Эта работа была выполнена Ферми и его помощниками Г.Л. Андерсоном, Б. Фельдом, Дж. Вейлем и В.Г. Цинном.

4.14. Опыты над коэффициентом размножения похожи на описанные выше опыты по определению ? — числа нейтронов, испускаемых на один поглощенный тепловой нейтрон. Радие-бериллиевый источник нейтронов помещается у основания решетки, и измеряется число нейтронов в различных точках решетки. Затем эти числа сравниваются с соответствующими числами, полученными в отсутствии урана в массе графита. Очевидно, поглощение нейтронов ураном-238 с превращением его в уран-239 приводит к уменьшению числа нейтронов, в то время как деление урана увеличивает это число. Возникает вопрос: что преобладает? или, более точно, преобладает ли освобождение нейтронов в процессах деления над всеми процессами поглощения нейтронов? Истолкование экспериментальных данных по этому решающему вопросу сопровождалось введением многих поправок, вычислениями и приближениями, но в конце концов все сводилось к единственному числу — коэффициенту размножения k.

4.15. Успех или неудача решения всей проблемы урана зависели всецело от коэффициента размножения k называемого иногда коэффициентом воспроизведения. Если k удастся сделать более единицы в практически действующей системе, проект окажется успешным; если же нет, то цепная реакция окажется не более, как фантазией. Это ясно из следующего рассуждения, применимого к любой системе, содержащей материал, подверженный делению. Предположим, что в данный момент в системе имеется определенное число свободных нейтронов. Некоторые из этих нейтронов сами вызовут деление и будут таким образом непосредственно производить новые нейтроны. Коэффициент размножения k есть отношение числа этих новых нейтронов к числу первоначально имевшихся свободных нейтронов. Пусть в котле, содержащем уран, углерод, примеси, коробки и т. д., делением произведены 100 нейтронов; некоторые из них вылетят из котла, некоторые будут поглощены ураном и не вызовут деления, некоторые будут поглощены углеродом, материалом коробки или примесями и лишь некоторые из этих 100 нейтронов вызовут деление, производя тем самым новые нейтроны (см. рис. 2 на стр. 36). Если делений достаточно много и каждое из них в отдельности достаточно эффективно, то будет произведено более 100 новых нейтронов, и система обеспечит развитие цепной реакции. Если число новых нейтронов 105, то k=1,05. Но если число новых нейтронов на 100 начальных равно 99, то k=0,99, и цепная реакция невозможна.

4.17. Значение последнего, согласно отчету Ферми на заседании Секции урана осенью 1941 года, было около 0,87. Такое значение основывалось на результатах, полученных из второго промежуточного эксперимента в Колумбии. Все считали, что коэффициент размножения можно увеличить путем увеличения химической чистоты материалов, различных усовершенствований решетки и т. д., но никто не мог утверждать с достоверностью, что k можно будет сделать большим единицы.

ОПЫТЫ С БЕРИЛЛИЕМ

4.19. Как было уже указано в главе II, бериллий обладает желательными свойствами в качестве замедлителя, благодаря своему малому атомному весу и небольшому поперечному сечению поглощения нейтронов; кроме того, возможно увеличение числа нейтронов в бериллии в результате реакции (n, 2n). Точное значение поперечного сечения было неизвестно; кроме того, далеко не было уверенности в том, что можно будет получить сколько-нибудь большие количества чистого бериллия. Проблема, стоявшая перед Алисоном, была в основном аналогична колумбийской проблеме, только вместо графита применялся бериллий. Из-за недостатка бериллия было предложено, чтобы он применялся вместе с графитом или каким-либо другим замедлителем, по возможности в качестве рефлектора.

4.20. В чикагских экспериментах нейтроны, получавшиеся с помощью циклотрона, направлялись в котел из графита и бериллия.

Алисон выполнил ряд измерений по замедлению нейтронов и поглощению их графитом, что являлось ценным контролем аналогичных измерений в Колумбии. Ему, наконец, удалось получить бериллий в количестве, достаточном для выполнения важных измерений, которые показали, что бериллий может служить замедлителем, сравнимым с графитом. Однако, в действительности бериллий совсем не применялся в широких масштабах, ввиду больших трудностей получения его в больших количествах и в нужном виде.

4.21. Чикагский проект, описанный выше, стал частью проекта Металлургической лаборатории, основанной в Чикагском университете в начале 1942 г.

4.23. Была также значительно развита теория реакции на быстрых нейтронах в уране-235. В частности, были произведены новые оценки критических размеров, и было предсказано. что, возможно, 10 процентов полной энергии освободится в виде взрыва.

Исходя из этой оценки, один килограмм U-235 должен быть эквивалентен 2000 тонн тринитротолуола. Ниже дается обзор результатов по докладу Национальной Академии Наук. Вспомним, что при этом возникали два вопроса: (1) какая часть энергии деления ядра освободится, прежде чем остановится реакция? (2) насколько разрушителен будет такой в высшей степени концентрированный взрыв?

РАБОТА НАД ПЛУТОНИЕМ

4.24. В главе I упоминалось о предположении (1), что элемент 94, позже названный плутонием, образуется в результате двух последовательных ?-распадов U-239, происходящих в результате поглощения нейтронов ураном U-238, и (2) что плутоний, вероятно, испускает ?-частицы, обладает длительным периодом полураспада и претерпевает деление при бомбардировке нейтронами. Летом 1940 г. группе ядерной физики университета с Беркли (Калифорния) было предложено воспользоваться нейтронами, даваемыми мощным циклотроном, для того, чтобы получить плутоний, отделить его от урана и исследовать его способность к делению. С этой целью Э. Сегре, Дж. Т. Сиборг, Дж. В. Кеннеди и А.К. Валь (Беркли) до 1941 года произвели различные эксперименты, о которых Э.О. Лоуренс сообщил Комитету Национальной Академии Наук (см. ниже) в мае 1941 г.; они были также изложены в записке, включенной во второй доклад Комитета от 11 июля 1941 г. Как будет видно ниже, эта записка содержит одну важную мысль, которая специально не подчеркивалась другими (параграф 1.58), а именно мысль о массовом производстве плутония для применения в атомной бомбе.

4.25. Приводим из записки Лоуренса следующую выдержку:

«Со времени опубликования первого доклада Комитета Академии Наук по делению ядра была открыта новая огромной важности возможность использования цепной реакции с неразделенными изотопами урана. Эксперименты в лаборатории излучения Калифорнийского университета показали: (а) что элемент 94 образуется в результате захвата нейтрона ураном-238, сопровождаемого двумя последовательными ?-превращениями и, кроме того, (b) что этот трансурановый элемент претерпевает деление под действием медленных нейтронов и поэтому ведет себя, должно быть, подобно U-235.

Отсюда следует, что если осуществлена цепная реакция с неразделенными изотопами, то можно вести ее достаточно интенсивно и пользоваться ею специально для производства элемента 94 в значительных количествах. Это вещество могло бы быть выделено средствами обычной химии и вероятно, что оно эквивалентно урану-235 в осуществлении цепной реакции.

Если это так, то открываются три важнейшие возможности:

1. Уран-238 был бы пригоден для производства энергии, что увеличило бы общую атомную энергию, получаемую из данного количества урана, примерно в сто раз.

2. Учитывая применение элемента 94, можно предвидеть изготовление небольших установок цепной реакции для энергетических целей, весящих, быть может, сто фунтов вместо ста тонн, которые, вероятно, потребовались бы для установок с применением естественного урана.

РАДИОАКТИВНЫЕ ОТРАВЛЯЮЩИЕ ВЕЩЕСТВА

4.26. Как указывалось выше, осколки, образовавшиеся в результате деления, в большинстве случаев представляют собою неустойчивые ядра, т. е. искусственно радиоактивные вещества. Общеизвестно, что излучения радиоактивных веществ производят очень вредное действие, подобное действию рентгеновских лучей.

4.27. В котле, в котором протекает цепная реакция, образуются радиоактивные продукты деления (на практике они принесли больше всего затруднений). Так как химически они отличаются от урана, их можно было бы выделить и применять как ядовитые газы особо сильного действия. Эта мысль упоминалась в докладе Академии Наук (см. параграф 4.48) и была развита в докладе, написанном 10 декабря 1941 г. Э. Вигнером и Г.Д. Смитом, которые пришли к выводу, что продуктов деления, полученных за время однодневной работы котла цепной реакции мощностью в 100 000 kW, было бы достаточно для того, чтобы большую площадь превратить в пустыню.

4.28. Вигнер и Смит не рекомендовали применения радиоактивных отравляющих веществ, не рекомендовали этого и ответственные представители властей, но серьезному рассмотрению подвергся вопрос о возможности неожиданного применения немцами радиоактивных отравляющих веществ, и были намечены соответствующие меры защиты.

ЦЕПНАЯ РЕАКЦИЯ

ЦЕПНАЯ РЕАКЦИЯ ПРОГРАММА, ПРЕДЛОЖЕННАЯ 15 ИЮНЯ 1940 г4.2. В июне 1940 г. почти вся работа по вопросам цепной реакции была сосредоточена в Колумбии под общим руководством Пеграма и при ближайшем участии Ферми и Сциларда. Было установлено, что самыми благоприятными условиями для

ЦЕПНАЯ РЕАКЦИЯ

ЦЕПНАЯ РЕАКЦИЯ ДАЛЬНЕЙШИЕ ПРОМЕЖУТОЧНЫЕ ЭКСПЕРИМЕНТЫ6.21. Ко времени организации Металлургического проекта большинство физиков, знакомых с состоянием вопроса, считали, что система, в которой будет развиваться цепная реакция, вероятно, осуществима, если можно будет

ЦЕПНАЯ РЕАКЦИЯ В КОТЛЕ

ЦЕПНАЯ РЕАКЦИЯ В КОТЛЕ 8.3. В главе I и других предыдущих главах мы дали краткое описание процесса деления, работы котла и химического отделения. Прежде, чем перейти к описанию самих установок для получения плутония, мы рассмотрим эти вопросы с несколько иной точки

Читайте также: