Значение молекулярной биологии в современном мире сообщение

Обновлено: 19.05.2024

Молекулярная биология представляет собой комплекс биологических наук, которые исследуют механизмы хранения, передачи и реализации генетической информации, строение и функции сложных высокомолекулярных соединений, входящих в состав клетки: нерегулярных биополимеров (белков и нуклеиновых кислот).

Важнейшей отличительной чертой молекулярной биологии является исследование жизненных явлений на неживых объектах.

Молекулярная биология возникла как биохимия нуклеиновых кислот. После этого она получила собственные методы исследования в результате технологических достижений, поэтому в настоящее время она отличается от биохимии. Современная молекулярная биология применяет методы генной инженерии, искусственной экспрессии и нокаута генов, клонирования.

С генетикой молекулярную биологию значительно сближает то, что материальным носителем генетической информации является молекула ДНК. Молекулярная генетика является одновременно разделом генетики и молекулярной биологии.

Значение молекулярной биологии для науки и практики возрастает с каждым годом. Её достижения используются в получении ценных сельскохозяйственных продуктов, новых организмов с заданными признаками. Но особенно большие возможности молекулярная биология открывает перед медициной, поскольку с её помощью стали возможными новые методы диагностики и лечения различных заболеваний человека (наследственных, раковых, сердечно-сосудистых, вирусных и паразитных инфекций, нервных и умственных расстройств).

История развития молекулярной биологии

К этому важному открытию привели долгие годы исследований в области биохимии и генетики бактерий и вирусов. В дальнейшем изучение трансформации бактерий привело к очистке болезнетворных агентов, которыми, вопреки ожиданиям, оказались не белковые структуры, а нуклеиновые кислоты. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизмов.

В середине двадцатого века было установлено, что для бактерий характерен примитивный половой процесс, при котором происходит обмен внехромосомными молекулами ДКН. Открытие плазмид стало основой плазмидной технологии, которая была необходима в молекулярной биологии.

Другим важным аспектом для методологических основ молекулярной биологии стало обнаружение бактериофагов и вирусов бактерий в начале двадцатого века. Установлено, что фаги способны к переносу биологического материала из одной клетки бактерий в другую.

Последующее развитие молекулярной биологии было связано как совершенствованием её методологии, в частности, разработкой методов определения нуклеотидной последовательности ДНК (У. Гилберт и Ф. Сенгер, Нобелевская премия по химии 1980 года), так и с инновационными открытиями в сфере исследований строения и функционирования генов.

В начале двадцать первого века были получены сведения о первичной структуре всей ДНК человека и многих других организмов, которые наиболее важны для научных исследований, медицины и сельского хозяйства, что стало причиной появления инновационных биологических направлений: биоинформатики

В 1973 г. в печати появилась информация об успешном переносе генов из одного организма в другой, т. е. фактически о технологии рекомбинантной ДНК, давшей начало генетической инженерии.

В 1980 г. Верховный суд США постановил, что эксперименты в области молекулярной биологии и генетической инженерии могут быть запатентованы.

Спустя десятилетие - в 1990 г. - произошли два принципиально важных события:

С начала текущего столетия в медицине стали успешно применять такие результаты молекулярной биологии, как рекомбинантные белки и вторичные метаболиты микроорганизмов и растений.

Достижения молекулярной биологии и генной инженерии этого времени дали возможность составлять генетические карты бактерий, вирусов, дрожжевых грибков, одноклеточных и многоклеточных растений и животных.

Перспективы молекулярной биологии

К настоящему времени с помощью методов молекулярной биологии уже получено множество ценных продуктов, нашедших своё применение в жизни человека. Вместе с тем продолжается дальнейший прогресс исследований в области молекулярной биологии. Учёные всего мира делают свои прогнозы, говоря о будущей пользе проектов, связанных с молекулярной биологией.

Вот важнейшие из них:

  • Создание новых азотфиксирующих растений.
  • Производство аминокислот из одноклеточных организмов.
  • Селекция культур, устойчивых к вредителям.
  • Получение бактерий, производящих заменители нефтехимикатов.
  • Использование генной инженерии для лечения генетических заболеваний.
  • Использование генетического скрининга для извлечения генов, ответственных за врождённые дефекты.
  • Целостное исследование иммунологических процессов.

По данным учёных, благодаря работам в области молекулярной биологии уже в ближайшее время на рынке появится ценная продукция: новые азотфиксирующие растения; микроорганизмы для переработки отходов заменителей нефтехимикатов, загрязняющих окружающую среду; продукты генной терапии. Наиболее широко внедрить результаты биотехнологических открытий в ближайшее десятилетие планируется в области сельского хозяйства и фармацевтической промышленности.

Несмотря на многочисленные перспективы биотехнологии, нельзя не упомянуть о проблемах, возникающих при использовании результатов лабораторных исследований на практике.

  • Во-первых, зачастую методы молекулярной биологии остаются весьма дорогостоящими.
  • Во-вторых, синтез многих фармацевтических препаратов связан с большими трудностями из-за долгих испытаний по токсичности и безопасности.

Наконец, нельзя забывать о человеческом факторе: необходима качественная подготовка новых специалистов в области молекулярной биологии.

С помощью нашего сервиса Вы можете собрать свою коллекцию шпаргалок по нужному предмету, и распечатать готовые ответы в удобном для вырезания виде. Для этого начните собирать ответы, добавляя в "Мои шпаргалки".

Другое направление молекулярной генетики — исследование мутации генов. Современный уровень знаний позволяет не только понять эти тонкие процессы, но и использовать их в своих целях. Разрабатываются методы генной инженерии, позволяющие внедрить в клетку желаемую генетическую информацию. В 70-е годы появились методы выделения в чистом виде фрагментов ДНК с помощью электрофореза. Клонирование органов и тканей — это задача номер один в области трансплантологии, травматологии и других областях медицины и биологии. При пересадке клонированного органа не надо думать о подавлении реакции отторжения и возможных последствиях в виде рака, развившегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные аварии или какие-нибудь иные катастрофы, или для людей, которым нужна радикальная помощь из-за заболеваний пожилого возраста (изношенное сердце, больная печень и т. д.). Самый наглядный эффект клонирования - дать возможность бездетным людям иметь своих собственных детей. Миллионы семейных пар во всем мире страдают, будучи обреченными оставаться без потомков. Описание генома человека ученым удалось получить значительно раньше планировавшихся сроков (2005-2010 гг.). Уже в канун нового, XXI в. были достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека — от 30 до 40 тысяч генов (вместо предполагавшихся ранее 80-100 тыс.). Это ненамного больше, чем у червяка (19 тыс. генов) или мухи-дрозофилы (13,5 тыс.). Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, как предполагается, в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получит развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т. д.

Синтетическая теория эволюции (СТЭ) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

Основные положения синтетической теории эволюции :

1. Мутационная и рекомбинационная изменчивость - материал эволюции.

2. Эволюция осуществляется на уровне генов.

3. естественный отбор – основной фактор.

4. Популяция (локальная) - Наименьшая единица эволюции

5. вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;

6. видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

7. Эволюция носит постепенный, длительный характер.

8. Обмен потоком генов возможен лишь внутри гена.

9. Макроэволюция идёт посредством микроэволюции.

10. Эволюция носит непредсказуемый и ненаправленный характер.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Молекулярная биология нужна врачам, для того что лечить наследственные болезни и мутагены. Отдельно и более глубоко молекулярную биологию изучают молбиологи. Хороший молбиолог вполне может выступить в роли врача, для лечения наследственных болезней, однако далеко не каждый, даже самый хороший врач, может выступить в роли молбиолога – все-таки уровень знаний в этой сфере у них слишком разный.

Молекулярная биология представляет собой достаточно широкую область науки. Однако, в целом, она необходима для. Читать дальше

Молекулярная биология изучает биологические процессы на уровне макромолекул: белков и нуклеиновых кислот. Ни один процесс в нашем организме не происходит без макромолекул.

ДНК – наследственный материал. Молекулярная биология изучает процессы и их участников, которые позволяют ДНК кодировать наши белки, регулировать их уровень, что может повреждать ДНК и как она чинится.

Белки – выполняют множество функций в наших клетках. Они важны и для получения энергии, синтеза структур и других белков, взаимодействия с внешней средой, передачи сигналов и превращения веществ. Молекулярная биология изучает механизмы их работы, что можно может быть использовано для лечения человека, борьбы с вирусами и бактериями.

В интернете я наткнулся на лишь на историю и изучаемое ей.

Особенно странно выглядит этот вопрос во время пандемии коронавируса. Да вот для того и нужна, что бы изучив геном вируса, создавать вакцины против него, а в последствии лекарства. Полимеразная цепная реакция лежит в основе тестов.

Для того, что бы получать рекомбинантный инсулин и другие препараты. Для того что бы предсказывать и лечить генетические патологии, наследственные болезни.

С помощью методов молекулярной биологии можно проводить точную идентификацию организма и определять его родственников. В зоологии часто используются для построения филогенетических деревьев или создания генетических паспортов особо охраняемых животных.

Обычно для идентификации применяют две методики: микросателлитных анализ (поиск в ДНК консервативных участков с повтором какого-то мотива нуклеотидов несколько десятков раз, например ATAG*32) и СНИП анализы ( ищут среди генома вида, который обычно одинаков у всех его представителей на 99,5% точечные мутации с заменой одного нуклеотида на другой). Первый метод требует четкой каллибровки аппаратуры и не очень дорог, а второй дорог, но всегда показывает результат качественно (есть/нет) и не требует длительных калибровок.

Сейчас поменяют оба подхода для изучения генома человека, определения области происхождения, склонности к заболеваниям, родства. Некоторые фирмы в США также работают совместно с криминалистами для нахождения преступника через его родственников, отдавших свой образец ДНК в общую базу (с их согласия на участие в помощи следствию, можно и отказаться при подписании договора об оказании медицинских услуг).


Обзор

Молекулярный биолог Пробирочка

Автор
Редакторы


Центр наук о жизни Сколтеха

BioVitrum

Спонсором приза зрительских симпатий выступила компания BioVitrum.

1. Введение. Сущность молекулярной биологии

Молекулярная биология изучает основы жизнедеятельности организмов на уровне макромолекул. Целью молекулярной биологии является установление роли и механизмов функционирования этих макромолекул на основе знаний об их структурах и свойствах.

Исторически молекулярная биология сформировалась в ходе развития направлений биохимии, изучающих нуклеиновые кислоты и белки. В то время как биохимия исследует обмен веществ, химический состав живых клеток, организмов и осуществляемые в них химические процессы, молекулярная биология главное внимание сосредоточивает на изучении механизмов передачи, воспроизведения и хранения генетической информации.

А объектом изучения молекулярной биологии являются сами нуклеиновые кислоты — дезоксирибонуклеиновые (ДНК), рибонуклеиновые (РНК) — и белки, а также их макромолекулярные комплексы — хромосомы, рибосомы, мультиферментные системы, обеспечивающие биосинтез белков и нуклеиновых кислот. Молекулярная биология также граничит по объектам исследования и частично совпадает с молекулярной генетикой, вирусологией, биохимией и рядом других смежных биологических наук.

2. Исторический экскурс по этапам развития молекулярной биологии

Как отдельное направление биохимии, молекулярная биология начала развиваться в 30-х годах прошлого века. Еще тогда возникла необходимость понимания феномена жизни на молекулярном уровне для исследований процессов передачи и хранения генетической информации. Как раз в то время установилась задача молекулярной биологии в изучении свойств, структуры и взаимодействия белков и нуклеиновых кислот.

В 1944 году американский биолог Освальд Эвери с коллегами (Колином Маклеодом и Маклином Маккарти) доказал, что веществом, вызывающим трансформацию бактерий, является ДНК, а не белки. Эксперимент послужил доказательством роли ДНК в передаче наследственной информации, перечеркнув устаревшие знания о белковой природе генов.

В начале 50-х годов Фредерик Сенгер показал, что белковая цепь — уникальная последовательность аминокислотных остатков. В 1951 и 1952 годах ученый определил полную последовательность двух полипептидных цепей — бычьего инсулина В (30 аминокислотных остатков) и А (21 аминокислотный остаток) соответственно.

Примерно в то же время, в 1951–1953 гг., Эрвин Чаргафф сформулировал правила о соотношении азотистых оснований в ДНК. Согласно правилу, вне зависимости от видовых различий живых организмов в их ДНК количество аденина (A) равно количеству тимина (T), а количество гуанина (G) равно количеству цитозина (C).

В 1953 году доказана генетическая роль ДНК. Джеймс Уотсон и Фрэнсис Крик на основе рентгенограммы ДНК, полученной Розалинд Франклин и Морисом Уилкинсом, установили пространственную структуру ДНК и выдвинули подтвердившееся позднее предположение о механизме ее репликации (удвоении), лежащем в основе наследственности.

1958 год — формирование центральной догмы молекулярной биологии Фрэнсисом Криком: перенос генетической информации идет в направлении ДНК → РНК → белок.

Суть догмы состоит в том, что в клетках имеется определенный направленный поток информации от ДНК, которая, в свою очередь, представляет собой исходный генетический текст, состоящий из четырех букв: A, T, G и C. Он записан в двойной спирали ДНК в виде последовательностей этих букв — нуклеотидов.

Этот текст транскрибируется. А сам процесс называется транскрипцией. В ходе данного процесса происходит синтез РНК, которая является идентичной генетическому тексту, но с отличием: в РНК вместо T стоит U (урацил).

Данная РНК называется информационной РНК (иРНК), или матричной (мРНК). Трансляция иРНК осуществляется при помощи генетического кода в виде триплетных последовательностей нуклеотидов. В ходе этого процесса происходит перевод текста нуклеиновых кислот ДНК и РНК из четырехбуквенного текста в двадцатибуквенный текст аминокислот.

Природных аминокислот существует всего двадцать, а букв в тексте нуклеиновых кислот четыре. Из-за этого происходит перевод из четырехбуквенного алфавита в двадцатибуквенный посредством генетического кода, в котором каждым трем нуклеотидам соответствует какая-либо аминокислота. Так можно сделать из четырех букв целые 64 трехбуквенные комбинации, притом что аминокислот 20. Из этого следует, что генетический код обязательно должен иметь свойство вырожденности. Однако в то время генетический код не был известен, к тому же его даже не начали расшифровывать, но Крик уже сформулировал свою центральную догму.

Тем не менее была уверенность в том, что код должен существовать. К тому времени было доказано, что этот код обладает триплетностью. Это означает, что конкретно три буквы в нуклеиновых кислотах (кодóны) отвечают какой-либо аминокислоте. Этих кодонов всего 64, они кодируют 20 аминокислот. Это означает, что каждой аминокислоте отвечает сразу несколько кодонов.

Таким образом, можно сделать вывод, что центральная догма является постулатом, который гласит о том, что в клетке происходит направленный поток информации: ДНК → РНК → белок. Крик сделал акцент на главном содержании центральной догмы: обратного потока информации происходить не может, белок не способен изменять генетическую информацию.

В этом и заключается основной смысл центральной догмы: белок не в состоянии изменять и преобразовывать информацию в ДНК (или РНК), поток всегда идет лишь в одну сторону.

Спустя время после этого был открыт новый фермент, который не был известен во времена формулировки центральной догмы, — обратная транскриптаза, которая синтезирует ДНК по РНК. Фермент был открыт в вирусах, у которых генетическая информация закодирована в РНК, а не в ДНК. Такие вирусы называют ретровирусами. Они имеют вирусную капсулу с заключенными в нее РНК и специальным ферментом. Фермент и есть обратная транскриптаза, которая синтезирует ДНК по матрице этой вирусной РНК, а эта ДНК потом уже служит генетическим материалом для дальнейшего развития вируса в клетке.

Конечно, данное открытие вызвало большой шок и множество споров среди молекулярных биологов, поскольку считалось, что, исходя из центральной догмы, этого быть не может. Однако Крик сразу объяснил, что он никогда не говорил, что это невозможно. Он говорил лишь то, что никогда не может происходить поток информации от белка к нуклеиновым кислотам, а уже внутри нуклеиновых кислот любого рода процессы вполне возможны: синтез ДНК на ДНК, ДНК на РНК, РНК на ДНК и РНК на РНК.

После формулирования центральной догмы по-прежнему оставался ряд вопросов: как алфавит из четырех нуклеотидов, составляющих ДНК (или РНК), кодирует 20-буквенный алфавит аминокислот, из которых состоят белки? В чем состоит сущность генетического кода?

Первые идеи о существовании генетического кода сформулировали Александр Даунс (1952 г.) и Георгий Гамов (1954 г.). Ученые показали, что последовательность нуклеотидов должна включать в себя не менее трех звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном (триплетом). Тем не менее вопрос о том, какие нуклеотиды ответственны за включение какой аминокислоты в белковую молекулу, оставался открытым до 1961 года.

А в 1961 году Маршалл Ниренберг вместе с Генрих Маттеи использовали систему для трансляции in vitro. В роли матрицы взяли олигонуклеотид. В его состав входили только остатки урацила, а пептид, синтезированный с него, включал только аминокислоту фенилаланин. Таким образом впервые было установлено значение кодона: кодон UUU кодирует фенилаланин. Поле них Хар Корана выяснил, что последовательность нуклеотидов UCUCUCUCUCUC кодирует набор аминокислот серин—лейцин—серин—лейцин. По большому счету, благодаря работам Ниренберга и Кораны, к 1965 году генетический код был полностью разгадан. Выяснилось, что каждый триплет кодирует определенную аминокислоту. А порядок кодонов определяет порядок аминокислот в белке.

Главные принципы функционирования белков и нуклеиновых кислот сформулировали к началу 70-х годов. Было зафиксировано, что синтез белков и нуклеиновых кислот осуществляется по матричному механизму. Молекула-матрица несет закодированную информацию о последовательности аминокислот или нуклеотидов. При репликации или транскрипции матрицей служит ДНК, при трансляции и обратной транскрипции — иРНК.

Так были созданы предпосылки для формирования направлений молекулярной биологии, в том числе и генной инженерии. А в 1972 году Пол Берг с коллегами разработал технологию молекулярного клонирования. Ученые получили первую рекомбинантную ДНК in vitro. Эти выдающиеся открытия легли в основу нового направления молекулярной биологии, а 1972 год с тех пор считается датой рождения генной инженерии.

3. Методы молекулярной биологии

Колоссальные успехи в изучении нуклеиновых кислот, строении ДНК и биосинтеза белка привели к созданию ряда методов, имеющих большое значение в медицине, сельском хозяйстве и науке в целом.

После изучения генетического кода и основных принципов хранения, передачи и реализации наследственной информации для дальнейшего развития молекулярной биологии стали необходимы специальные методы. Эти методы позволили бы проводить манипуляции с генами, изменять и выделять их.

Появление таких методов произошло в 1970–1980-х годах. Это дало огромный толчок развитию молекулярной биологии. В первую очередь, эти методы напрямую связаны с получением генов и их внедрением в клетки других организмов, а еще с возможностью определения последовательности нуклеотидов в генах.

3.1. Электрофорез ДНК

Электрофорез ДНК является базовым методом работы с ДНК. Электрофорез ДНК применяется вместе почти со всеми остальными методами для выделения нужных молекул и дальнейшего анализа результатов. Сам метод электрофореза в геле используется для разделения фрагментов ДНК по длине.

Предварительно или после электрофореза гель обрабатывается красителями, которые способны связаться с ДНК. Красители флуоресцируют в ультрафиолетовом свете, получается картина из полос в геле. Для определения длин фрагментов ДНК их можно сравнить с мáркерами — наборами фрагментов стандартных длин, которые наносятся на тот же гель.

Флуоресцентные белки

При исследовании эукариотических организмов в качестве генов-мáркеров сподручно использовать флуоресцентные белки. Ген первого зеленого флуоресцентного белка (green fluorescent protein, GFP) выделили из медузы Aqeuorea victoria, после чего внедрили в различные организмы. После выделяли гены флуоресцентных белков других цветов: синих, желтых, красных. Чтобы получить белки с интересующими свойствами, такие гены были модифицированы искусственно.

Вообще, важнейшими инструментами для работы с молекулой ДНК являются ферменты, осуществляющие ряд превращений ДНК в клетках: ДНК-полимеразы, ДНК-лигазы и рестриктазы (рестрикционные эндонуклеазы).

Трансгенез

Трансгенезом называется перенос генов из одного организма в другой. А такие организмы называются трансгенными.

Рекомбинантные белковые препараты как раз получают методом переноса генов в клетки микроорганизмов. В основном такими белковыми препаратами являются интерфероны, инсулин, некоторые белковые гормоны, а также белки для производства ряда вакцин.

В иных случаях применяют клеточные культуры эукариот или трансгенных животных, по большей степени, скот, который выделяет нужные белки в молоко. Таким образом получают антитела, факторы свертывания крови и другие белки. Метод трансгенеза используют для получения культурных растений, устойчивых к вредителям и гербицидам, а при помощи трансгенных микроорганизмов очищают сточные воды.

Помимо всего перечисленного, трансгенные технологии незаменимы в научных исследованиях, ведь развитие биологии происходит быстрее с применением методов модификации и переноса генов.

Рестриктазы

Распознаваемые рестриктазами последовательности являются симметричными, поэтому всякого рода разрывы могут происходить либо в середине такой последовательности, либо со сдвигом в одной или обеих нитях молекулы ДНК.

При расщеплении любой ДНК рестриктазой, последовательности на концах фрагментов будут одинаковыми. Они смогут снова соединяться, поскольку имеют комплементарные участки.

Получить единую молекулу можно, сшив данные последовательности при помощи ДНК-лигазы. За счет этого возможно объединять фрагменты двух разных ДНК и получать рекомбинантные ДНК.

3.2. ПЦР

В основе метода лежит способность ДНК-полимераз достраивать вторую нить ДНК по комплементарной нити так же, как при процессе репликации ДНК в клетке.

3.3. Секвенирование ДНК

Стремительное развитие метода секвенирования позволяет эффективно определять особенности исследуемого организма на уровне его генома. Главным преимуществом таких геномных и постгеномных технологий является увеличение возможностей исследования и изучения генетической природы заболеваний человека, для того чтобы заранее принять необходимые меры и избежать болезней.

За счет крупных исследований возможно получать необходимые данные о различных генетических характеристиках разных групп людей, тем самым развивая методы медицины. Из-за этого выявление генетической расположенности к различным заболеваниям сегодня пользуется огромной популярностью.

Подобные методы широко применимы практически во всем мире, в том числе и в России. Из-за научного прогресса происходит внедрение таких методов в медицинские исследования и медицинскую практику в целом.

4. Биотехнология

Биотехнология — дисциплина, изучающая возможности использования живых организмов или их систем для решения технологических задач, а еще создания живых организмов с нужными свойствами путем генной инженерии. Биотехнология применяет методы химии, микробиологии, биохимии и, конечно же, молекулярной биологии.

Основные направления развития биотехнологии (принципы биотехнологических процессов внедряют в производство всех отраслей):

  1. Создание и производство новых видов продуктов питания и кормов для животных.
  2. Получение и изучение новых штаммов микроорганизмов.
  3. Выведение новых сортов растений, а также создание средств для защиты растений от болезней и вредителей.
  4. Применение методов биотехнологии для нужд экологии. Такие методы биотехнологии используют для переработки утилизации отходов, очистки сточных вод, отработанного воздуха и санации почв.
  5. Изготовление витаминов, гормонов, ферментов, сывороток для нужд медицины. Биотехнологи разрабатывают усовершенствованные лекарственные препараты, которые ранее считались неизлечимыми.

Крупным достижением биотехнологии является генная инженерия.

Генная инженерия — совокупность технологий и методов получения рекомбинантных молекул РНК и ДНК, выделения отдельных генов из клеток, осуществление манипуляций с генами и введение их в другие организмы (бактерий, дрожжи, млекопитающих). Такие организмы способны производить конечные продукты с нужными, измененными свойствами.

Методы генной инженерии направлены на конструирование новых, ранее не существовавших сочетаний генов в природе.

Говоря о достижениях генной инженерии, невозможно не затронуть тему клонирования. Клонирование — это один из методов биотехнологии, применяемый для получения идентичных потомков различных организмов при помощи бесполого размножения.

Иными словами, клонирование можно представить как процесс создания генетически идентичных копий организма или клетки. А клонированные организмы похожи или вовсе идентичны не только по внешним признакам, но и по генетическому содержанию.

Небезызвестная овечка Долли в 1966 году стала первым клонированным млекопитающим. Она была получена за счет пересадки ядра соматической клетки в цитоплазму яйцеклетки. Долли являлась генетической копией овцы-донора ядра клетки. В естественных условиях особь формируется из одной оплодотворенной яйцеклетки, получив по половине генетического материала от двух родителей. Однако при клонировании генетический материал взяли из клетки одной особи. Сначала из зиготы удалили ядро, в котором находится сама ДНК. После чего извлекли ядро из клетки взрослой особи овцы и имплантировали его в ту лишенную ядра зиготу, а затем ее пересадили в матку взрослой особи и предоставили возможность для роста и развития.

Тем не менее не все попытки клонирования оказывались удачными. Параллельно с клонированием Долли эксперимент по замене ДНК был проведен на 273 других яйцеклетках. Но только в одном случае смогло полноценно развиться и вырасти живое взрослое животное. После Долли ученые пробовали клонировать и другие виды млекопитающих.

Одним их видов генной инженерии является редактирование генома.

Инструмент CRISPR/Cas базируется на элементе иммунной защитной системы бактерий, который ученые приспособили для внедрения каких-либо изменений в ДНК животных или растений.

CRISPR/Cas является одним из биотехнологических методов манипулирования отдельными генами в клетках. Существует огромное множество применений такой технологии. CRISPR/Cas позволяет исследователям выяснять функцию разных генов. Для этого нужно просто вырезать исследуемый ген из ДНК и изучить, какие функции организма были затронуты.

Некоторые практические применения системы:

Швейцарские ученые значительно усовершенствовали и модернизировали метод редактирования генома CRISPR/Cas, тем самым расширив его возможности. Тем не менее ученые могли модифицировать только один ген за раз, используя CRISPR/Cas-систему. Но сейчас исследователи Швейцарской высшей технической школы Цюриха разработали метод, с помощью которого возможно одновременно модифицировать 25 генов в клетке.

Для новейшей методики специалисты использовали фермент Cas12a, а не фермент Cas9, применяемый в большинстве методов CRISPR/Cas.

Читайте также: