Влияние длительных космических перелетов на здоровье человека сообщение

Обновлено: 04.07.2024

Люди, которые отправляются в космос, сталкиваются с рядом опасностей для своего здоровья. Многие космонавты после определенного периода времени, проведенного в невесомости, не могут вернуть свои прежние показатели физической подготовки. Рассказываем, почему с научной точки зрения опасно находиться в космосе.

Подготовка космонавтов

Первые космонавты в СССР и США набирались из числа военных летчиков и летчиков-испытателей, однако потребности космонавтики в различных специалистах росли, и вскоре в космос полетели врачи, инженеры, ученые и представители других профессий.

В отряде НАСА на 31 августа 2008 года состояло 90 астронавтов, кроме того, 28 человек числилось астронавтами-менеджерами.

Влияние космоса в первые секунды нахождения

С первой секунды невесомости в организме начинают происходить процессы, вредные для человека.

Проявляется болезнь движения в космической форме (аналог морской болезни), меняется взаимодействие сенсорных систем и развиваются сенсорные конфликты в организме, нарушается работа вестибулярного аппарата и координация движений, из костей начинает вымываться кальций, снижается минеральная плотность различных частей скелета, происходит перераспределение минералов, причем кости ног теряют меньше, нежели поясничные позвонки, кости таза и бедренная кость. Наиболее подверженной риску перелома оказывается шейка бедра.

Меняется обмен веществ (отрицательный азотистый баланс и превалирование процессов катаболизма; изменение секреции ряда гормонов; прогрессирующее замедление утилизации глюкозы при сахарной нагрузке по мере увеличения продолжительности полетов) и водно-солевой баланс (уменьшение объема плазмы и межклеточной жидкости).

После установления отрицательного баланса ряда ионов в крови появляются патологические формы эритроцитов. В невесомости снижается не только артериальный, но и венозный тонус, что чревато развитием в раннем послеполетном периоде варикозного поражения вен нижних конечностей.

Физиологические эффекты

С 2 ноября 2017 года ученые сообщили, что существенные изменения в положении и структуре мозга были обнаружены у космонавтов , совершивших полеты в космос, на основании исследований МРТ. Астронавты, совершавшие более длительные космические путешествия, были связаны с более значительными изменениями в мозге.

В октябре 2018 года исследователи, финансируемые НАСА , обнаружили, что длительные путешествия в космическое пространство , включая путешествия в планета Марс может существенно повредить желудочно-кишечные ткани космонавтов. Исследования подтверждают более раннюю работу, которая показала, что такие путешествия могут значительно повредить мозг астронавтов и преждевременно состарить их.

В марте 2019 года НАСА сообщило, что скрытые вирусы у людей могут активироваться во время космических миссий , что, возможно, увеличивает риск для космонавтов в будущих полетах в дальний космос.

Космическая медицина — это разработка медицинской практики , изучающей здоровье космонавтов, живущих в открытом космосе. Основная цель этого научного исследования — выяснить, насколько хорошо и как долго люди могут выжить в экстремальных условиях в космосе и как быстро они могут адаптироваться к окружающей среде Земли после возвращения из космоса.

Космическая медицина также стремится разработать профилактические и паллиативные меры для облегчения страданий, причиняемых проживанием в среде, к которой люди плохо приспособлены.

Во время взлета и входа космические путешественники могут испытывать гравитацию, в несколько раз превышающую нормальную. Нетренированный человек обычно выдерживает около 3 g, но может потерять от 4 до 6 g.

Перегрузка в вертикальном направлении переносится труднее, чем сила, перпендикулярная позвоночнику, потому что кровь течет от мозга и глаз. Сначала человек испытывает временную потерю зрения, а затем при более высоких перегрузках теряет сознание.

Тренировка силы перегрузки и G-костюм, который сжимает тело, чтобы удерживать больше крови в голове, могут смягчить последствия. Большинство космических аппаратов спроектированы так, чтобы поддерживать перегрузки в комфортных пределах.

Окружающая среда космоса смертельна без соответствующей защиты: самая большая угроза в космическом вакууме возникает из-за недостатка кислорода и давления, хотя температура и радиация также представляют опасность. Последствия космического воздействия могут привести к эбулизму, гипоксии, гипокапнии и декомпрессионной болезни.

В дополнение к этому существуют также клеточные мутации и разрушение из-за высокоэнергетических фотонов и субатомных частиц, которые присутствуют в окружение.

Декомпрессия — серьезная проблема во время внекорабельной деятельности (выход в открытый космос) космонавтов. Текущие конструкции EMU учитывают эту и другие проблемы и со временем развиваются.

Ключевой проблемой были конкурирующие интересы увеличения мобильности космонавтов (которая снижается с помощью EMU высокого давления, аналогично сложности деформации надутого аэростата относительно спущенного) и минимизации риска декомпрессии.

Тяжелые симптомы, такие как потеря кислорода в ткани, за которой следует недостаточность кровообращения и вялый паралич, проявятся примерно через 30 секунд.

Легкие также схлопываются в этом процессе, но продолжают выделять водяной пар, что приводит к охлаждению и образованию льда в дыхательных путях. По приблизительным оценкам, у человека будет около 90 секунд для повторного сжатия, после чего смерть может быть неизбежной.

В вакууме нет среды для отвода тепла от тела посредством теплопроводности или конвекции. Потеря тепла происходит из-за излучения от температуры человека 310 тыс. до температуры 3 тыс. в космическом пространстве.

Это медленный процесс, особенно у одетого человека, поэтому опасности немедленного замерзания нет. Быстрое испарительное охлаждение кожной влаги в вакууме может вызвать обледенение, особенно во рту, но это не представляет серьезной опасности.

Без защиты атмосферы и магнитосферы Земли астронавты подвергаются воздействию высоких уровней излучения. Высокий уровень радиационного поражения лимфоцитов, клеток, активно участвующих в поддержании иммунной системы; этот урон способствует пониженному иммунитету, который испытывают космонавты.

Радиация также недавно была связана с более высокой частотой катаракты у космонавтов. Помимо защиты низкой околоземной орбиты, галактические космические лучи представляют дополнительные проблемы для космических полетов человека, поскольку угроза здоровью от космических лучей значительно увеличивает шансы рака через десятилетие или более воздействия.

В исследовании, поддерживаемом НАСА, сообщается, что радиация может нанести вред мозгу астронавтов и ускорить начало болезни Альцгеймера. Вспышки (хотя и редкие) могут дать смертельную дозу облучения за считанные минуты. Считается, что защитные экраны и защитные препараты могут в конечном итоге снизить риски до приемлемого уровня.

Риск для человечества

С космосом и выживанием человечества приходит риск для человеческого рода. Тяжелое событие в будущем может привести к вымиранию людей, которое также известно как экзистенциальный риск.

Многолетний послужной список человечества в отношении выживания в результате стихийных бедствий позволяет предположить, что измеряемый в течение нескольких столетий, экзистенциальный риск, создаваемый такими опасностями, довольно мал.

Тем не менее, исследователи столкнулись с препятствием в изучении человеческого вымирания, поскольку человечество на самом деле никогда не уменьшалось в течение всей истории.

Хотя это не означает, что этого не произойдет в будущем с такими естественными экзистенциальными сценариями, как: воздействие метеоров и крупномасштабный вулканизм; и антропогенно-природные гибридные явления, такие как глобальное потепление и катастрофическое изменение климата или даже глобальная ядерная война.

Наиболее частая проблема, с которой люди сталкиваются в первые часы невесомости, известна как синдром космической адаптации, или SAS, обычно называемый космической болезнью.

Это связано с укачиванием и возникает, когда вестибулярная система адаптируется к невесомости. Симптомы SAS включают тошноту и рвоту, головокружение, головные боли, летаргию и общее недомогание.

О первом случае SAS сообщил космонавт Герман Титов в 1961 году. С тех пор примерно 45% всех людей, летавших в космос, страдали этим заболеванием.

Длительная невесомость включает потерю костной и мышечной массы. Без эффектов силы тяжести скелетные мышцы больше не требуются для поддержания осанки, а группы мышц, используемые при перемещении в невесомости, отличаются от тех, которые требуются для передвижения по земле.

В условиях невесомости космонавты почти не нагружали мышцы спины или мышцы ног, используемые для вставания. Затем эти мышцы начинают слабеть и в конечном итоге становятся меньше.

Следовательно, некоторые мышцы быстро атрофируются, и без регулярных упражнений космонавты могут потерять до 20% своей мышечной массы всего за 5–11 дней. Типы мышечных волокон, выступающих в мышцах, также меняются.

Медленно сокращающиеся волокна выносливости, используемые для поддержания осанки, заменяются быстро сокращающимися быстро сокращающимися волокнами, которых недостаточно для любой тяжелой работы.

В 2013 году НАСА опубликовало исследование, в ходе которого были обнаружены изменения глаз и зрения обезьян, летавших в космос более 6 месяцев. Заметные изменения включали уплощение глазного яблока и изменения сетчатки.

Зрение космического путешественника может становятся расплывчатыми после слишком длительного пребывания в космосе. Другой эффект известен как визуальный феномен космических лучей.

Поскольку невесомость увеличивает количество жидкости в верхней части тела, астронавты испытывают повышенное внутричерепное давление. Это, по-видимому, увеличивает давление на тыльную сторону глазных яблок, влияя на их форму и слегка раздавливая зрительный нерв.

Этот эффект был замечен в 2012 году исследование с использованием МРТ сканирований астронавтов, которые вернулись на Землю после как минимум одного месяца пребывания в космосе.

Такие проблемы со зрением могут стать серьезной проблемой для будущих полетов в дальний космос, включая миссию с экипажем на планету Марс.

Американские ученые подвели итоги первого в истории космического эксперимента с участием однояйцевых (генетически идентичных) близнецов-астронавтов Скотта и Марка Келли. Целью эксперимента было изучить, как долговременное пребывание человека на околоземной орбите влияет на его организм. Идентичные близнецы понадобились для того, чтобы исследователи могли исключить генетические факторы, сосредоточившись исключительно на влиянии условий космического полета. О результатах этого эксперимента читайте в нашем материале.

Ученых, в частности, интересовало, как долговременное пребывание на околоземной орбите повлияло на работу сердечно-сосудистой системы, ухудшалось ли зрение Скотта, как у него менялся обмен веществ и отражалось ли это на весе астронавта. Важно также было понять, изменились ли его когнитивные способности.

Наблюдения, кроме того, велись за тем, как в космосе менялась экспрессия генов, появлялись ли эпигенетические изменения в ДНК Скотта Келли и как его пребывание на околоземной орбите влияло на динамику теломер — маркеров старения организма. Авторы статьи смотрели, как в космосе протекали биохимические процессы, как менялся состав кишечного микробиома, и как на нестандартные условия реагировала иммунная система. В числе вопросов, интересовавших ученых, было и то, как близнецы перенесли сезонную вакцинацию против гриппа.

Во время исследования Скотту и Марку Келли было по 50 лет. За предшествующие 12 лет Скотт, по сравнению с Марком, провел в космосе втрое больше времени, 180 дней против 54. Оба астронавта последние четыре года перед экспериментом не были на околоземной орбите. Исследователи брали у обоих близнецов образцы крови, мочи и фекалий за шесть месяцев до начала полета, во время пребывания на МКС (эти образцы либо хранились на станции до завершения миссии, либо Келли отправлял их на Землю на очередном транспортном корабле), и в течение девяти месяцев после окончания полета.

Низкий уровень риска

Ученые разделили изменения, происходившие в организме Скотта Келли во время полета, на три группы: с потенциально низкой, средней (или неустановленной) и высокой степенью риска. Они могут иметь разные последствия во время продолжительного космического полета и сказываться в течение разного времени после приземления.

Во время пребывания на орбите у Скотта, по сравнению с предполетным периодом, примерно на 14,5 процента выросла средняя длина теломер. Эти участки на концах хромосом обеспечивают удвоение ДНК при делении клеток. Их сокращение с возрастом является одним из факторов старения организма.

Во время космических полетов удлинение теломер наблюдалось и ранее, у других астронавтов. Почему это происходит, пока неизвестно, как неизвестно и то, к каким последствиям этот эффект приведет в долгосрочной перспективе. Тем не менее, на сегодняшний день удлинение теломер в космосе связывают с повышенной физической активностью, более здоровой диетой и снижением веса астронавтов. Поэтому временное удлинение теломер на околоземной орбите ученые также отнесли к факторам низкого риска.

Угрозы среднего уровня

С другой стороны, в течение двух суток после приземления длина теломер в организме Келли вернулась к прежнему уровню. Что хуже, некоторые из них стали существенно короче, чем до полета. К тому же ученые предполагают, что часть теломер уменьшилась до критического уровня или исчезла вообще: после полета исследователи зафиксировали гораздо меньшее их количество. Сокращение длины теломер связывают с более быстрым старением организма и с возникновением возрастных заболеваний, в том числе раковых и сердечно-сосудистых. Поэтому исследователи отнесли слишком быстрое укорачивание теломер к факторам среднего или пока неизвестного риска.

К этой категории ученые отнесли и усиленное вымывание из организма астронавта коллагена — основного белка соединительной ткани. Однако после приземления оно прекратилось. Возможно, это связано с тем, что в условиях микрогравитации нагрузка на кости, сухожилия и сосуды меняется и это приводит к повышению содержания коллагена в моче.


Ключевые слова: Земля, космонавт, невесомость, организм человека, космос.

Практически каждый из нас в детстве мечтал стать космонавтом: делать открытия, исследовать необъятные просторы нашей Вселенной, однако вы даже не представляете, сколько трудностей и опасности скрывается в неизведанном человеком космическом пространстве. Все, что происходит в космосе, влияет на объекты, которые в нём находятся, то есть и воздействует на организм человека и не всегда скафандром можно защититься.

Группу ученых под руководством Брайана Крушиана из Космического центра NASA им. Линдона Джонсона также заинтересовал вопрос длительного пребывания в космосе и как эти полеты воздействуют на организм человека. Ученые провели исследования 23 космонавтов, живущих и работающих на Международной Космической Станции (МКС) от двух до шести месяцев. Они проверяли кровь каждого участника за 180 и 45 дней до полета, после того как космонавты отправились на МКС. Ещё трижды брали кровь: через две недели, 2 месяца, и в конце миссии. Эти образцы были тщательно проанализированы в специальных лабораториях на земле. К сожалению, результаты оказались неутешительными.

Иммунитет тех, кто пробыл в невесомости около полугода, на самом деле ослабел, даже после прибытия на землю, их иммунитету понадобилось достаточно времени, чтобы восстановиться.

Космонавты стали жаловаться, что их кожа стала сухой и начала чесаться, поэтому ученые решили изучить это феномен поглубже, отправив мышей на станцию на 3 месяца. После того, как мыши вернулись на землю, исследователи сделали очень интересные выводы: кожа животных стала на 15 % тоньше, более того их мех начал расти иначе. Пребывание в космосе отразилась на генах, отвечающих за работу волосяных фолликулов.

Кости теряют плотность — это невероятно опасная проблема, связанная с долгим нахождением в невесомости. С каждым месяцем, пребыванием в космосе, кости теряют около 1 % из-за вымывания кальция из организма. После долгого путешествия есть риск на Земле при падении получить перелом.

Вес тела без гравитации равен нулю, поэтому уже через несколько дней начинается снижение процентного содержания мышц. Без ежедневных тренировок на орбите, после возвращения на Землю, космонавт не может самостоятельно передвигаться, из-за того, что его мышцы будут атрофированы и не способны работать в гравитации.

Космонавты, которые пробыли в невесомости даже короткий период времени заметили, что их зрение ухудшается и они не могут видеть близкие объекты. После возвращения на Землю их зрение приходит в норму, но, если в состояние невесомости люди находятся более продолжительное время, зрение не восстанавливается самостоятельно, и им требуется медицинская помощь. Когда ученые исследовали мышей, они поняли, что проблема возникает из-за микрогравитации, кровь не спускается под давлением гравитации и к мозгу поступает слишком много крови, это вызывает проблемы с сосудами, особенно в глазах.

Еще одна проблема, которую испытывают космонавты — смена дня и ночи. Космонавты могут увидеть рассвет и закат по несколько раз в день. Из-за этого может возникнуть чувство усталости и дискомфорта. Поэтому они следуют установленным правилам и собственным ритмом.

В космосе присутствует радиация, а космонавты, находясь на расстоянии более десяти радиусов Земли (около 70000 км), получают радиационное излучение в сотни раз больше, чем человек. Это вызывает серьезные последствия, такие как: головокружение, тошнота, потеря аппетита, ухудшение работоспособности. Но к счастью для космонавтов, Солнечные вспышки происходят не так часто — один-два раза за 11 лет, продолжительность которых не превышает суток.

Чтобы космонавты не получали большие дозы облучения, ученые из России посчитали, что за всю жизнь можно получить дозу равную 1000 миллизиверт (мЗв), при том, что за год можно облучения не должны составлять более 200 мЗв.

Таким образом, космические полеты оказывают сильное воздействие на людей. Хоть за всю историю освоения космоса побывало немного людей, но этого было достаточно, чтобы собрать информацию о том, как люди чувствую себя во время нахождения в космических просторах и после приземления на Землю. В связи с этим необходимо тщательно исследовать воздействие людей на космические путешествия и искать решения, позволяющие свести негативные последствия к минимуму для того, чтобы дальше исследовать необъятные и загадочные просторы нашей Вселенной.

Основные термины (генерируются автоматически): NASA, космонавт, Земля, организм человека, Россия, Космический центр, космос, кровь, космическая медицина, невесомость.


Обзор

Карен Найберг, американская женщина-космонавт, снимает изображение сетчатки своего глаза с помощью фундоскопа, находясь на МКС

Автор
Редакторы


Центр наук о жизни Сколтеха

BioVitrum

Спонсором приза зрительских симпатий выступила компания BioVitrum.

Параллельно с активно освещаемыми в СМИ испытаниями ракет-носителей проводятся исследования, часто более скромные по объемам финансирования, но в той же степени необходимые для выполнения космических программ. В случае пилотируемых миссий, по определению подразумевающих наличие экипажа из одного или нескольких космонавтов, на первый план выходят работы в области астробиологии и космической медицины, направленные на:

  • изучение факторов экстремальной космической среды и их влияния на организм;
  • определение скорости адаптации и предела адаптивных возможностей человека;
  • пути снижения негативных последствий пребывания в космосе, например, с помощью лекарств и адаптивных упражнений;
  • моделирование условий космического полета на Земле, проведение аналогий со схожими экстремальными условиями, включая полярные и спелеологические экспедиции.

Астробиология фокусируется на разнообразных формах жизни — например, ученые-астробиологи выдвигают гипотезы о жизни на других планетах [1] и исследуют физиологию растений в космосе [2]. Объектом выступает и человек — космонавты самостоятельно производят заборы биологических жидкостей и отправляют на Землю, рапортуют о состоянии своего здоровья, ведут учет лекарств на борту.

Обычно космонавты непрерывно находятся в космосе до полугода; в единичных случаях продолжительность полета составляет год или более. Однако в возможном недалеком будущем, где пилотируемые космические полеты на Марс из научной фантастики станут объективной реальностью, один только трансфер займет около трех лет. Организации-лидеры по размерам бюджета и штата специалистов планируют осуществить свои первые запуски на красную планету в ближайшее время: SpaceX, частная компания под руководством Илона Маска, — в 2024 году; пользующиеся государственной поддержкой ЕКА и НАСА ориентируются на 2030-е годы. В связи с этим особого внимания удостаиваются работы, анализирующие адаптивные изменения в организме человека при длительном пребывании в космосе.

В мире всего пара-тройка потенциальных объектов для исследований подобного рода, но иногда при невезении с количеством ученым невероятно везет с качеством. Например, у американского космонавта Скотта Келли, проведшего на МКС вместе с российским космонавтом Михаилом Корниенко рекордные для этой станции 340 суток, есть однояйцевый брат-близнец Марк Келли — тоже космонавт, который оставался на Земле во время миссии родственника (рис. 1). Генетическое сходство и одинаковая физическая подготовка братьев позволяют описать последствия влияний космических условий с большей точностью с использованием близнецовых методов [3].

Американские космонавты Скотт и Марк Келли

Рисунок 1. Американские космонавты Скотт и Марк Келли. Скотт скоро отправится в миссию на МКС продолжительностью в год, тогда как его брат-близнец Марк останется на Земле.

Кандидаты в космонавты неспроста проходят тщательный отбор — космос по праву считается особо агрессивной средой, встречающей представителей живой природы отсутствием кислорода, радиацией, невесомостью и низкой температурой космического пространства. Помимо самогó пребывания в космосе, опасными являются и перегрузки при взлете, и адаптации к нормальной гравитации после полета.

Экстремальность условий не ограничивается перечисленными факторами среды. Среди дополнительных рисков обычно называют следующие:

Во время длительных миссий некоторые изменения в физиологии выражены сильнее, и возвращение к исходному состоянию после космического полета занимает больше времени. К примеру, процесс уменьшения объема плазмы и количества красных клеток крови существенно не отличается в коротких и длительных миссиях, тогда как сердечно-сосудистые адаптации (например, увеличение массы левого желудочка и нарушения ортостатической толерантности) и потеря мышечной массы становятся более выраженными в длительных полетах [3].

От космического излучения экипаж МКС частично защищен магнитным полем Земли, но при солнечных вспышках радиационные дозы возрастают. Межпланетные перелеты, таким образом, обладают еще большим радиационным риском, а с возрастанием их длительности будут возрастать и эффекты от влияния излучения.

Космическое излучение опасно тем, что оно нарушает стабильность генома, вызывает разного рода изменения в структуре хромосом, в самой последовательности ДНК. В космосе увеличенной частотой могут похвастаться такие хромосомные перестройки (аберрации), как инверсии, когда участок хромосомы поворачивается на 180 градусов, вследствие чего последовательность меняется на обратную. Увеличивается и частота транслокаций, в ходе которых участок с одной хромосомы переходит на другую [3].

В случае Скотта Келли показатели экспрессии большинства генов, изменившиеся во время космического полета, вернулись к нормальным диапазонам в течение полугода после возвращения на Землю. Несмотря на то, что при исследовании лимфоцитов Скотта были обнаружены изменения метилирования ДНК по всему геному, они находились в пределах диапазона изменений, наблюдаемых у его брата Марка. И хотя изменения были минимальными, исследователи пессимистично предположили, что во время полета не исключены локальные изменения, которые могут привести к негативным последствиям. После полугода на Земле в норму не пришла экспрессия всего ~9% генов, но многие из них связаны с иммунной функцией и исправлением ошибок (репарацией) в ДНК [3].

Другие исследования подтверждают сильное изменение количества, пропорций и функций лимфоцитов. В частности, Т-хелперы, так и Т-киллеры из крови, взятой у космонавтов во время полета, неэффективно реагируют на различные раздражители, и при нормальных обстоятельствах эти же стимулы вызвали бы более сильный ответ. Что касается естественных киллеров (natural killer cells, NK-клеток), уничтожающих вирусные частицы / инфицированные вирусом клетки, то в некоторых случаях изменяются как их функция, так и их количество [11].

Об изменениях в иммунной системе свидетельствуют и косвенные признаки. В течение полета и некоторое время после него соотношение соединений с омега-6-ненасыщенной кислотой и омега-3-ненасыщенной смещено в сторону первых; некоторые исследователи полагают, что омега-6 обладает провоспалительным действием, а омега-3 — противовоспалительным [3].

Изменяются и количественные пропорции цитокинов — сигнальных молекул, задействованных в иммунных клеточных взаимодействиях. Результаты исследований в этой области противоречивы из-за применения разных методов анализа и оценки, но уже точно известно об изменении в концентрации интерлейкина-6 (IL-6) в биологических жидкостях [12]. Особого внимания также заслуживает сдвиг в соотношении интерферона гамма (IFNγ) и интерлейкина-10 (IL-10). Интерферон гамма снижает активность Th2-клеток — подвида T-хелперов, которые ассоциированы с активацией гуморального иммунитета [13]. В результате космических перелетов у космонавтов соотношение IFNγ : IL10 снижается, что говорит о том, что, с одной стороны, происходит увеличение количества Th2-клеток, а с другой — понижение продукции T-хелперов первого типа (Th1-клеток), которые отвечают за развитие клеточного иммунитета. В условиях длительного космического полета этот сдвиг может оказывать существенное негативное влияние на здоровье: повышается риск развития Th2-ассоциированных аутоиммунных заболеваний и аллергий, а также увеличивается восприимчивость к болезням, связанным с ослаблением клеточного иммунитета .

Высыпания на коже космонавта

Рисунок 2. Высыпания на коже космонавта, находившегося в длительной космической миссии

Помимо бессонницы и усталости, которые будут описаны ниже, около половины космонавтов сообщает о других заметных ухудшениях самочувствия. В большинстве случаев они проявляются как сыпь или гиперчувствительность (рис. 2); за ними следуют заболевания верхних дыхательных путей, так что насморк в космосе — явление довольно частое.

Изначально исследователи выделили несколько возможных причин перевеса кожных заболеваний и гиперчувствительности:

  • гигиенические факторы (использование воды на станции ограничено, поэтому существует вероятность неполного смывания мыла и шампуня);
  • раздражение от специфического оборудования (скафандры для выхода в открытый космос, кислородные маски и прочее);
  • условия среды на борту станции: низкая влажность, ограниченность движения воздушных потоков и кондиционирование воздуха, длительный контакт с влагой от пота;
  • ранний этап адаптации к новым условиям среды;
  • стойкое ухудшение функционирования иммунной системы [17].

Все пункты могут вносить свою лепту в возникновение высыпаний и гиперчувствительности, но последний, судя по всему, является одним из самых существенных.

Антигистаминные препараты — одни из самых популярных на борту МКС. Развитие гиперчувствительности, до боли знакомой аллергикам и астматикам, связано с выработкой антител IgE, которые стимулируют синтез гистамина, серотонина и лейкотриенов. Предполагается, что в случае космонавтов гиперчувствительность вызывается упомянутым выше сдвигом в активации хелперных клеток Th2. Сверхактивация Th2 приводит к развитию IgE-опосредованной гиперчувствительности [18].

Гиперчувствительность такого типа относительно легко купируется однократным или курсовым приемом антигистаминных препаратов. Однако у связанных с иммунным дисбалансом высыпаний на теле может быть иная, более сложная и опасная природа.

Герпесвирусы наносят ответный удар

Наверняка в детстве вы уже переболели ветрянкой, и вас заверили, что больше такого кошмара с вами не произойдет. Не могли же они предположить, что вы отправитесь в межпланетный круиз?

Описанные выше неполадки в иммунной системе могут вызываться не только мутагенным космическим излучением. Невесомость, очевидными способами влияющая на сердечно-сосудистую, мышечную и другие системы организма, на иммунитет действует более изощренно.

IL-6 играет важную регуляторную роль во врожденном и адаптивном иммунитете, кроветворении, а также в костном, мышечном и метаболическом гомеостазе [25], [26]. Он способствует выработке других цитокинов, контролирует пролиферацию, созревание и выживание некоторых иммунных клеток, иногда инициирует выработку антител. IL-6 может выступать как про-, так и противовоспалительный цитокин, может вызывать аутоиммунные реакции, например, повреждение суставов при артрите.

Одним из критических факторов является то, что во время полета снижение секреции IL-6 может ассоциироваться с ускоренными потерями костной и мышечной массы и мышечной силы. Как это происходит? IL-6 повышает выносливость при физической нагрузке, активируя AMPK-опосредованное увеличение поглощения глюкозы и окисления жиров в мышечных клетках. AMPK — это АМФ-активируемая протеинкиназа (AMP activated protein kinase, AMPK); в исследованиях на мышах показано, что в условиях микрогравитации подавляется экспрессия этого фермента в сердечной мышце. Соответственно, это влечет за собой ухудшение работы мышц и снижает выносливость организма. IL-6 также восстанавливает чувствительность к инсулину и регулирует его секрецию, предотвращает ожирение, поэтому снижение выработки этого цитокина в космосе также может способствовать развитию субклинического диабета (преддиабета) [25].

Влияние невесомости на человека в целом подробно описано для сердечно-сосудистой, костно-мышечной и сенсомоторной систем. Сердечно-сосудистая адаптация включает:

  • нарушение сердечно-сосудистой реакции на ортостатический стресс, связанный с изменением положения тела в пространстве и влиянием физической нагрузки;
  • снижение сердечной функции — в космосе артериальное давление слегка снижается.

Зрение может пропасть и в одно мгновение. Слезы не падают в невесомости, скапливаясь у глаза (рис. 4). При большом количестве жидкости образуется сильный отек, приводящий к слепоте, что испытал на себе канадский космонавт Крис Хэдфилд прямо в открытом космосе при выполнении работ на поверхности станции. В этом случае зрение возвращается довольно быстро при своевременно оказанной медицинской помощи (у Криса все хорошо!) [32].

Крис Хэдфилд

Рисунок 4. Канадский космонавт Крис Хэдфилд показывает на себе, как слезы накапливаются возле глаз

Еще одним фактором, сильно ударяющем по иммунитету и здоровью в целом, является плохой по продолжительности и качеству сон космонавтов. Жалобы на сонливость и усталость обгоняют по частоте жалобы на гиперчувствительность и сыпь, а снотворные средства — единственные препараты, которые обгоняют антигистаминные по объемам употребления на МКС [33].

В среднем космонавты спят на два часа меньше, чем рекомендовано медицинскими организациями — шесть часов сна против рекомендованных восьми. Более того, сама структура сна изменяется во время космического полета: латентный период первой фазы быстрого сна (rapid eye movement, REM) слишком короткий, а медленный сон (non-REM) перераспределен между первым и вторым циклами сна. Общая продолжительность REM-сна в космосе сокращается до 50% по сравнению с пребыванием на Земле.

Сами космонавты называли несколько субъективных причин бессонницы: некомфортная температура окружающей среды, более высокий уровень шума, неудобное спальное место (рис. 5), отсутствие привычной гравитации и внезапное изменение рабочего расписания [36].

Сунита Л. Уильямс

Космонавты, находящиеся в длительной миссии, в большей степени страдают от психологических и физиологических проблем. Физиологические и психологические проблемы, подразумевающие депрессию, тревогу и конфликты между членами экипажа, ведут к биологическому стрессу, в дальнейшем выражаясь в плохом качестве сна и снижении иммунной функции [44].

И что же теперь, не лететь?

Исследователи постоянно придумывают новые решения, способные облегчить жизнь космонавтами и приоткрыть для обывателей дверцу космических путешествий. Некоторые меры уже были применены, хоть и с переменным успехом.

Со многими недомоганиями, как уже было сказано выше, справляются медикаментозным путем [11], [33]. Антигистаминные и снотворные препараты принимаются регулярно; если космонавт сонлив, но его работа по обслуживанию станции безотлагательна, то в бой идут стимуляторы. Космонавты принимают различные добавки с витаминами и минералами. Аптечка космической станции полна разнообразных лекарств, но сложные заболевания на МКС не лечат — протокол предписывает эвакуировать космонавта в случае серьезных симптомов. Пока неизвестны даже действие и последствия анестезии в условиях невесомости [46].

НАСА обновляет рекомендации по питанию и упражнениям во время миссии, и, судя по всему, упражнения действительно могут помочь не одним только замедлением потери мышечной массы. Известно, что на Земле уровни IL-6 в плазме увеличиваются при физических упражнениях, и если увеличение происходит и при занятиях в космосе, то это один из способов компенсации дефицита IL-6 [25]. Тем не менее пока непонятно, какой набор упражнений более выгоден для организма в условиях космоса, и не приносят ли они какого-либо вреда [47]. К тому же самим космонавтам регулярные упражнения кажутся скучными и занимающими много времени; из-за монотонности и трудоемкости физкультуры в условиях микрогравитации они не особо горят заниматься спортом на МКС [3].

В 2016 году на станции сменили освещение — теперь оно позволяет имитировать ход светового дня на Земле для поддержания адекватных циркадных ритмов у экипажа. Исследователи предлагают различные способы для улучшения среды МКС для сна и психического самочувствия: сделать спальные боксы удобнее, обеспечить тишину и приемлемую температуру, обеспечить психологическую поддержку и обучать экипаж мерам психологической самопомощи [36].

Судя по всему, прожить и три года на МКС возможно, но это не аналогично трехгодичному полету до Марса и тем более не аналогично пешей прогулке по нему. Но наука и медицина не останавливаются на достигнутом, и в космос уже отправляются очень разные люди разных возрастов, прошедшие не такой жесткий отбор по здоровью, как Юрий Гагарин [48].

Читайте также: