Сообщение на тему строение и функции белков углеводов

Обновлено: 07.07.2024

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Рассказываем, для чего нужны белки, углеводы и жиры, чем они отличаются, какие функции выполняют в организме.

Основа правильного питания – достаточное количество белков, углеводов и жиров в пище. Эти соединения должны быть строго сбалансированы в ежедневном рационе, тогда будет возможность получать достаточное количество энергии и вести полноценный здоровый образ жизни. Человек с пищей получает витамины, минералы и энергию, без которой организм не сможет функционировать.

Белки

Белки – основной строительный материал из которого формируются все клетки. Белок участвует в строении клеток всех систем и внутренних органов, включая сердце. Вся мышечная система работает за счет белков. Именно эти соединения отвечают за поставку кислорода ко всем клеткам тела, а также к мозгу.

Другие полезные функции белков:

  • за счет контроля уровня сахара увеличивают или уменьшают чувство голода;
  • помогают снабдить организм незаменимыми аминокислотами, которые человек может получить исключительно с пищей.

Внимание! Белок не накапливается в организме, а должен постоянно присутствовать в рационе человека. Лучше всего усваивается животный белок, который содержится в мясе, молоке, яйцах.

Если данного химического соединения в организме не хватает, развивается белковая недостаточность со следующими симптомами:

  • пониженная масса тела;
  • сухие и ломкие волосы и ногти;
  • нарушение роста у детей;
  • пониженный иммунитет;
  • сбои в работе основных желез.

Внимание! За один прием пищи усваивается не больше 30 грамм белка. Суточная потребность для женщины – 1,3 г на кг тела, для мужчин – 1,5 г на кг тела.

Еще один важный компонент ежедневного питания, состоящий из глицерина и жирных кислот, – жиры.

  • запас энергии в организме;
  • положительное влияние на рост волос, ногтей;
  • усвоение витаминов А, Д, Е;
  • укрепление иммунной системы.

Жиры делятся на несколько типов. Для организма полезнее всего ненасыщенные, в том числе омега-3 и омега-6. Вредными считаются насыщенные твердые жиры. Они содержатся в маргарине, колбасе, хлебобулочных продуктах.

Углеводы – это питательные соединения, в основе которых лежат сахара: фруктоза, лактоза, сахароза. Главная и практически единственная функция этих веществ – дать человеку энергию для полноценной жизнедеятельности.

Простые углеводы – это прямой сахар, который содержится в газировке, конфетах, печеньях и утоляет чувство голода на строго определенное время. В качестве простых углеводов лучше употреблять сладкие фрукты, которые содержат еще и витамины.

В правильном рационе соотношение белков, жиров и углеводов должно быть 30%, 30% и 40% соответственно. Но это очень общее понятие. Диетологи советуют индивидуально подходить к этому вопросу, в зависимости от возраста, пола, состояния здоровья, физических нагрузок. Например, при активном занятии спортом для наращивания мышечной массы не помешают дополнительные белки, а людям с избыточным весом лучше сократить потребление жиров.

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Строение аминокислот

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

первичная структура белка

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

вторичная структура белка

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

прион

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Свойства белков

Купить проверочные работы
по биологии

Биология. Растения. Бактерии. Грибы. Лишайники. Работаем по новым стандартам. Проверочные работы
Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. Общие закономерности. Работаем по новым стандартам. Проверочные работы

Аминокислотный состав, структура белковой молекулы определяют его свойства. Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией. Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой, в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией. Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО2 при фотосинтезе.

Ферменты

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты).

фермент и субстрат

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

аллостерические фрагменты

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами, если тормозят — ингибиторами.

Sale

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С–С, С–N, С–О, С–S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С–С, С–N, С–О, С–S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

Жиры представляют собой органические соединения, образующиеся в результате взаимодействия глицерина с высшими карбоновыми кислотами. Соединения могут быть природного или синтетического происхождения.

Жиры еще называют глицеридами, так как в реакциях этерификации, продуктами которых они являются, принимают участие карбоновые кислоты и единственный спирт – глицерин.

Общая формула жиров выглядит так:

R1, R2, R3 - углеводородные остатки карбоновых кислот.

В состав жиров могут входить насыщенные и ненасыщенные карбоновые кислоты. Жиры имеют твердую консистенцию, если в состав входят углеводородные части предельных кислот. В случае этерификации глицерина с ненасыщенными кислотами образуются жидкие соединения. Природные глицериды содержат оба вида кислот, поэтому животные жиры твердые (кроме рыбьего жира). Глицериды растительного происхождения соответственно имеют жидкую форму, поэтому их называют маслами (кроме пальмового масла, имеющего твердую консистенцию).

Химические свойства жиров

По аналогии можно предположить, что гидрирование двойных связей обеспечит переход в твердую форму. Данное свойство подтверждено опытным путем. Так получают твердый жир маргарин. Реакция гидрирования (гидрогенизация) проходит в присутствии никелевого катализатора:

Реакция гидрирования (гидрогенизация) проходит в присутствии никелевого катализатора

Жиры – это сложные эфиры, поэтому для них характерны реакции гидролиза.

Гидролиз с водными растворами кислот и щелочей протекает по следующей схеме:

Гидролиз с водными растворами кислот и щелочей

В результате реакций щелочного гидролиза образуются соли высших карбоновых кислот – мыла (реакции омыления):

Реакции омыления

Жиры, в составе которых содержаться углеводородные остатки непредельных кислот обесцвечивают раствор калия перманганата и бромной воды. Присутствие двойных связей в предельных кислотах лишает глицериды этого свойства.

Биологические функции жиров

Жиры играют важную роль в живых организмах. Основными функциями являются:

  • строительная;
  • энергетическая;
  • защитная;
  • секреторная;
  • регулирующая.

Жиры регулируют обмен веществ, участвуют в теплорегуляции, обеспечивают механическую защиту органов, повышают сопротивляемость организма, секретируют гормоны.

Белки

Белки – высокомолекулярные соединения органической природы. Представляют собой цепочку из частей альфа-аминокислот, соединенных пептидными связями.

Двадцать видов аминокислот образуют структуру большинства белков. При этом отдельные виды белков отличаются между собой аминокислотными наборами по наименованию и последовательности соединения.

Структура белка

Структура белков определяет их растворимость. Так, четвертичные соединения в виде глобул образуют коллоидный водный раствор, а четвертичные белки из нитей (фибрилл) имеют твердую структуру и не растворяются в водной среде.

Химические свойства белков

Белковые соединения вступают в реакции гидролитического разложения по схеме:

Белковые соединения вступают в реакции гидролитического разложения по схеме

В результате гидролиза образуется смесь альфа-аминокислот.

При определенных условиях происходит распад сложных белковых структур до первичной линейной формы. Это называется денатурацией.

Денатурация белка может быть обратимой и не обратимой. Ход процесса зависит от условий протекания.

Обратимая денатурация протекает в присутствии щелочей или ионов аммония по схеме:

Обратимая денатурация протекает в присутствии щелочей или ионов аммония по схеме

Необратимая денатурация белка происходит в присутствии кислот, щелочей, солей тяжелых металлов при условии повышенной температуры либо воздействия иного излечения. В таких условиях восстановление структуры белка невозможно.

Реакция взаимодействия белкового раствора с 10% раствором натрия гидроксида и капли 1% раствора сульфата меди называется биуретовой реакцией. В результате образуется биуретовый комплекс фиолетового цвета:

Реакция взаимодействия белкового раствора с 10% раствором натрия гидроксида и капли 1% раствора сульфата меди называется биуретовой реакцией

Это качественная реакция для белковых соединений.

Ксантопротеиновой реакцией называют взаимодействие раствора белка с концентрированной азотной кислотой в условиях повышенной температуры. Образуется соединение, придающее раствору желтое окрашивание.

Схема реакции на примере тирозина (альфа-аминокислоты):

Схема реакции на примере тирозина (альфа-аминокислоты)

Биологические функции белков

Белковые соединения в организме выполняют такие функции, как:

  • строительная;
  • защитная;
  • регуляторная;
  • транспортная;
  • энергетическая;
  • двигательная.

Белки – строительный материал клеток. Белковые соединения защищают от инфекционных агентов, доставляют важнейшие вещества в органы, насыщают организм энергией.

Углеводы

Углеводами называют органические соединения, состоящие из углерода, водорода, кислорода. Содержат карбонильную группу и множество карбоксильных групп. Служат источником энергии для клеток.

Классификация углеводов

Класс углеводов

Особенности / Представители

Моносахариды (монозы)

Простая форма сахаров. Не подвергается гидролизу.

Глюкоза

Сложные сахара. При гидролизе распадаются на две молекулы моносахаров.

  • Сахароза (состоит из фрагментов альфа-глюкозы и бета-фруктозы)

Сахароза

Полисахариды

Высокомолекулярные соединения сложной структуры, образованные из остатков моносахаров, соединенных гликозидными связями.

Крахмал

Химические свойства углеводов

Химические свойства углеводов обусловлены строением. Соединения вступают в реакции по карбоксильной группе, по спиртовому гидроксилу или кетонной группе в зависимости от природы сахаров в составе.

Реакции гидролитического разложения сложных сахаров идут по схеме:

Химические свойства углеводов

Реакции гидрирования характерны для сахаров, содержащих карбонильную группу (например, глюкоза), которая в результате восстанавливается до спиртового гидроксила при повышенной температуре в присутствии никелевого катализатора:

Реакции гидрирования

Альдегидная группа в составе вступает в характерную реакцию с гидроксидом меди. Образуется оксид меди II кирпично-красного цвета:

Альдегидная группа в составе вступает в характерную реакцию с гидроксидом меди.

Спиртовой гидроксил в составе определяет взаимодействие с гидроксидом двухвалентной меди. Осадок голубого цвета переходит в насыщенный синий раствор медного комплекса:

Спиртовой гидроксил в составе определяет взаимодействие с гидроксидом двухвалентной меди

Процессы брожения

Процесс ферментативного разложения глюкозы на этиловый спирт и углекислый газ называют спиртовым брожением:

Процессы брожения - дрожжи

Продуктом молочнокислого брожения становится молочная кислота. Возможны процессы масляно-кислого, лимонно-кислого брожения:

Продуктом молочнокислого брожения становится молочная кислота

Растворы моносахаров

В растворе моносахара соединяются между собой через альдегидные группы. Раствор глюкозы содержит две модификации: альфа-форму и бета-форму:

Растворы моносахаров

Полисахара сгорают до углекислого газа и воды:

Характерная реакция крахмала с раствором йода:

Характерная реакция крахмала с раствором йода

Образуется ярко синее окрашивание. При повышении температуры цвет исчезает, при охлаждении снова проявляется.

Биологические функции углеводов

Углеводы выполняют функции в организме такие, как:

  • энергетическая;
  • защитная (иммунная);
  • структурная;
  • запасающая;
  • рецепторная.

Углеводы образуют стенки клеток, обеспечивают распознавание клеток, присоединение к ним биологически активных веществ, участвуют в фотосинтезе.

Нажмите, чтобы узнать подробности

Белки – это биополимеры, мономерами которых являются аминокислоты. Все белки живых организмов построены из 20 аминокислот.

Каждая аминокислота состоит из углеводородного радикала, соединенного с карбоксильной группой, имеющей кислотные свойства (-СООН), и аминогруппой (-NH2), обладающей основными свойствами. Аминокислоты отличаются одна от другой только радикалами. Аминокислоты соединяются друг с другом в длинные цепочки пептидными связями, возникающие между углеродом кислотной и азотом основной групп (-СО-НN-) с выделением молекулы воды. Соединения из небольшого числа аминокислот называют полипептидом.

В строении молекулы белков различают четыре уровня организации:

- Первичная структура – строго определенная последовательность аминокислот, соединенных пептидными связями.

- Вторичная структура – полипептидная цепь, закрученная в спираль, спиральная структура поддерживается водородными связями. Это малопрочные связи, но многократно повторенные, создают довольно прочное соединение. Функционирование в виде закрученной спирали характерно для фибриллярных белков (коллаген, фибриноген, миозин, актин и др.)

- Третичная структура – сворачивание спирали в сложную конфигурацию – глобулу, поддерживаемая дисульфидными связями (-S—S-), возникающими между радикалами серосодержащей аминокислоты – цистеина и др. связями (водородными, ионными, гидрофобными). Многие белковые молекулы становятся функционально активными только после приобретения глобулярной (третичной) структуры.

- Четвертичная структура – комплекс из нескольких молекул белка (химические связи могут быть различные).

Под влиянием сильных кислот и щелочей, солей тяжелых металлов, тепловых и лучевых воздействий и др. факторов разрушается структурная организация белка. Этот процесс называется денатурацией. Денатурация может быть обратимой (частичное нарушение четвертичной, третичной и вторичной структуры белка с сохранением первичной) и необратимой (разрушение всех структур). Белок при этом теряет биологическую активность.

Функции белков в клетке:

Каталитическая (ферментативная) – белки-ферменты в десятки и сотни тысяч раз ускоряют течение биохимических реакций. Каждый фермент может катализировать только одну реакцию, т.е. действие ферментов строго специфично.

Структурная – входят в состав внутриклеточных структур и тканей. Например, коллаген и эластин входит в состав костей‚ сухожилий‚ хрящей; кератин входит в состав эпидермиса и его производных (волосы‚ рога‚ перья).

Энергетическая – при расщеплении 1 гр. белка до конечных продуктов обмена веществ (СО2, Н2О, NH3) выделяется 17,6 кДж энергии.

Двигательная функция – белки актин и миозин обеспечивают процессы мышечного сокращения и сокращения ресничек, жгутиков и др.

Транспортная функция – белки осуществляют перенос многих веществ в клетке и организме. Так белок гемоглобин переносит О2 в крови.

Защитная функция белков связана с выработкой лейкоцитами белковых веществ – антител в ответ на проникновение в организм чужеродных белков или микроорганизмов. Антитела связывают, нейтрализуют и разрушают несвойственные организму соединения. Защитной функцией является и участие белков фибриногена и тромбина в процессах свертывания крови.

Регуляторная – гормоны белковой природы – инсулин и глюкагон регулируют обмен глюкозы.

Сигнальная (рецепторная) функция – выполняют гликопротеины плазмалеммы – изменение структуры белковых молекул под влиянием факторов окружающей среды – сигнализируют клетке об этих изменениях.

Вещества, состоящие из углерода, водорода и кислорода, состав которых можно выразить формулой Сn(H2O)m.

Углеводы можно разделить на три класса:





Моносахариды – в Олигосахариды – Полисахариды –

зависимости от числа (например, дисахариды) образуются путём

углеродных атом в их объединяют в одной соединения многих

молекуле различают молекуле от двух до моносахаридов и

триозы (3С), тетрозы 10 моносахаридов. Так, имеют формулу (4С), пентозы (5С), пищевой сахар (сахароза) (С6Н10О5)n.

гексозы (6С). состоит из молекул Например:

Наиболее глюкозы и фруктозы. крахмал, гликоген,

распространены пентозы Лактоза – молочный целлюлоза, хитин.

(рибоза, дезоксирибоза) сахар состоит из

и гексозы (глюкоза и молекулы глюкозы

фруктоза). и галактозы.

Свойства: Свойства: Свойства:

Малые молекулы легко Малые молекулы. Макромолекулы

растворяются в воде. Растворимы в воде. нерастворимы или Представлены Кристаллизуются. растворимы в воде.

кристаллическими Сладкие на вкус. Не кристаллизуются.

формами, сладкие на Не сладкие на вкус.

Функции углеводов:

1. Энергетическая – основной источник для организма. При полном расщеплении 1гр. углеводов до Н2О и СО2, выделяется 17,6 кДж энергии.

2. Строительная (структурная) функция – входят в состав клеточной стенки растений (целлюлоза), полисахариды служат одним из компонентов соединительной, костной, хрящевой тканей, углеводы и их производные входят в состав всех тканей и органов.

3. Функция запаса питательных веществ – накапливается в виде крахмала у растений и гликогена у животных.

4. Защитная – вязкие секреты – слизи, выделяемые различными железами, богаты углеводами и их производными (гликопротеиды – соединения углеводов и белков). Они предохраняют стенки внутренних органов (пищевод, кишечник, желудок, бронхи) от механических повреждений и проникновения микроорганизмов.

К липидам относятся жиры и жироподобные вещества (липоиды). Жиры – это соединения глицерина и высокомолекулярных жирных кислот, а липоиды – жирных кислот и многоатомных спиртов.

Эти соединения нерастворимы в воде (гидрофобны), но растворимы в органических растворителях. Содержание жиров в клетке колеблется от 5-15%, а в клетках подкожно-жировой клетчатки – до 90%.

Функции липидов:

1. Строительная (структурная) – бислой липидов (преимущественно фосфолипидов – жироподобные вещества, у которых одна молекула жирной кислоты замещена на остаток фосфорной кислоты) образуют основу всех мембран клеток, а также входят в состав оболочек нервных клеток.

2. Энергетическая – при полном распаде 1г жира выделяется 39 кДж энергии, что в два раза больше по сравнению с углеводами и белками.

3. Функция запасания питательных веществ – накапливаясь в жировой ткани животных и в плодах и семенах растений.

4. Защитная функция – защищают органы от механических повреждений (например, почки находятся в жировом футляре).

5. Теплоизоляционная функция – накапливаясь в подкожно-жировой клетчатке некоторых животных (киты, тюлени) поддерживают постоянную температуру тела.

6. Функция поставщика эндогенной воды: при окислении 100 г жира выделяется 110 мл воды. Благодаря чему, возможно существование пустынных животных – верблюды

7. Липоиды (воскоподобные вещества) покрывают тонким слоем листья растений.

Читайте также: