Сообщение может содержать количество информации

Обновлено: 05.07.2024

Термин "информация" происходит от латинского слова "informatio", что означает сведения, разъяснения, изложение. Несмотря на широкое распространение этого термина, понятие информации является одним из самых дискуссионных в науке. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

Клод Шеннон, американский учёный, заложивший основы теории информации — науки, изучающей процессы, связанные с передачей, приёмом, преобразованием и хранением информации, — рассматривает информацию как снятую неопределенность наших знаний о чем-то.

Еще несколько определений:

· Информация — это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний (Н.В. Макарова);

  • Информация — это отрицание энтропии (Леон Бриллюэн);
  • Информация — это мера сложности структур (Моль);
  • Информация — это отраженное разнообразие (Урсул);
  • Информация — это содержание процесса отражения (Тузов);
  • Информация — это вероятность выбора (Яглом).

Современное научное представление об информации очень точно сформулировал Норберт Винер, "отец" кибернетики. А именно:

Информация — это обозначение содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств.

Виды информации

Информация может существовать в виде:

  • текстов, рисунков, чертежей, фотографий;
  • световых или звуковых сигналов;
  • радиоволн;
  • электрических и нервных импульсов;
  • магнитных записей;
  • жестов и мимики;
  • запахов и вкусовых ощущений;
  • хромосом, посредством которых передаются по наследству признаки и свойства организмов и т.д.

Предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств, называются информационными объектами.

Передача информации

канал связи
ИСТОЧНИК ----------- ПРИЁМНИК

  1. Cообщение, содержащее информацию о прогнозе погоды, передаётся приёмнику (телезрителю) от источника — специалиста-метеоролога посредством канала связи — телевизионной передающей аппаратуры и телевизора.
  2. Живое существо своими органами чувств (глаз, ухо, кожа, язык и т.д.) воспринимает информацию из внешнего мира, перерабатывает её в определенную последовательность нервных импульсов, передает импульсы по нервным волокнам, хранит в памяти в виде состояния нейронных структур мозга, воспроизводит в виде звуковых сигналов, движений и т.п., использует в процессе своей жизнедеятельности.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

Количество информации

Какое количество информации содержится, к примеру, в тексте романа "Война и мир", во фресках Рафаэля или в генетическом коде человека? Ответа на эти вопросы наука не даёт и, по всей вероятности, даст не скоро. А возможно ли объективно измерить количество информации? Важнейшим результатом теории информации является следующий вывод:

  1. при бросании монеты: "выпала решка", "выпал орел";
  2. на странице книги: "количество букв чётное", "количество букв нечётное".

Легко заметить, что если вероятности p1, . pN равны, то каждая из них равна 1 / N, и формула Шеннона превращается в формулу Хартли.

В качестве единицы информации Клод Шеннон предложил принять один бит (англ. bitbinary digit — двоичная цифра).

Бит — слишком мелкая единица измерения. На практике чаще применяется более крупная единица — байт, равная восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=2 8 ).

Широко используются также ещё более крупные производные единицы информации:

  • 1 Килобайт (Кбайт) = 1024 байт = 2 10 байт,
  • 1 Мегабайт (Мбайт) = 1024 Кбайт = 2 20 байт,
  • 1 Гигабайт (Гбайт) = 1024 Мбайт = 2 30 байт.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

  • 1 Терабайт (Тбайт) = 1024 Гбайт = 2 40 байт,
  • 1 Петабайт (Пбайт) = 1024 Тбайт = 2 50 байт.

Свойства информации:

Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестаёт отражать истинное положение дел.

Информация полна, если её достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п.

Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека.

Только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка.

Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной.

Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по разному излагаются в школьных учебниках и научных изданиях.

Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или подробно(многословно). Краткость информации необходима в справочниках, энциклопедиях, учебниках, всевозможных инструкциях.

Обработка информации

Информацию можно:

  • создавать;
  • передавать;
  • воспринимать;
  • иcпользовать;
  • запоминать;
  • принимать;
  • копировать;
  • формализовать;
  • распространять;
  • преобразовывать;
  • комбинировать;
  • обрабатывать;
  • делить на части;
  • упрощать;
  • собирать;
  • хранить;
  • искать;
  • измерять;
  • разрушать;
  • и др.

Все эти процессы, связанные с определенными операциями над информацией, называются информационными процессами.

Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения объёма и разнообразия информации.

Средства обработки информации — это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер — универсальная машина для обработки информации.

Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов.

Живые организмы и растения обрабатывают информацию с помощью своих органов и систем.

Гост

ГОСТ

Введение

  1. Уровень синтаксиса.
  2. Уровень семантики.
  3. Уровень прагматики.

Формула, позволяющая определить количество информации для событий с разными вероятностями и поступающих от дискретных информационных источников, была выведена американским учёным К. Шенноном в середине прошлого века. В соответствии с этой формулой количество информации определяется таким образом:

$I = – ∑^N_P_ilog2P_i$ (1)

Найденное по данной формуле количество информации может быть только положительным. Но так как вероятность отдельного события всегда меньше, чем единица, то, следовательно, выражение log2 будет отрицательным, а чтобы получить положительное значение количества информации в приведённой выше формуле перед знаком суммы поставлен минус.

Когда вероятность проявления каких-либо событий одна и та же и они способны образовать полноценную группу событий, то есть:

Готовые работы на аналогичную тему

То приведённая выше формула (1) может быть преобразована в формулу Р.Хартли:

В обеих формулах, то есть (1) и (2), соотношение между информационным количеством и соответственно вероятностью или же количеством каждого события отображается при помощи логарифма. Использование логарифмов в этих формулах объясняется так. Чтобы упростить рассуждения, будем использовать формулу (2). Начнём поочерёдно назначать аргументу N значения, которые выбираются, к примеру, из числового набора: 1, 2, 4, 8, 16, 32, 64 и так далее. Для определения события, которое всё-таки произошло из набора N событий, имеющих равную вероятность, для всех чисел ряда следует поочерёдно выполнять операции выбора из пары допустимых событий. К примеру, для N = 1 количество операций равняется нулю, то есть вероятность события равняется единице.

Для N=2, количество операций равняется единице, для N = 4 количество операций равняется двум, для N = 8, количество операций равняется трём и так далее. В результате получается следующий числовой ряд 0, 1, 2, 3, 4, 5, 6 и так далее, который может считаться имеющим соответствие со значениями функции I в формуле (2). Очерёдность числовых значений, принимаемых аргументом N, является рядом, известным в математике в виде числового ряда, образующего геометрическую прогрессию, а очерёдность значений, принимаемых функцией I, образует числовой ряд, являющийся арифметической прогрессией. Это означает, что логарифм в выражениях (1) и (2) определяет соотношение между рядами, образующими геометрическую и арифметическую прогрессии, которые отлично известны в математике.

А в качестве следующей величины единицы измерения информации принят байт, который представляет собой очерёдность знаков, состоящую из восьми бит. В информатике также широко используются кратные байту единицы измерения количества информации, однако в отличие от метрической системы мер, где в качестве множителей кратных единиц применяют коэффициент 10n, где п = 3, 6, 9 и т. д., в кратных единицах измерения количества информации используется коэффициент 2n. Выбор этот объясняется тем, что компьютер в основном оперирует числами не в десятичной, а в двоичной системе счисления.

Как определить количество информации

Как определить количество информации

Далее вспомним формулу, которую называют главной формулой информатики:

Подставив в нее вместо N количество различных символов, мы узнаем, сколько информации несет один символ в битах. В нашем случае формула будет выглядеть так:

5 бит x 39 символов = 195 бит

В содержательном подходе, информация - это снятая неопределённость. Неопределённость некоторого события - это количество возможных результатов (исходов) данного события.

Например, если мы подбрасываем вверх монету, то она может упасть двумя различными способами (орлом вверх или решкой вверх). Соответственно, у данного события два возможных исхода. Если же подбрасывать игральный кубик, то исходов будет шесть.

Для каждой основной единицы измерения информации существуют производные более крупные единицы измерения. Поскольку чаще всего мы будем использовать в качестве основной единицы бит, рассмотрим производны е единиц ы измерения для бита. На практике чаще всего используется не бит, а байт.

`1` байт (`1`B) `= 8` бит;

`1` килобайт (`1` kB) `= 1000` B (1000 байт);

`1` мегабайт (`1` MB) `= 1000` kB ;

`1` гигабайт (`1` GB) `= 1000` MB;

`1` терабайт (`1` TB) `= 1000` GB;

`1` петабайт (`1` PB) `= 1000` TB;

`1` эксабайт (`1` EB) `= 1000` PB;

`1` зеттабайт (`1` ZB) `= 1000` EB;

`1` йоттабайт(`1` YB) `= 1000` ZB.

Более крупных единиц на настоящий момент не введено.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Лекция4. Количество информации

N = 2 i (1.1)

Минимальной единицей измерения количества информации является бит, а следующей по величине единицей - байт, причем:

1 байт = 8 битов = 2 3 битов.

В информатике система образования кратных единиц измерения несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10 n , где n = 3, 6, 9 и т. д., что соответствует десятичным приставкам "Кило" (10 3 ), "Мега" (10 6 ), "Гига" (10 9 ) и т. д.

В компьютере информация кодируется с помощью двоичной знаковой системы, и поэтому в кратных единицах измерения количества информации используется коэффициент 2 n

Т ак, кратные байту единицы измерения количества информации вводятся следующим образом:

1 килобайт (Кбайт) = 2 10 байт = 1024 байт;

1 мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт;

1 гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт.

Таким образом, количество экзаменационных билетов равно 32.

Разложим стоящее в левой части уравнения число 8 на сомножители и представим его в степенной форме:

8 = 2 * 2 * 2 = 2 3 .

Алфавитный подход к определению количества информации

С помощью этой формулы можно, например, определить количество информации, которое несет знак в двоичной знаковой системе:

N = 2 => 2 = 2 I => 2 1 = 2 I => I=1 бит.

Информационная емкость знака двоичной знаковой системы составляет 1 бит.

С помощью формулы (1.1) определим количество информации, которое несет буква русского алфавита:

N = 32 => 32 = 2 I => 2 5 = 2 I => I=5 битов.

Таким образом, буква русского алфавита несет 5 битов информации (при алфавитном подходе к измерению количества информации).

Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так в среднем на 1000 знаков осмысленного текста приходится 200 букв "а" и в сто раз меньшее количество буквы "ф" (всего 2). Таким образом, с точки зрения теории информации, информационная емкость знаков русского алфавита различна (у буквы "а" она наименьшая, а у буквы "ф" - наибольшая).

При хранении и передаче информации с помощью технических устройств информацию следует рассматривать как последовательность символов - знаков (букв, цифр, кодов цветов точек изображения и т.д.).

Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит

Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.

Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=2 3 битам, а 1Мбайт=2 10 Кбайт=2 20 байт=2 23 бит. Отсюда, 2Мбайт=2 24 бит.
Ответ: 2 24 бит.

Задача 6. Один символ алфавита "весит" 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:

Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:

Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:

Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:

Задача 10. У племени "чичевоков" в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:

Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:

Ответ: 351Кбайт или 0,4Мбайт

Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:

Лекция5. Логические элементы

Современный этап промышленного развития характеризуется тем, что разработчики систем автоматики и вычислительной техники стремятся использовать функциональные модули, выполняющие определённые схемные задачи: логические преобразования, хранение информации и т.д. Конкретный вид электрической схемы, использованной для реализации заданной логической функции, как правило, не имеет существенного значения. Техническое устройство, реализующее логическую функцию, может рассматриваться просто как логический элемент , внутренняя структура которого не конкретизируется.

На принципиальных и функциональных схемах логический элемент ИЛИ изображается прямоугольником с единицей в левом верхнем углу.

Логический элемент ИЛИ предназначен для “вычисления” значения логического сложения . Работа этого логического элемента эквивалентна проверке составного условия со служебным словом “или”. Алгоритм работы логического элемента “или” записывается следующим образом: “Если А=1 или В=1, то f(А,В)=1, иначе f(А,В)=0”.

Логический элемент И предназначен для “вычисления” значения логического умножения. Работа этого логического элемента эквивалентна проверке составного условия со служебным словом “и”. Алгоритм работы логического элемента “и” записывается следующим образом: “Если А=1 и В=1, то f(А,В)=1, иначе f(А,В)=0”.

Изображение логических элементов И на функциональных и принципиальных схемах выглядит так:

Логические элементы НЕ изображаются с кружком, который называется индикатором уровня сигнала.

Итак, нам известны три основных логических элемента И, ИЛИ, НЕ. Сигналы, вырабатываемые одним логическим элементом, можно подавать на вход другого элемента - это даёт возможность образовывать цепочки из отдельных логических элементов.

hello_html_3877a507.jpg

Каждую такую цепочку называют логическим устройством, а соответствующую схему - функциональной схемой. Функциональную схему, которую полностью можно описать таблицей истинности, называют комбинационной схемой.

Комбинационная схема - это схема, в которой значения входных переменных в текущий момент времени полностью определяют значения выходных переменных.

Комбинационные схемы строятся из элементарных логических элементов И, ИЛИ, НЕ, и более сложных элементов И-НЕ, ИЛИ-НЕ и др., соединяя их так, как это следует из логической функции. Рассмотрим элементы И-НЕ и ИЛИ-НЕ:

hello_html_m332822.jpg

Логическая функция И-НЕ, которая представляет собой отрицание логического умножения, называется операцией Шеффера и кратко может быть записана в следующем виде:

Связь операций И-НЕ и ИЛИ-НЕ с основными операциями алгебры логики устанавливается законами, открытыми английским математиком Августусом де Морганом (1806-1871) и поэтому носящими его имя. Первый из них устанавливает, что отрицание логического умножения равносильно сумме отрицаний сомножителей:

Второй закон показывает, что отрицание логического сложения равносильно произведению отрицаний слагаемых:

Решение истинностных задач

Данный тип задач можно решать тремя методами: методом рассуждений, табличным методом и с помощью логических выражений, с помощью построения таблиц истинности и приведения задачи к системе логических уравнений.

А) Макс победит, Билл – второй;

В) Билл – третий, Ник – первый;

С) Макс – последний, а первый – Джон.

Когда соревнования закончились, оказалось, что каждый из болельщиков был прав только в одном из своих прогнозов. Какое место на турнире заняли Джон, Ник, Билл, Макс?

Решение (способ 1, метод рассуждений):

2) Запишем высказывания болельщиков:

1. Макс победит, Билл – второй;

2. Билл – третий, Ник – первый;

3. Макс – последний, а первый – Джон.

3) Известно, что каждый из болельщиков только в одном из прогнозов был прав (то есть, из двух высказываний одно истинно, а другое – ложно).

5) Пусть первый болельщик угадал, что Билл занял второе место, тогда второй болельщик предсказал первое место Нику, следовательно, по предположению третьего, Макс занял последнее место, а Джон – оставшееся третье место.

Отсюда имеем: Ник – первое, Билл – второе, Джон – третье и Макс – четвертое место.

Решение (способ 2, табличный метод):

Основной прием, который используется при решении текстовых логических задач, заключается в построении таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи.

1) Запишем высказывания трех болельщиков в форме таблицы (заголовок строки обозначает место в турнирной таблице):

hello_html_m42701f8.jpg

но мы предположили, что Макс – на первом месте (а не на четвертом), следовательно, получили противоречие; это значит, что Макс все-таки не на первом месте

hello_html_m42701f8.jpg

hello_html_c032163.jpg

hello_html_5f4cbb96.jpg

1. Ник 2. Билл 3. Джон 4. Макс .

Решение (способ 3, логические выражения):

Переведем условие задачи на язык логики высказываний. Так как в каждой из аудиторий может находиться кабинет информатики, то пусть:

Отрицания этих высказываний:

Х = А ˅ В.

Высказывание на второй двери:

Утверждение о том, что надписи на табличках либо одновременно истинные, либо одновременно ложные в соответствии с законом исключенного третьего запишется следующим образом:

Подставим вместо X и Y соответствующие формулы:

hello_html_aaa442.jpg

Упростим сначала первое слагаемое. В соответствии с законом дистрибутивности умножения относительно сложения:

hello_html_m245c946.jpg

В соответствии закона непротиворечия:

hello_html_aa7beaf.jpg

Далее упростим второе слагаемое. В соответствии с первым законом де Моргана и законом двойного отрицания:

hello_html_4a9ea2da.jpg

В соответствии с законом непротиворечия:

hello_html_1e54494c.jpg

В результате получаем:

Построим таблицу истинности для полученного выражения:

Проанализировав данные таблицы истинности имеем, что в первой аудитории находится кабинет физики, а во второй – кабинет информатики.

Читайте также: