Сообщение о других формах периодической таблицы менделеева

Обновлено: 04.05.2024

Один из обязательных предметов в школе является химия. Большинство знаний, полученных по этой дисциплине, в жизни не применяются. Но знаменитую таблицу Менделеева знает каждый человек. Мало кто догадывается, как она была создана.

Предыстория.

В 1668 году талантливым ученым в области химии и биологии Робертом Бойлером была выпущена статья, в которой он делился своим мнением о надобности открытия свежих химических составляющих. В перечень он внес более10 новых элементов.

Спустя 100 лет ученый Антуан Лавузье из Франции решил увеличить этот список до 35 элементов. Однако основной вклад в развитии химических элементов вложил русский ученый-химик Дмитрий Иванович Менделеев. Он первый высказался о том, что атомная масса элементов имеет связь с их расстановкой в системе.

Так получилось, что в 1869 году русский ученый смог сформулировать самый первый периодический закон, и написать доклад про соотношение свойств с атомным весом элементов.

История создания.

Идея создания периодической таблицы была уже придумана в голове у Менделеева. Но правильно упорядочить ее он долгое время не мог. Более трех суток без сна химик работал над расстановкой химических элементов, перебирая различные методы. В итоге процесс был выполнен, и таблица была создана.

Миф о сне Менделеева.

Почти каждый человек слышал историю о том, что ученому таблица элементов приснилась. Эта легенда придумал помощник ученого А.А. Иностранцев. Это была просто веселая история для студентов. В ней говорилось, что Менделеев во сне смог увидеть свою таблицу, в которой все химические составляющие были уже сформированы в правильном порядке. Но на самом деле химик много работал, не отвлекаясь на еду и сон. Сам Менделеев говорил, что всего лишь шутка. Таблица была создана с помощью тяжелого труда.

Последующая работа.

Ученый продолжал проводить различные эксперименты и вносил поправки в свой труд. Химик изменил значения атомных масс некоторых элементов. Менделеев основывался на результатах своих исследований.

Для новых элементов ученый оставил пустые клетки, однако их свойства он смог заранее просчитать. Менделеев предсказал открытие галлия, скандий и германия.

Организация периодической системы Менделеева.

Д.И. Менделеев расположил все элементы в ряд по массовому росту, а длина рядов была сформирована так, чтобы все элементы имели похожие качества.

В самом начале создания системы она считалась как отображение уже существующего порядка в природе. Никаких пояснений, почему все элементы должны стоять так, не было. Лишь после создания квантовой механики обществу стало хоть немного понятно расположение химических составляющих в таблице. Во время работы над своим проектом Менделеев придерживался 4 этапах: подготовка, инкубация, озарение и проверка. За качественность такого процесса можно судить по окончательным итогам.

Вывод.

Создание периодической таблицы Менделеева стало большим открытием не только для химии как для науки, но и для всего человечества. Главное, что нужно запомнить – это то, в реальной жизни ничего не происходит само по себе. Не нужно ждать, что какое-то открытие или решение в жизни произойдет случайным образом. Для того, чтобы добиться желаемого в жизни нужно иметь некоторые познания и навыки, а также правильно уметь пользоваться своим потенциалом. И совсем не важно, будь это открытие нового химического элемента или же что-то другое.

Таблицы менделеева (история и создания)

Таблицы менделеева (история и создания)

Братск – город, основанный в 1613 году как острог в устье Оки и получивший статус города в 1955 году в связи со строительством Братской ГЭС. Именно на берегах двух водохранилищ (Братского и Усть-Илимского),

Кострома, это древний, русский город, который был основан еще в 12 веке. Но, спустя столетие, был образован как самостоятельное, удельное княжество. Происхождение города связано с деятельностью князя Юрия Долгорукого.

Инклюзивное образование – это такой процесс обучения, в ходе которого все люди независимо от своего физического, психического состояния обучаются совместно. При инклюзивном образовании воспитание детей ведется в специально созданных условиях,

Ниже приведён длинный вариант (длиннопериодная форма), утверждённый Международным союзом теоретической и прикладной химии (IUPAC) в качестве основного.

Периодическая система химических элементов

Короткая форма таблицы, содержащая восемь групп элементов [6] , была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжает приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также с инерцией, стереотипностью мышления и невосприятием современной (международной) информации.

В 1970 году Теодор Сиборг предложил расширенную периодическую таблицу элементов. Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы. Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Сегодня существуют несколько сотен вариантов таблицы, при этом учёные предлагают всё новые варианты .

Группы

Группа, или семейство, — одна из колонок периодической таблицы. Для групп, как правило, характерны более существенно выраженные периодические тенденции, нежели для периодов или блоков. Современные квантово-механические теории атомной структуры объясняют групповую общность тем, что элементы в пределах одной группы обыкновенно имеют одинаковые электронные конфигурации на их валентных оболочках. Соответственно, элементы, которые принадлежат к одной и той же группе, традиционно располагают схожими химическими особенностями и демонстрируют явную закономерность в изменении свойств по мере увеличения атомного числа. Впрочем, в некоторых областях таблицы, например — в d-блоке и f-блоке, горизонтальные сходства могут быть столь же важны или даже более заметно выражены, нежели вертикальные .

В соответствии с международной системой именования группам присваиваются номера от 1 до 18 в направлении слева направо — от щелочных металлов к благородным газам. Ранее для их идентификации использовались римские цифры. В американской практике после римских цифр ставилась также литера А (если группа располагалась в s-блоке или p-блоке) или B (если группа находилась в d-блоке). Применявшиеся тогда идентификаторы соответствуют последней цифре современных численных указателей — к примеру, элементам группы 4 соответствовало наименование IVB, а тем, которые ныне известны как группа 14 — IVA. Похожая система использовалась и в Европе, за тем исключением, что литера А относилась к группам до десятой, а В — к группам после десятой включительно. Группы 8, 9 и 10, кроме того, часто рассматривались как одна тройная группа с идентификатором VIII. В 1988 году в действие вступила новая система нотации ИЮПАК, и прежние наименования групп вышли из употребления.

Элементы, относящиеся к одной группе, как правило, демонстрируют определенные тенденции по атомному радиусу, энергии ионизации и электроотрицательности. По направлению сверху вниз в рамках группы радиус атома возрастает (чем больше у него заполненных энергетических уровней, тем дальше от ядра располагаются валентные электроны), а энергия ионизации снижается (связи в атоме ослабевают, а, следовательно, изъять электрон становится проще), равно как и электроотрицательность (что, в свою очередь, также обусловлено возрастанием дистанции между валентными электронами и ядром). Случаются, впрочем, и исключения из этих закономерностей — к примеру, в группе 11 по направлению сверху вниз электроотрицательность возрастает, а не убывает.

Периоды

Период — строка периодической таблицы. Хотя для групп, как уже говорилось выше, характерны более существенные тенденции и закономерности, есть также области, где горизонтальное направление более значимо и показательно, нежели вертикальное — например, это касается f-блока, где лантаноиды и актиноиды образуют две важные горизонтальные последовательности элементов.

В рамках периода элементы демонстрируют определенные закономерности во всех трех названных выше аспектах (атомный радиус, энергия ионизации и электроотрицательность), а также в энергии сродства к электрону. В направлении слева направо атомный радиус обычно сокращается (в силу того, что у каждого последующего элемента увеличивается количество заряженных частиц, и электроны притягиваются ближе к ядру), и параллельно с ним возрастает энергия ионизации (чем сильнее связь в атоме, тем больше энергии требуется на изъятие электрона). Соответствующим образом увеличивается и электроотрицательность. Что касается энергии сродства к электрону, то металлы в левой части таблицы характеризуются меньшим значением этого показателя, а неметаллы в правой, соответственно, большим — за исключением благородных газов.

Блоки

Ввиду значимости внешней электронной оболочки атома различные области периодической таблицы иногда описываются как блоки, именуемые в соответствии с тем, на какой оболочке находится последний электрон. S-блок включает первые две группы, то есть щелочные и щелочноземельные металлы, а также водород и гелий; p-блок состоит из последних шести групп (с 13 по 18 согласно стандарту именования ИЮПАК, или с IIIA до VIIIA по американской системе) и включает, помимо других элементов, все металлоиды. D-блок — это группы с 3 по 12 (ИЮПАК), они же — с IIIB до IIB по-американски, в которые входят все переходные металлы. F-блок, выносимый обычно за пределы таблицы, состоит из лантаноидов и актиноидов.

Другие периодические закономерности

Помимо перечисленных выше, периодическому закону соответствуют и некоторые другие характеристики элементов:

Периодическая система химических элементов Менделеева

До середины XIX века мир химической науки знал о существовании 63 элементов, которые не имели какой-то определенной системы ранжирования. Сама химия как наука была исключительно описательной и не имела возможностей научного предвидения.

В этот период научный мир стоял в тупике из-за невозможности узнавать о свойствах старых и существовании новых элементов. Создание системы, которая бы могла определить закономерности химических элементов, было основной задачей ученых умов.

Многие исследователи старались первыми систематизировать знания о химических элементах, найти закономерности и создать таблицу, которая могла бы помочь науке в дальнейших исследованиях. Однако все системы имели минусы.

Периодическая система химических элементов Д. И. Менделеева — классификация химических элементов по принципу зависимости свойств различных элементов от заряда их атомного ядра.

Попеременно переставляя карточки с известными данными о химических элементах, Менделеев создал таблицу, которая, претерпев небольшие изменения, окончательно сформировалась к 1871 году.

Помимо составления таблицы, ученый сформулировал Периодический закон, который в современной формулировке звучит следующим образом:

Периодический закон — закон, который заключается в сопоставлении свойств химических элементов и их атомных масс.

Общие сведения, как устроена

За все время поиска окончательного внешнего вида таблицы, она имела более сотни вариантов изображения, однако ее современный вид предполагает написание химических элементов в виде двумерной таблицы, в которой столбцы определяют группы элементов, а строки — периоды.

Общее количество элементов достигает 118, каждый из которых имеет свой номер и свое место в таблице Менделеева. Расположение их зависит от присущих им химических свойств.

Группы определяются по степени окисления в оксидах.

Группы делятся на:

Химические свойства в периодической системе элементов различаются в зависимости от подгруппы.

Положение элементов в таблице зависит от структуры ядра и определяется по принципу возрастания числа протонов в атомном ядре и электронов на электронных уровнях, или по принципу возрастания их порядковых номеров. Принцип возрастания атомной массы не может считаться принципом определения периодичности расположения элементов, так как некоторые элементы выбиваются из общего правила и имеют меньшую или большую массу, чем предполагается составленной периодичностью.

Периоды могут быть:

Все периоды, кроме первого, начинаются с щелочного металла и завершаются благородным газом.

Структура, наиболее распространенные формы

118 химических элементов делятся на группы и закономерности в зависимости от схожести химических свойств.

Структура периодической таблицы зависит от формы использования: короткопериодной, длиннопериодной или сверхдлинной.

Современная версия периодической системы Менделеева обладает 8 или 18 группами химических элементов. Такая разница зависит от формы использования таблицы:

  • если в таблице используется нумерация каждой подгруппы в форме арабских цифр, то их число составит 18;
  • если в таблице нумерация групп происходит римскими цифрами с добавлением букв A и B, то групп будет 8.

Наиболее частым вариантом использования является нумерация по второму варианту.

Элементы распределяются по подгруппам следующим образом:

  • IB, IIB, IVB – VIIB имеют по 4 элемента;
  • IIA – VIIA имеют по 6 элементов;
  • IA, VIIIA имеют по 7 элементов;
  • VIIIB имеет 12 элементов;
  • IIIB имеет 32 элемента, 14 из которых являются лантаноидами и еще 14 являются актиноидами + 4 элемента основной таблицы.

Современная версия периодической системы Менделеева обладает 7 периодами, каждый из которых имеет определенное число химических элементов:

  • первый — 2;
  • второй — 8;
  • третий — 8;
  • четвертый — 18;
  • пятый — 18;
  • шестой — 32;
  • седьмой — 32 элемента.

Первые три периода относятся к малым, остальные — к большим. В последних усиление неметаллических и ослабление металлических свойств происходит более плавно, чем в малых периодах.

Короткая или короткопериодная версия таблицы по внешнему виду наиболее приближена к варианту, который создал сам Менделеев. Она основана на схожести химических свойств элементов главных и побочных подгрупп.

В данном варианте написания таблицы большие периоды занимают по 2 строчки.

Короткопериодная форма написания таблицы отменена для использования в 1989 году, однако на территории России и СНГ этот вариант до сих пор является основным.

Длиннопериодная на данный момент является общепринятой и самой часто используемой в мире химической науки.

Данный вариант предполагает вынесение отдельных элементов из основной таблицы. Это происходит из-за некоторых их специфических свойств. Они делятся на лантаноиды и актиноиды, которые соответственно относятся к шестому и седьмому периодам.

Также длинная версия периодической системы разделяет группы на подгруппы, из-за чего образуется 18 столбцов вместо 8.

Сверхдлинный вариант предусматривает расположение каждого элемента в своей строчке без вынесения в отдельные строки лантаноидов и актиноидов. Каждый период при таком написании занимает одну строчку.

Помимо основных форм написания периодической системы химических элементов, существуют дополнительные:

  • лестничная форма Бора;
  • башня Циммермана;
  • левосторонняя система Жанета;
  • спиральная форма Бенфема;
  • радужная лента Хайда;
  • 3D-цветок Роя и другие.

Каждая из вышеперечисленных систем подчеркивает значение свойств химических элементов определенных групп или периодов, которые неочевидны при классическом написании традиционной таблицы.

Количество элементов, ряды

Согласно длиннопериодному варианту таблица имеет 7 рядов по количеству периодов, а также 2 ряда под основной таблицей – ряд лантаноидов и ряд актиноидов.

Ряды включают в себя:

  1. Водород Н, Гелий Не.
  2. Литий Li, Бериллий Be, Бор B, Углерод C, Азот N, Кислород O, Фтор F, Неон Ne.
  3. Натрий Na, Магний Mg, Алюминий Al, Кремний Si, Фосфор P, Сера S, Хлор Cl, Аргон Ar.
  4. Калий K, Кальций Ca, Скандий Sc, Титан Ti, Ванадий V, Хром Cr, Марганец Mn, Железо Fe, Кобальт Co, Никель Ni, Медь Cu, Цинк Zn, Галий Ga, Германий Ge, Мышьяк As, Селен Se, Бром Br, Криптон Kr.
  5. Рубидий Rb, Стронций Sr, Иттрий Y, Цирконий Zr, Ниобий Nb, Молибден Mo, Технеций Tc, Рутений Ru, Родий Rh, Галладий Pd, Серебро Ag, Кадмий Cd, Индий In, Олово Sn, Сурьма Sb, Теллур Te, Йод I, Ксенон Xe.
  6. Цезий Cs, Барий Ba, Лантан La, Гафний Hf, Тантал Ta, Вольфрам W, Рений Re, Осмий Os, Иридий Ir, Платина Pt, Золото Au, Ртуть Hg, Таллий Tl, Свинец Pb, Висмут Bi, Полоний Po, Астат At, Радон Rn.
  7. Франций Fr, Радий Ra, Актиний Ac, Резерфордий Rf, Дубний Db, Сиборгий Sg, Борий Bh, Хассий Hs, Мейтнерий Mt, Дармштадтий Ds, Рентгений Rg, Коперниций Cn, Нихоний Nh, Флеровий Fl, Московий Mc, Ливерморий Lv, Теннессин Ts, Оганесон Og.
  8. Лантаноиды: Лантан La, Церий Ce, Празеодим Pr, Неодим Nd, Прометий Pm, Самарий Sm, Европий Eu, Гадолиний Gd, Тербий Tb, Диспрозий Dy, Гольмий Ho, Эрбий Er, Тулий Tm, Иттербий Yb, Лютенций Lu.
  9. Актиноиды: Актиний Ac, Торий Th, Протактиний Pa, Уран U, Нептуний Np, Плутоний Pu, Америций Am, Кюрий Cm, Берклий Bk, Калифорний Cf, Эйнштейний Es, Фермий Fm, Менделевий Md, Нобелий No, Лоуренсий Lr.

Объяснительная и предсказательная функции Периодического закона

Периодическая система химических элементов Менделеева послужила мощным толчком для развития химической науки. Ученые получили твердое основание из систематизированных химических элементов, благодаря которым стало возможно проведение опытов по обнаружению новых элементов и выявлению ранее неоткрытых свойств.

Периодическая система объясняет взаимосвязи между элементами и их схожие свойства. Благодаря их систематизации произошло выявление групп и подгрупп, периодов, объединивших элементы по свойствам.

С помощью таблицы появилась возможность предсказывать открытие элементов, о которых большинство ученых того времени даже не догадывалось. Помимо открытия уже существующих в природе, но не найденных элементов, стало возможным синтезирование новых из уже существующих.

Большие периоды поделены на ряды .

Каждая группа делится на главную и побочную подгруппы .

\(28\) элементов третьей группы ( лантаноиды и актиноиды ) расположены внизу таблицы.

К лантаноидам относятся \(14\) элементов шестого периода (№ \(58\) — № \(71\)).

К актиноидам относятся \(14\) элементов седьмого периода (№ \(90 \)–\(103\)).

Выделены группы \(A\) и \(B\). Между \(IIA\) и \(IIIA\) группами расположены группы \(B\). Лантаноиды и актиноиды — под таблицей.

Лантаноиды и актиноиды включены в таблицу. Каждый период представлен одним рядом элементов.

tab_ru.jpg

Общепринятым в настоящее время считается полудлинный вариант.

Читайте также: