Сообщение несет информацию если

Обновлено: 05.07.2024

Процесс познания можно изобразить в виде расширяющегося “круга знания“, всё что за пределами круга – область незнания.

И вот здесь как раз проявляется парадокс:

Чем больше знаешь, тем больше понимаешь, что ничего не знаешь…

Другими словами, по мере получения знаний, человек раздвигает границы познания, но при этом всё больше осознает объёмы своего незнания.

Например, знания выпускника школы гораздо больше чем знания первоклассника, но и граница его незнания также существенно больше, т.е. старшеклассник при подготовке к выпускным экзаменам обнаруживает непонимание некоторых законов или правил и вынужден их восполнять. Тогда как первоклассник вообще ничего не знает об этих законах и правилах.

Подход к измерению информации, как способу уменьшения неопределённости знания, позволяет измерять информацию, особенно это ВАЖНО для информатики, которая изучает процессы хранения и передачи информации.

1 бит – минимальная единица измерения количества информации.

Допустим, вы бросаете, загадывая, что выпадет: орел или решка.

Есть всего два возможных результата бросания монеты. Причем ни один из этих результатов не имеет преимущества перед другим. В таком случае говорят, что они равновероятны.

В случае с монетой перед ее подбрасыванием неопределенность знания о результате равна двум.

кабик6+6

Игральный кубик с шестью гранями может с равной вероятностью упасть на любую из них. Значит, неопределенность знания о результате бросания кубика равна шести.

Неопределенность знания о результате некоторого события (бросание монеты или игрального кубика, жребий и др.) – это количество возможных результатов.

Формула Хартли:

Шахматная доска состоит из 64 полей: 8 столбцов на 8 строк.

Поскольку выбор любой из 64 клеток равновероятен, то количество бит находится из формулы:

Перечень вопросов, рассматриваемых в теме: Информация как снятая неопределенность. Содержательный подход к измерению информации.

Информация как последовательность символов некоторого алфавита. Алфавитный подход к измерению информации. Единицы измерения информации. Понятие больших данных

Глоссарий по теме: Информатика, информация, свойства информации (объективность, достоверность, полнота, актуальность, понятность, релевантность), виды информации, информационные процессы, информационная культура, информационная грамотность.

Основная литература по теме урока:

Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2017

Дополнительная литература по теме урока:

И. Г. Семакин, Т. Ю. Шеина, Л. В. Шестакова. Информатика и ИКТ. Профильный уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2012

Теоретический материал для самостоятельного изучения:

Давайте составим план, что бы мы хотели сделать с имеющейся у нас информацией.

Передавать — скорее всего, а может быть даже и продавать.

Обрабатывать и получать новую — вполне возможно!

Во всех трех случаях, которые называют основными информационными процессами, нам нужно информацию измерять.

В случае хранения, чтобы быть уверенными, что объем хранилища и объем нашей информации соответствуют друг другу, в передаче или продаже — чтобы объем продажи соответствовал цене, в случае обработки, чтобы рассчитать время, за которое этот объем может быть обработан.

Во всех трех случаях мы говорим о соответствиях объемов, но если нам известно как вычислить объем хранилища в м 3 , количество денег в рублях или иной валюте, время, то с вычислением объема информации нужно разбираться

Целью нашего урока будет определить способы измерения информации и сравнить их.

Для этого нужно будет определить:

— от чего зависит объем информации,

— какими единицами ее измерять.

Ожидаемые результаты

Выявлять различия в подходах к измерению информации.

Применять различные подходы для измерения количества информации.

Переходить от одних единиц измерения информации к другим.

Предположим, что объем информации зависит от ее содержания. Нам нужна информация, которая для нас нова и понятна, соответствует всем свойствам информации, то есть та, которая приносит нам новые знания, решает наши вопросы.

Этот подход к измерению предложил К. Шеннон.

Разумно так же предположить, что текст, который для вас не понятен, понятен кому-то другому, то есть информация в нем все-таки есть. А ее объем зависит не от содержания текста, а от символов, которыми он написан. Назовем алфавитом все множество символов, используемых в языке, а их количество — мощностью алфавита.

Каждый символ, выбранный из алфавита, несет количество информации (i), вычисленное по формуле,

где N мощность алфавита.

Общее количество информации (I) во всем тексте можно посчитать по простой математической модели:


где k — количество символов в тексте.

Такой подход к измерению информации называют алфавитным. Здесь объем информации зависит от используемого алфавита и количества символов в тексте.

Этот подход к измерению информации предложил советский ученый-математик А. Н. Колмогоров.

Бит — мельчайшая единица информации. Для кодировки каждого из 256 символов, сведенных в таблицу кодировки ASCII, требуется 8 бит. Эта величина получила отдельное название — байт. Помимо бита и байта существуют более крупные единицы. Традиционно они получили приставки Кило, Мега, Гига и т. д.


Переводить единицы измерения информации можно при помощи удобной схемы

Подведем итоги

Информацию можно измерять. Для этого существуют разные подходы, содержательный подход, алфавитный подход.

Суть содержательного подхода в том, что при определении объема информации учитывается содержание информации. Она должна быть новой и понятной получателю.

Суть алфавитного подхода в определении количества информации в зависимости от алфавита, которым она записана. А объем подсчитывается по формуле


где — объем информации,

— количество информации о каждом символе.

Для измерения количества информации в объеме данных используются единицы измерения информации.

Обработка данных важна для всех сфер жизни. Технологии обработки данных стремительно развиваются и становятся жизненно-важными.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 2. Подходы к измерению информации

Информатика. 10 класса. Босова Л.Л. Оглавление

Информация и её свойства

Информация и её свойства являются объектом исследования целого ряда научных дисциплин, таких как:

? теория информации (математическая теория систем передачи информации);

? кибернетика (наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе);

? информатика (изучение процессов сбора, преобразования, хранения, защиты, поиска и передачи всех видов информации и средств их автоматизированной обработки);

? семиотика (наука о знаках и знаковых системах);

? теория массовой коммуникации (исследование средств массовой информации и их влияния на общество) и др.

Рассмотрим более детально подходы к определению понятия информации, важные с позиций её измерения:

1) определение К. Шеннона, применяемое в математической теории информации;

2) определение А. Н. Колмогорова, применяемое в отраслях информатики, связанных с использованием компьютеров.

2.1. Содержательный подход к измерению информации


Информация — это снятая неопределённость. Величина неопределённости некоторого события — это количество возможных результатов (исходов) данного события.

Такой подход к измерению информации называют содержательным.

Итак, количество возможных результатов (исходов) события, состоящего в том, что книга поставлена в шкаф, равно восьми: 1, 2, 3, 4, 5, 6, 7 и 8.

Метод поиска, на каждом шаге которого отбрасывается половина вариантов, называется методом половинного деления. Этот метод широко используется в компьютерных науках.


1) обойтись минимальным количеством вопросов;





1) Да — Да — Да — Да;

2) Нет — Нет — Нет — Нет;

3) Да — Нет — Да — Нет.

При N, равном целой степени двойки (2, 4, 8, 16, 32 и т. д.), это уравнение легко решается в уме. Решать такие уравнения при других N вы научитесь чуть позже, в курсе математики 11 класса.


2.2. Алфавитный подход к измерению информации

Однако при хранении и передаче информации с помощью технических устройств целесообразно отвлечься от её содержания и рассматривать информацию как последовательность символов (букв, цифр, кодов цвета точек изображения и т. д.) некоторого алфавита.

Информация — последовательность символов (букв, цифр, кодов цвета точек изображения и т. д.) некоторого алфавита.

Минимальная мощность алфавита (количество входящих в него символов), пригодного для кодирования информации, равна 2. Такой алфавит называется двоичным. Один символ двоичного алфавита несёт 1 бит информации.


Андрей Николаевич Колмогоров (1903-1987) — один из крупнейших математиков XX века. Им получены основополагающие результаты в математической логике, теории сложности алгоритмов, теории информации, теории множеств и ряде других областей математики и её приложений.

В отличие от определения количества информации по Колмогорову в определении информационного объёма не требуется, чтобы число двоичных символов было минимально возможным. При оптимальном кодировании понятия количества информации и информационного объёма совпадают.

Из курса информатики основной школы вы знаете, что двоичные коды бывают равномерные и неравномерные. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные — разное.

Первый равномерный двоичный код был изобретён французом Жаном Морисом Бодо в 1870 году. В коде Бодо используются сигналы двух видов, имеющие одинаковую длительность и абсолютную величину, но разную полярность. Длина кодов всех символов алфавита равна пяти (рис. 1.7).


Рис. 1.7. Фрагмент кодовой таблицы кода Бодо

Всего с помощью кода Бодо можно составить 2 5 = 32 комбинации.

Пример 5. Слово WORD, закодированное с помощью кода Бодо, будет выглядеть так:


Пример 6. Для двоичного представления текстов в компьютере чаще всего используется равномерный восьмиразрядный код. С его помощью можно закодировать алфавит из 256 символов (2 8 = 256). Фрагмент кодовой таблицы ASCII представлен на рисунке 1.8.


Рис. 1.8. Фрагмент кодовой таблицы ASCII

Слово WORD, закодированное с помощью таблицы ASCII:


Из курса информатики основной школы вам известно, что с помощью i-разрядного двоичного кода можно закодировать алфавит, мощность N которого определяется из соотношения:

2 i = N.

Иными словами, зная мощность используемого алфавита, всегда можно вычислить информационный вес символа — минимально возможное количество бит, требуемое для кодирования символов этого алфавита. При этом информационный вес символа должен быть выражен целым числом.

Соотношение для определения информационного веса символа алфавита можно получить и из следующих соображений.

1) определить мощность используемого алфавита N;

2) из соотношения 2 i = N определить i — информационный вес символа алфавита в битах (длину двоичного кода символа из используемого алфавита мощности N);

I = К * i,

где I — информационный вес символа в битах, связанный с мощностью используемого алфавита N соотношением:

2 i = N.

Пример 7. Для регистрации на некотором сайте пользователю надо придумать пароль, состоящий из 10 символов. В качестве символов можно использовать десятичные цифры и шесть первых букв латинского алфавита, причём буквы используются только заглавные. Пароли кодируются посимвольно. Все символы кодируются одинаковым и минимально возможным количеством бит. Для хранения сведений о каждом пользователе в системе отведено одинаковое и минимально возможное целое число байт.

Необходимо выяснить, какой объём памяти потребуется для хранения 100 паролей.


2.3. Единицы измерения информации

Итак, в двоичном коде один двоичный разряд несёт 1 бит информации. 8 бит образуют один байт. Помимо бита и байта, для измерения информации используются более крупные единицы:

1 Кбайт (килобайт) = 2 10 байт;

1 Мбайт (мегабайт) = 2 10 Кбайт = 2 20 байт;

1 Гбайт (гигабайт) = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт;

1 Тбайт (терабайт) = 2 10 Гбайт = 2 20 Мбайт = 2 30 Кбайт = 2 40 байт;

1 Пбайт (петабайт) = 2 10 Тбайт = 2 20 Гбайт = 2 30 Мбайт = 2 40 Кбайт = 2 50 байт.

Это произошло потому, что 2 10 = 1024 ? 1000 = 10 3 . Поэтому 1024 байта и стали называть килобайтом, 2 10 килобайта стали называть мегабайтом и т. д.

Чтобы избежать путаницы с различным использованием одних и тех же приставок, в 1999 г. Международная электротехническая комиссия ввела новый стандарт наименования двоичных приставок. Согласно этому стандарту, 1 килобайт равняется 1000 байт, а величина 1024 байта получила новое название — 1 кибибайт (Кибайт).

Пример 8. При регистрации в компьютерной системе каждому пользователю выдаётся пароль длиной в 12 символов, образованный из десятичных цифр и первых шести букв английского алфавита, причём буквы могут использоваться как строчные, так и прописные — соответствующие символы считаются разными. Пароли кодируются посимвольно. Все символы кодируются одинаковым и минимально возможным количеством бит. Для хранения сведений о каждом пользователе в системе отведено одинаковое и минимально возможное целое число байт.

Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для которых отведено 12 байт. На какое максимальное количество пользователей рассчитана система, если для хранения сведений о пользователях в ней отведено 200 Кбайт?

Прежде всего, выясним мощность алфавита, используемого для записи паролей: N — 6 (буквы прописные) + 6 (буквы строчные) + 10 (десятичные цифры) = 22 символа.

Для кодирования одного из 22 символов требуется 5 бит памяти (4 бита позволят закодировать всего 2 4 = 16 символов, 5 бит позволят закодировать уже 2 5 = 32 символа); 5 — минимально возможное количество бит для кодирования 22 разных символов алфавита, используемого для записи паролей.

Для хранения всех 12 символов пароля требуется 12 • 5 = 60 бит. Из условия следует, что пароль должен занимать целое число байт; т. к. 60 не кратно восьми, возьмём ближайшее большее значение, которое кратно восьми: 64 = 8 • 8. Таким образом, один пароль занимает 8 байт.

Информация о пользователе занимает 20 байт, т. к. содержит не только пароль (8 байт), но и дополнительные сведения (12 байт).



САМОЕ ГЛАВНОЕ

I = K * i, где i — информационный вес символа в битах, связанный с мощностью используемого алфавита N соотношением 2 i = N. Единицы измерения информации:

1 Кбайт (килобайт) = 2 10 байт;

1 Мбайт (мегабайт) = 2 10 Кбайт = 2 20 байт;

1 Гбайт (гигабайт) = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт;

1 Тбайт (терабайт) = 2 10 Гбайт = 2 20 Мбайт = 2 30 Кбайт = 2 40 байт;

1 Пбайт (петабайт) = 2 10 Тбайт = 2 20 Гбайт = 2 30 Мбайт = 2 40 Кбайт = 2 50 байт.

Вопросы и задания

1. Что такое неопределённость знания о результате какого-либо события? Приведите пример.

2. В чём состоит суть содержательного подхода к определению количества информации? Что такое бит с точки зрения содержательного подхода?

3. Паролем для приложения служит трёхзначное число в шестнадцатеричной системе счисления. Возможные варианты пароля:


Ответ на какой вопрос (см. ниже) содержит 1 бит информации?

1) Это число записано в двоичной системе счисления?

2) Это число записано в четверичной системе счисления?

3) Это число может быть записано в восьмеричной системе счисления?

4) Это число может быть записано в десятичной системе счисления?

5) Это число может быть записано в шестнадцатеричной системе счисления?

4. При угадывании целого числа в некотором диапазоне было получено 5 бит информации. Каковы наибольшее и наименьшее числа этого диапазона?

5. Какое максимальное количество вопросов достаточно задать вашему собеседнику, чтобы точно определить день и месяц его рождения?

6. В чём состоит суть алфавитного подхода к измерению информации? Что такое бит с точки зрения алфавитного подхода?

8. Какие единицы используются для измерения объёма информации, хранящейся на компьютере?

13. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из шестибуквенного набора А, В, С, D, Е, F. Для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей и все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, занимающие 15 байт. Определите объём памяти в байтах, необходимый для хранения сведений о 120 пользователях.

1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.

2. Создание и редактирование текстового документа (исправление ошибок, удаление или вставка текстовых фрагментов), в том числе использование элементов форматирования текста (установка параметров шрифта и абзаца, внедрение заданных объектов в текст).

1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.

Содержательный подход к измерению информации

Игральный кубик с шестью гранями может с равной вероятностью упасть на любую из них. Значит, неопределенность знаний о результате бросания кубика равна шести.
Следовательно, можно сказать так:

Неопределенность знаний о некотором событии – это количество возможных результатов события

Если N равно целой степени двойки (2, 4, 8, 16 и т.д.), то вычисления легко произвести "в уме". В противном случае количество информации становится нецелой величиной, и для решения задачи придется воспользоваться таблицей логарифмов либо определять значение логарифма приблизительно (ближайшее целое число, большее).

Алфавитный подход к измерению информации

Мощность алфавита — количество символов алфавита.

Определить количество информации (i) в одном символе по формуле 2 i = N, где N — мощность алфавита

Вычислить объем информации по формуле: I = i * K.

Количество информации во всем тексте (I), состоящем из K символов, равно произведению информационного веса символа на К:

Эта величина является информационным объемом текста.

Необходимо так же знать единицы измерения информации и соотношения между ними.

Единицы измерения информации

Как уже было сказано, основная единица измерения информации — бит.

8 бит составляют 1 байт .
Наряду с байтами для измерения количества информации используются более крупные единицы:
1 Кбайт (один килобайт) = 210 байт = 1024 байта;
1 Мбайт (один мегабайт) = 210 Кбайт = 1024 Кбайт;
1 Гбайт (один гигабайт) = 210 Мбайт = 1024 Мбайт.
В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:
1 Терабайт (Тб) = 1024 Гбайт = 240 байта,
1 Петабайт (Пб) = 1024 Тбайта = 250 байта.

2. Создание и редактирование текстового документа (исправление ошибок, удаление или вставка текстовых фрагментов), в том числе использование элементов форматирования текста (установка параметров шрифта и абзаца, внедрение заданных объектов в текст).

Практическое задание выполняется на компьютере в программе Microsoft Office.

Похожие документы:

1. Понятие информации. Виды информации. Роль информации в живой природе и в жизни людей. Язык как способ представления информации: естественные и формальные язы (2)

. 1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации. Определить понятие "количество информации" довольно . ти битам. Такой способ измерения количества информации называется алфавитным подходом. При этом измеряется .

Урок 1 Тема: Измерение информации: содержательный подход

1. Понятие информации. Виды информации. Роль информации в живой природе и в жизни людей. Язык как способ представления информации: естественные и формальные язы (1)

. результат выполнения алгоритма при A=7; B=8; C=9. Билет № 2 1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации. 2. С помощью стрелочки ГРИС написать программу .

1. Понятие информации. Виды информации. Роль информации в живой природе и в жизни людей. Язык как способ представления информации: естественные и формальные язы (3)

. алгоритма в среде учебного исполнителя. Билет 2 1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации. 2. Создание и редактирование текстового документа (исправление .

Читайте также: