Сообщение звезды и их рождение

Обновлено: 04.07.2024

Темная, ясная, безлунная ночь. Вы смотрите в небо. Вы видите тысячи звезд, расположенных в виде созвездий. Свет от этих звезд прошел большие расстояния, чтобы достичь Земли. Но что такое звезды? Как далеко они? Они все одинаковые? Есть ли вокруг них другие планеты? В этой статье мы рассмотрим увлекательный мир звезд. Мы рассмотрим природу звезд, их типы, как они образуются и как умирают.

Звезды и их свойства

Звезды – это массивные светящиеся шары горячих газов, в основном водорода и гелия. Некоторые звезды находятся относительно близко (ближайшие 30 звезд находятся в пределах 40 парсек), а другие – далеко-далеко. Астрономы могут измерять расстояние с помощью метода, называемого параллаксом, при котором изменение положения звезды на небе измеряется в разное время в течение года.

Некоторые звезды одни на небе, у других есть спутники (двойные звезды), а некоторые являются частью больших скоплений, содержащих тысячи или миллионы звезд.

Не все звезды одинаковы. Они бывают разных размеров, яркости, температуры и цвета. И имеют много особенностей, которые можно измерить, изучая свет, который они излучают:

    • температура
    • спектр или длина волны испускаемый свет
    • яркость
    • светимость
    • размер (радиус)
    • масса
    • движение (к нам или от нас, скорость вращения)

    звезды

    Туманность Пламя и Лошадиная голова в поясе Ориона

    И если вы изучаете звезды, вы захотите включить эти термины в свой звездный словарь:

      • абсолютная величина — кажущаяся величина звезды, если она находилась в 10 парсеках от Земли
      • видимая величина — яркость звезды, наблюдаемая с Земли
        светимость — общее количество энергии, излучаемой звездой в секунду
      • парсек — измерение расстояния (3,3 световых года, 33 триллиона километров)
        световой год — измерение расстояния (10 триллионов километров)
      • спектр — свет различной длины волны, излучаемый звездой
      • масса Солнца — масса Солнца; 1,99 x 10 30 кг (330 000 масс Земли)
      • солнечный радиус — радиус Солнца; 418 000 миль (696 000 километров)

      Температура и спектр

      Некоторые звезды очень горячие, другие – менее. Вы можете определить это по цвету света, который они испускают. Если вы посмотрите на угли в угольном гриле, то поймете, что красные светящиеся угли холоднее, чем белые. То же самое относится и к звездам. Синяя или белая звезда горячее, чем желтая звезда, которая горячее, чем красная звезда. Итак, если вы посмотрите на самый сильный цвет или длину волны света, излучаемого звездой, то вы можете рассчитать ее температуру (температура в градусах Кельвина = 3 x 10 6 / длина волны в нанометрах).

      Спектр звезды может также показать химические элементы, которые находятся в ней, потому что различные элементы (например, водород, гелий, углерод, кальций) поглощают свет на разных длинах волн.

      Яркость, светимость и радиус

      звезды в Орионе

      Когда вы смотрите на ночное небо, вы видите, что некоторые звезды ярче других, как показано на этом изображении Ориона.

      Два фактора определяют яркость звезды:

        • светимость — сколько энергии он выделяет в данный момент времени
        • расстояние — насколько далеко от нас

        Прожектор излучает больше света, чем фонарик. То есть прожектор светится ярче. Однако если этот прожектор находится на расстоянии 8 километров от вас, он не будет таким ярким, поскольку интенсивность света уменьшается с увеличением квадрата расстояния. Прожектор в 8 километров от вас может выглядеть таким же ярким, как фонарик в 15 сантиметрах от вас. То же самое относится и к звездам.

        Астрономы (профессиональные или любители) могут измерять яркость звезды (количество испускаемого ею света) с помощью фотометра или прибора с зарядовой связью (ПЗС) на конце телескопа. Если они знают яркость звезды и расстояние до звезды, они могут рассчитать светимость звезды:

        [яркость = светимость х 12,57 х (расстояние)² ]

        Светимость также связана с размером звезды. Чем больше звезда, тем больше энергии она излучает и тем ярче. Это можно увидеть и на угольном гриле. Три светящихся красных угольных брикета производят больше энергии, чем один светящийся красный угольный брикет при той же температуре. Аналогично, если две звезды имеют одинаковую температуру, но разные размеры, то большая звезда будет более яркой, чем маленькая.

        Масса и движение

        В 1924 году астроном А.С. Эддингтон показал, что светимость и масса звезды связаны между собой. Чем больше звезда (то есть более массивна), тем она ярче (светимость = масса³).

        Звезды вокруг нас движутся относительно нашей солнечной системы. Некоторые уходят от нас, а некоторые направляются к нам. Движение звезд влияет на длины волн света, которые мы получаем от них, подобно тому, как высокий звук сирены пожарной машины понижается, когда грузовик проходит мимо вас. Это явление называется эффектом Доплера. Измеряя спектр звезды и сравнивая его со спектром стандартной лампы, можно измерить величину доплеровского сдвига. Величина доплеровского сдвига говорит нам, как быстро звезда движется относительно нас.

        Кроме того, направление доплеровского сдвига может сказать нам направление движения звезды. Если спектр звезды смещен в синий конец, то звезда движется к нам; если спектр смещен в красный конец, то она удаляется от нас. Аналогично, если звезда вращается вокруг своей оси, доплеровский сдвиг ее спектра может быть использован для измерения скорости ее вращения.

        Итак, вы можете видеть, что мы можем довольно много рассказать о звезде по свету, который она излучает. Кроме того, сегодня астрономы-любители имеют такие устройства, как большие телескопы, ПЗС-матрицы и спектроскопы, доступные по относительно низкой цене.

        Таким образом, любители могут проводить такие же измерения и звездные исследования, которые раньше делали только профессионалы.

        Звезды Альфа центавра

        Сравнение тройной звёздной системы Альфа Центавра и Солнца

        Классификация звезд: объединение свойств

        В начале 1900-х годов два астронома, Энни Джамп Кэннон и Сесилия Пейн, классифицировали спектры звезд в соответствии с их температурой. Кэннон действительно выполнил классификацию, а Пейн позже объяснил, что спектральный класс звезды действительно определяется температурой.

        В 1912 году датский астроном Эйнар Герцспрунг и американский астроном Генри Норрис Рассел независимо друг от друга изобразили зависимость светимости от температуры для тысяч звезд и обнаружили удивительное соотношение: большинство звезд лежат вдоль гладкой диагональной кривой, называемой главной последовательностью, с горячими светящимися звездами в верхнем левом углу и прохладными тусклыми звездами в нижнем правом. Вне главной последовательности есть прохладные, яркие звезды в верхнем правом углу и горячие, тусклые звезды в левом нижнем углу.


        Радиус звезд увеличивается по мере того, как вы продвигаетесь вниз по левой диагонали к верхнему правому углу:

          • Сириус B = 0,01 солнечного радиуса
          • Солнце = 1 солнечный радиус
          • Спика = 10 солнечных радиусов
          • Ригель = 100 солнечных радиусов
          • Бетельгейзе = 1000 солнечных радиусов

          Звезды вдоль главной последовательности изменяются от самой высокой (приблизительно 30 солнечных масс) в верхнем левом углу до самой низкой (приблизительно 0,1 солнечной массы) в нижней правой части. Наше солнце — средняя звезда.

          Белые карлики не классифицируются, потому что их звездные спектры отличаются от большинства других звезд.

          Жизнь звезды

          Как мы уже упоминали ранее, звезды – это большие газовые шары. Новые звезды образуются из больших, холодных (10 градусов Кельвина) облаков пыли и газа (в основном, водорода), которые лежат между существующими звездами в галактике.

          Обычно с облаком происходит гравитационное возмущение определенного типа, такое как прохождение ближайшей звезды или ударная волна от взрывающейся сверхновой. В результате нарушения внутри облака образуются сгустки.

          Сгустки рушатся внутрь, притягивая газ внутрь под действием силы тяжести. Сгусток сжимается и нагревается.
          Сгусток начинает вращаться и расплющиваться в диск.
          Диск продолжает вращаться быстрее, втягивать больше газа и пыли внутрь и нагреваться.
          Примерно через миллион лет в центре диска образуется небольшое горячее ядро (1500 градусов Кельвина), которое называется протозвездой.
          Поскольку газ и пыль продолжают падать внутрь диска, они отдают энергию протозвезде, которая нагревается все сильнее.

          Когда температура протозвезды достигает около 7 миллионов градусов Кельвина, водород начинает плавиться, превращаясь в гелий и выделяя энергию.

          Материал продолжает падать в молодую звезду в течение миллионов лет, потому что коллапс под действием силы тяжести больше, чем внешнее давление, оказываемое ядерным синтезом. Поэтому внутренняя температура протозвезды увеличивается.

          Если достаточная масса (0,1 солнечной массы или больше) падает в протозвезду и температура становится достаточно горячей для устойчивого синтеза, то протозвезда имеет массивный выброс газа в виде струи, называемой биполярным потоком. Если массы недостаточно, звезда не сформируется, а вместо этого станет коричневым карликом.

          Звезда коричневый карлик

          Биполярный поток счищает газ и пыль от молодой звезды. Некоторое количество этого газа и пыли может позже накапливаться с образованием планет.

          Молодая звезда теперь стабильна в том, что внешнее давление от синтеза водорода уравновешивает внутреннее притяжение гравитации. Звезда входит в главную последовательность; где она лежит на главной последовательности, зависит от её массы.

          Теперь, когда звезда стабильна, она имеет те же части, что и наше Солнце:

            • ядро — где происходят реакции ядерного синтеза
            • излучательная зона — где фотоны отводят энергию от ядра
            • конвективная зона — где конвекционные потоки несут энергию к поверхности

            Тем не менее, внутренность может варьироваться в зависимости от расположения слоев. Звезды, подобные Солнцу, и те, которые менее массивны, чем Солнце, имеют слои в порядке, описанном выше. Звезды, которые в несколько раз массивнее Солнца, имеют глубокие конвективные слои в своих ядрах и излучающие внешние слои. Напротив, звезды, которые являются промежуточными между солнцем и самыми массивными звездами, могут иметь только излучающий слой.

            Жизнь на главной последовательности

            Звезды на главной последовательности горят, сливая водород в гелий. Большие имеют более высокую температуру ядра, чем маленькие звезды. Поэтому они сжигают водородное топливо в ядре быстрее, тогда как маленькие сжигают его медленнее. Время, которое звезды проводят на главной последовательности, зависит от того, насколько быстро водород расходуется. Поэтому у массивных звезд время жизни короче (солнце будет гореть в течение примерно 10 миллиардов лет). Что произойдет, когда водород в ядре исчезнет, зависит от массы звезды.

            Смерть звезды

            Туманность тухлое яйцо

            Через несколько миллиардов лет после начала жизни звезда умрет. Однако то, как звезда умирает, зависит от типа звезды.

            Звезды, как Солнце
            Когда в ядре заканчивается водородное топливо, оно сжимается под действием силы тяжести. Однако некоторое слияние водорода произойдет в верхних слоях. Когда ядро сжимается, оно нагревается. Это нагревает верхние слои, заставляя их расширяться. По мере расширения внешних слоев радиус звезды будет увеличиваться, и она станет красным гигантом.

            Радиус красного гигантского солнца будет чуть выше орбиты Земли. В какой-то момент после этого ядро станет достаточно горячим, чтобы заставить гелий плавиться в углерод. Когда закончится гелиевое топливо, ядро расширится и охладится. Верхние слои будут расширяться и выбрасывать материал, который будет собираться вокруг умирающей звезды, образуя планетарную туманность. Наконец, ядро превратится в белого карлика, а затем в конечном итоге в черного карлика. Весь этот процесс займет несколько миллиардов лет.

            Звезды, массивнее Солнца
            Когда в ядре заканчивается водород, эти звезды превращают гелий в углерод так же, как Солнце. Однако после того, как гелий исчезнет, его массы достаточно, чтобы сжечь углерод в более тяжелые элементы, такие как кислород, неон, кремний, магний, сера и железо.

            Как только ядро превратилось в железо, оно больше не может гореть. Звезда разрушается под действием собственной силы тяжести, и железное ядро нагревается. Ядро становится настолько плотным, что протоны и электроны сливаются, образуя нейтроны. Менее чем за секунду железное ядро размером с Землю сжимается до нейтронного ядра с радиусом около 10 километров. Внешние слои звезды падают внутрь на нейтронное ядро, тем самым разрушая его дальше.


            Ядро нагревается до миллиардов градусов и взрывается (сверхновая), тем самым выпуская большое количество энергии и материала в космос. Ударная волна от сверхновой может инициировать образование звезд в других межзвездных облаках. Остатки ядра могут образовывать нейтронную звезду или черную дыру в зависимости от массы исходной звезды.

            Каждая звезда во Вселенной проходит свой жизненный путь — от рождения до смерти. Это называется звездной эволюцией. Для звезд длительность каждого этапа эволюции разная и зависит в основном от размеров звезды и внешних воздействий (наличия рядом другой звезды или звезд и т. п.). Однако последовательность этапов всегда одна и та же.

            Звезды

            Схематично рассмотрим все этапы звездной эволюции. Из первичного материала (1) возникают либо звезды малой и средней величины — субгиганты (2), либо сверхгиганты и гипергиганты (3). Со временем они превращаются в красных гигантов (4) или красных супергигантов (5). Наконец, звезды взрываются, образуя планетарную туманность (6) или суперновую звезду (7). После взрыва на месте погибшей звезды небольшого размера остается ее остывающее ядро—белый карлик размером с планету (8). Взрыв красного супергиганта (суперновая звезда) заканчивается образованием черной дыры (9) или нейтронной звезды (10).

            Жизненный путь звезд — от рождения до смерти

            Начало

            Любая звезда начинает свою жизнь как холодное разреженное облако межзвездного газа, оставшегося либо после Большого взрыва, либо после взрыва другой звезды (как вариант — звезд). Главная движущая сила, строящая звезду, — сила гравитации.

            Рождение

            Постепенно под действием силы гравитации аморфное газообразное облако сжимается, движение частиц в нем ускоряется. В его центре становится все жарче, и вот вспыхивает новая звезда — протозвезда. После этого процесс сжатия облака останавливается.

            Развитие

            Звезда живет в среднем 5-10 млрд лет. Затем на ней заканчивается основное топливо — водород, в реакцию вступают углерод и гелий. Однако их температура горения намного больше, чем у водорода, поэтому звезда значительно увеличится в размерах и превратится в красный гигант. Естественно, при этом ближайшие к гиганту планеты либо уничтожаются, либо превращаются в пылающие каменные шары.

            Гибель

            В состоянии красного гиганта ни одна звезда не задерживается долго. Реакция горения гелия и углерода нестабильна. Рано или поздно звезду разрывает со страшной силой, превращающей в пыль остатки планетарной системы.

            Рождение, развитие и гибель звезд

            Будущее вселенной

            И раз уж мы проследили, как рождаются и умирают звезды, заглянем в будущее всей нашей расширяющейся Вселенной. С момента Большого взрыва (11) прошло примерно 14 млрд млрд лет (12). Если расширение продолжится с той же скоростью, что и сейчас, то соседние галактики через 100 млрд лет разойдутся на такие расстояния, что перестанут быть видимы (13). Через 100 триллионов миллиардов лет погаснет большая часть звезд, и во Вселенной будут преобладать черные дыры (14). Процесс образования звезд окончательно прекратится через триллион триллионов лет. Вся энергия Большого взрыва исчерпается, и во Вселенной наступит полная темнота (15).

            Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающие нескольких десятков парсек, расстояние определяется известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для большинства других более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять — меньше одной сотой доли секунды дуги! На помощь приходят другие методы, значительно менее точные, но тем не менее достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения.

            Спектры звезд и их химический состав

            Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

            Температура и масса звезд

            Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана Больцмана.

            Мощность излучения всей поверхности звезды. Таким образом, для определения радиуса звезды надо знать ее светимость и температуру поверхности.

            Нам остается определить еще одну, едва ли не самую важную характеристику звезды — ее массу. Надо сказать, что это сделать не так то просто. А главное существует не так уж много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая полуось орбиты а и период обращения Р известны. В этом случае массы определяются из третьего закона Кеплера. Уравнение дает сумму масс компонент системы. Если к тому же известно отношение орбитальных скоростей, то их массы можно определить отдельно. К сожаления, только для сравнительно небольшого количества двойных систем можно таким образом определить массу каждой из звезд.

            Связь основных звездных величин

            Итак, современная астрономия располагает методами определения основных звездных характеристик: светимости, поверхностной температуры (цвета), радиуса, химического состава и массы. Возникает важный вопрос: являются ли эти характеристики независимыми? Оказывается, нет. Прежде всего имеется функциональная зависимость, связывающая радиус звезды, ее болометрическую светимость и поверхностную температуру. Эта зависимость представляется простой формулой ( * ) и является тривиальной. Наряду с этим, однако, давно уже была обнаружена зависимость между светимостью звезд и их спектральным классом (или, что фактически одно и то же,- цветом). Эту зависимость эмпирически установили (независимо) на большом статистическом материале еще в начале нашего столетия выдающиеся астрономы датчанин Герцшпрунг и американец Рассел.

            Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды — это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

            Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

            До сих пор, говоря о межзвездной среде, мы имели ввиду только межзвездный газ. но имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали выше, что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 года с несомненностью было доказано, что межзведное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико.

            Разнообразие физических условий

            Характернейшей особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны, кинетическая температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч на кубический сантиметр, и весьма разряженная среда между облаками, где концентрация не превышает 0,1 частицы на кубический сантиметр. имеются, наконец, огромные области, где распространяются ударные волны от взрывов звезд.

            Почему должны рождаться новые звезды?

            Газово-пылевые комплексы — колыбель звезд

            Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Так, к примеру, облако с массой, равной солнечной, сожмется за миллион лет.

            Как только сжимающееся облако станет непрозрачным для своего инфракрасного излучения, светимость его резко упадет. Оно будет продолжать сжиматься, но уже не по закону свободного падения, а гораздо медленнее. Температура его внутренних областей , после того как процесс диссоциации молекулярного водорода закончится, будет непременно повышаться, так как половина освобождающейся при сжатии гравитационной энергии будет идти на нагрев облака. Впрочем, такой объект назвать облаком уже нельзя. Это уже самая настоящая протозвезда.

            Процесс рождения звезд, как правило, не заметен, потому что скрыт от нас пеленой поглощающей свет космической пыли. Только радиоастромония, как можно теперь с большой уверенностью считать, внесла радикальное изменение в проблему изучения рождения звезд. Во-первых, межзвездная пыль не поглощает радиоволны. Во- вторых, радиоастрономия открыла совершенно неожиданные явления в газово-пылевых комплексах межзвездой среды, которые имеют прямое отношение к процессу звездообразования.

            Кратко о всем процессе рождения

            Когда существенная часть массы газа превратиться в звезды, межзвездное магнитное поле, которое своим давлением поддерживало газово-пылевой комплекс, естественно, не будет оказывать воздействия на звезды и молодые протозвезды. Под влиянием гравитационного притяжения Галактики они начнут падать к галактической плоскости. Таким образом, молодые звездные ассоциации всегда должны приближаться к галактической плоскости.

            image

            Людей давно занимали причины горения звёзд на небе, однако по настоящему понимать эти процессы мы стали с первой половины 20-го века. В данной статье я постарался описать все основные процессы, протекающие во время жизненного цикла звезды.

            Рождение звёзд

            Формирование звезды начинается с молекулярного облака (к которым относятся 1% от всего межзвёздного вещества по массе) — они отличаются от обычных, для межзвёздной среды газо-пылевых облаков тем, что имеют бОльшую плотность, и значительно меньшую температуру — чтобы из атомов могли начать образовываться молекулы (в основном — H²). Само это свойство не имеет особого значения, но огромное значение имеет повышенная плотность этого вещества — от этого зависит, сможет ли вообще сформироваться протозвезда, и сколько времени на это потребуется.


            image

            Однако низкая плотность этого вещества означает то, что особого вреда они нанести не могут.

            Когда начинают действовать гравитационные силы, сжатие газа вызывает сильный нагрев, благодаря которому и начинаются термоядерные реакции. Этот же эффект разогрева сталкивающегося вещества послужил основой для первого прямого наблюдения экзопланеты в 2004 году:

            image


            Планета 2M1207 b на расстоянии 170 св. лет от нас.

            Однако различие между малыми звёздами и планетами-газовыми гигантами состоит как раз в том, что их массы оказывается не достаточно для поддержания начальной термоядерной реакции, которая в целом заключается в образовании гелия из водорода — в присутствии катализаторов (так называемый CNO-цикл — он действителен для звёзд II и I поколения, о которых речь пойдёт ниже):

            image

            Речь идёт как раз об самоподдерживающейся реакции, а не просто о наличие её факта — потому что хоть энергия для этой реакции (а следовательно и температура) строго ограничены снизу, но энергии движения отдельных частиц в газе определяется распределением Максвела:

            image

            Звёздное население

            Классификация звёзд

            image

            Современная классификация звёзд (гарвардская) очень проста — она основывается на разделении звёзд по их цветам. В маленьких звёздах реакции идут значительно медленнее, и эта непропорциональность вызывает разницу в поверхностной температуре, чем больше масса звезды — тем интенсивнее с её поверхности идёт излучение:

            image


            Распределения цветов, в зависимости от температуры (в градусах Кельвина)

            Жизнь звезды

            Жизнь большинства звёзд протекает на главной последовательности, которая представляет из себя кривую линию, проходящую из верхнего-левого к нижнему-правому углу:

            image


            Диаграмма Герцшпрунга — Рассела

            Этот процесс может показаться довольно унылым: водород превращается в гелий, и этот процесс продолжается миллионы и даже миллиарды лет. Но на самом деле, на Солнце (и остальных звёздах) даже во время этого процесса на поверхности (и внутри) всё время что-то происходит:

            Полный процесс термоядерных реакций в тяжёлых звёздах выглядит так: водород — гелий — бериллий и углерод, а дальше начинают идти несколько параллельных процессов, заканчивающихся на образовании железа:

            image

            Завершение существования

            Происходящие при этом процессы можно разделить на четыре варианта развития событий:

            Многие ошибочно считают, что до момента красного гиганта, светимость Солнца (и других подобных звёзд) постепенно уменьшается, а затем резко начинает расти, на самом деле рост светимости идёт всю основную часть жизни звезды:

            image

            image

            На стадии красного гиганта звезда не только значительно увеличивает светимость, но также и начинает быстро терять массу, за счёт этих процессов запасы топлива быстро заканчиваются (этот этап как минимум в 10 раз меньше этапа сжигания водорода). После чего звезда уменьшается в размерах, превращается в белого карлика и постепенно остывает.

            3) Когда масса выше первого предела, массы таких звёзд достаточно чтобы зажечь последующие реакции, вплоть до образования железа, эти процессы в конечном итоге приводят к взрыву сверхновой.

            image

            Этот момент имеет квантовую основу, и имеет очень чёткую границу, а состав ядра — состоит из довольно чистого железа, так что процесс оказывается катастрофически быстрым. Предполагается, что этот процесс происходит за секунды, а объём ядра падает в 100 000 раз (и соответственно растёт его плотность):

            Таким образом происходит образование нейтронной звезды:

            4) Когда же масса звезды превосходит и второй, предел Оппенгеймера — Волкова (1,5 — 3 массы Солнца для остатка или 25 — 30 масс для изначальной звезды), в процессе взрыва сверхновой остаётся слишком большая масса вещества, и давление не в состоянии сдерживать даже квантовые силы.

            В данном случае — имеется ввиду предел обусловленный принципом Паули, гласящим что две частицы (в данном случае — речь идёт об нейтронах) не могут находиться в одном квантовом состоянии (на этом основана структура атома, состоящего из электронных оболочек, число которых постепенно растёт с атомным числом).

            Давление сдавливает нейтроны, и дальнейший процесс становится не обратим — всё вещество стягивается в одну точку, и образуется чёрная дыра. Сама она уже никак не воздействует на окружающую среду (за исключением гравитации конечно), и может светиться лишь за счёт аккреации (попросту — падения) вещества на неё:


            Как можно видеть по сумме всех этих процессов — звёзды это настоящий кладезь физических законов. А в некоторых областях (нейтронные звёзды и чёрные дыры) — это настоящие физические лаборатории с экстремальными энергиями и состояниями вещества.

            Читайте также: