Сообщение на тему металлы главных подгрупп

Обновлено: 02.07.2024

Презентация "Металлы главных подгрупп" предназдначена для проведения теоретического занятия по химии. содержит текст лекции, тест и вопросы для выполнения домашнего задания.

ВложениеРазмер
metally_glavnyh_podgrupp.pptx 419.33 КБ

Предварительный просмотр:

Подписи к слайдам:

Изучив эту тему, Вы будете Знать: 1.с троение, свойства, классификацию металлов главных подгрупп 2.способы получения металлов 3. применениещелочных металлов Уметь: 1.соотносить строение веществ, их свойства и применение на примере наиболее часто используемых полимеров. 2.использовать химические знания в повседневной жизни.

Содержание учебного занятия 1.характеристика металлов главных подгрупп 2 .Физические свойства металлов главных подгрупп 3 .химические свойства алюминия 4 .Способы получения 5 .Применение полимеров 6. ЖЕСТКОСТЬ ВОДЫ И СПОСОБЫ ЕЕ УСТРАНЕНИЯ

Характеристика Щелочные металлы — это металлы главной подгруппы I группы. Их атомы на внешнем энергетическом уровне имеют по одному электрону. Щелочные металлы — сильные восстановители. Их восстановительная способность и химическая активность возрастают с увеличением порядкового номера элемента (т. е. сверху вниз в Периодической таблице). Все они обладают электронной проводимостью. Прочность связи между атомами щелочных металлов уменьшается с увеличением порядкового номера элемента. Также снижаются их температуры плавления и кипения. Щелочные металлы взаимодействуют со многими простыми веществами — окислителями.

Щелочноземельными элементами называются элементы главной подгруппы II группы. Атомы этих элементов содержат на внешнем энергетическом уровне по два электрона. Они являются восстановителями, имеют степень окисления +2. В этой главной подгруппе соблюдаются общие закономерности в изменении физических и химических свойств, связанные с увеличением размера атомов по группе сверху вниз, также ослабевает и химическая связь между атомами. С увеличением размера иона ослабевают кислотные и усиливаются основные свойства оксидов и гидроксидов.

Главную подгруппу III группы составляют элементы бор, алюминий, галлий, индий и таллий, элементы относятся к р-элементам. На внешнем энергетическом уровне они имеют по три (s 2 p 1 ) электрона, чем объясняется сходство свойств. Степень окисления +3. Внутри группы с увеличением заряда ядра металлические свойства увеличиваются. Бор — элемент-неметалл, а у алюминия уже металлические свойства. Все элементы образуют оксиды и гидроксиды. кциях с водой они образуют растворимые в воде основания (щелочи).

Физические свойства 1 подгруппа Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней. Поэтому хранят эти металлы под слоем керосина или парафина. Литий 2 подгруппа Бериллий, магний, кальций, барий и радий - металлы серебристо-белого цвета. Стронций имеет золотистый цвет. Эти металлы легкие, особенно низкие плотности имеют кальций, магний, бериллий. Радий является радиоактивным химическим элементом. Стронций 3 подгруппа Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. По электропроводности занимает 4-е место после Сu , Аg , Аu . Галлий

Химические свойства алюминия Алюминий – химически активный металл, но прочная оксидная пленка определяет его стойкость при обычных условиях. Практически во всех химических реакциях алюминий проявляет восстановительные свойства .

Взаимодействие с неметаллами С кислородом взаимодействует только в мелкораздробленном состоянии при высокой температуре: 4Al + 3O 2 = 2Al 2 O 3 , реакция сопровождается большим выделением тепла. Выше 200°С реагирует с серой с образованием сульфида алюминия: 2Al + 3S = Al 2 S 3 . При 500°С – с фосфором, образуя фосфид алюминия: Al + P = AlP. При 800°С реагирует с азотом, а при 2000°С – с углеродом, образуя нитрид и карбид: 2Al + N 2 = 2AlN, 4Al + 3C = Al 4 C 3 . С хлором и бромом взаимодействует при обычных условиях, а с йодом при нагревании, в присутствии воды в качестве катализатора: 2Al + 3Cl 2 = 2AlCl 3 С водородом непосредственно не взаимодействует. С металлами образует сплавы, которые содержат интерметаллические соединения – алюминиды, например, CuAl 2 , CrAl 7 , FeAl 3 и др.

Взаимодействие с водой Очищенный от оксидной пленки алюминий энергично взаимодействует с водой: 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 в результате реакции образуется малорастворимый гидроксид алюминия и выделяется водород

Взаимодействие с кислотами Легко взаимодействует с разбавленными кислотами, образуя соли: 2Al + 6HCl = 2AlCl 3 + 3H 2 ; 2Al + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 3H 2 ; 8Al + 30HNO 3 = 8Al(NO 3 ) 3 + 3N 2 O + 15H 2 O (в качестве продукта восстановления азотной кислоты также может быть азот и нитрат аммония). С концентрированной азотной и серной кислотами при комнатной температуре не взаимодействует, при нагревании реагирует с образованием соли и продукта восстановления кислоты: 2Al + 6H 2 SO 4 = Al 2 (SO 4 ) 3 + 3SO 2 + 6H 2 O; Al + 6HNO 3 = Al(NO 3 ) 3 + 3NO 2 + 3H 2 O.

Взаимодействие со щелочами Алюминий – амфотерный металл, он легко реагирует со щелочами: в растворе с образованием тетрагидроксодиакваалюмината натрия: 2Al + 2NaOH + 10H 2 O = 2Na[Al(H 2 O) 2 (OH) 4 ] + 3H 2 при сплавлении с образованием алюминатов: 2Al + 6KOH = 2KAlO 2 + 2K 2 O + 3H 2 .

Восстановление металлов из оксидов и солей Алюминий – активный металл, способен вытеснять металлы из их оксидов. Это свойство алюминия нашло практическое применение в металлургии: 2Al + Cr 2 O 3 = 2Cr + Al 2 O 3 .

Способы получения металлов Получение щелочных металлов 1. Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов , чаще всего — хлоридов, образующих природные минералы: катод: Li + + e → Li анод: 2Cl- — 2e → Cl 2 2. Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов : катод: Na + + e → Na анод: 4OH- — 4e → 2H 2 O + O 2 Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.

Электролизом расплавов их хлоридов или термическим восстановлением их соединений: MgO + C = Mg + CO Получение щелочноземельных металлов

III группа 1. Электролиз расплава AlCl 3 : 2AlCl 3 = 2Al + 3Cl 2 2. Основной промышленный способ - электролиз расплава Al 2 O 3 ( глинозема) в криолите 3 NaF • AlF 3 : 2Al 2 O 3 = 4AI + 3O 2 3. Вакуумтермический : AlCl 3 + ЗК = Al + 3KCl

1. Щелочные металлы в природе встречаются только в форме соединений. Так как щелочные металлы очень легко и быстро окисляются. Они вступают в реакцию с кислородом, водой. Натрий и калий являются постоянными составными частями многих весьма распространенных силикатов. Из отдельных минералов натрия важнейший–поваренная соль ( NaCl ) –входит в состав морской воды и на отдельных участках земной поверхности образует под слоем наносных пород громадные залежи так называемой каменной соли. В верхних слоях подобных залежей иногда содержатся и скопления солей калия в виде минералов сильвинита ( KCl – NaCl ), карналлита (KCl·MgCl 2 ·6Н 2 О). Для лития известен ряд минералов (например, сподумен – LiAl (SiO 3 ) 2 ), но скопления их редки. Рубидий и цезий встречаются почти исключительно в виде примесей к другим щелочным металлам. Следы франция всегда содержатся в урановых рудах. Нахождение в природе

2. Как и щелочные металлы, магний и щелочноземельные металлы в природе встречаются только в виде соединений. Их природные соединения: CaCO 3 ∙MgCO 3 –доломит; MgCO 3 –магнезит; KCl∙MgCl 2 · 6Н 2 O – карналлит; MgSO 4 ·7Н 2 O – горькая (английская) соль; CaCO 3 - кальцит (известняк, мел, мрамор); СаF 2 – флюорит; Ca 3 (PO 4 ) 2 – фосфорит; BaSO 4 - барит.

Соединения Соединения элементов 1 группы Гидриды. Ме + Н - ( Me = Li , Na , К, Rb , Cs ) Гидриды - сильнейшие восстановители. С водой они реагируют, выделяя водород, например: NaH + H 2 О = NaOH + H 2 Оксиды. Na 2 О + H 2 О = 2NaOH, а п ероксиды выделяют кислород: 2Na 2 О 2 + 2H 2 О = 4NaOH + О 2 ↑ Соли. Na 2 SО 3 + H 2 О-NaHSО 3 + NaOH CH 8 COONa + H 2 O = CH 3 COOH + NaOH Na 2 CО 3 + H 2 О-NaHCО 3 + NaOH

Соединения элементов 2 группы Оксиды металлов II А группы Общая формула МеО 1) Окисление металлов (кроме Ba , который образует пероксид) 2Са + О 2 → 2СаО 2) Термическое разложение нитратов или карбонатов CaCO 3 CaO + CO 2 ­ 2Mg(NO 3 ) 2 2MgO + 4NO 2 ­ + O 2

Соединения элементов 3 группы Оксид и гидроксид этого металла являются амфотерными, т.е. проявляют как основные, так и кислотные свойства. Основные свойства: Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O 2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 6H 2 O Кислотные свойства: Al 2 O 3 + 6KOH +3H 2 O = 2K 3 [Al(OH) 6 ] 2Al(OH) 3 + 6KOH = K 3 [Al(OH) 6 ] Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Жесткость воды и способ ее устранения Природная вода, проходя через известковые горные породы и почвы, обогащается солями кальция и магния (а также железа) и становится жёсткой. В жесткой воде при стирке белья увеличивается расход мыла, а ткань, впитывая соли, становится желтой и быстро ветшает. Накипь – нерастворимые соединения кальция и магния и оксид железами), осаждающиеся на внутренних стенках посуды, паровых котлов и трубопроводов. В жесткой воде дольше варятся овощи, крупы и мясо. Различают временную и постоянную жесткость воды.

Временная жесткость вызвана присутствием в воде гидрокарбонатов М(НСO 3 ) 2 (М = Са, Mg) и Fe(HCO 3 ) 2 . Если количественно определяют содержание ионов HCO 3 - , говорят о карбонатной жесткости, если содержание ионов Са 2+ , Mg 2+ и Fe 2+ – о кальциевой, магниевой или железной жесткости. Временная жесткость тем выше, чем больше содержание этих ионов в воде. Жесткость воды назвали временной потому, что она устраняется простым кипячением: Са(НСO 3 ) 2 = СаСO 3 v + Н 2 O + СO 2 ^ Mg(HCO 3 ) 2 = Mg(OH) 2 v + 2СO 2 ^ 4Fe(HCO 3 ) 2 + O 2 = 2Fe 2 O 3 v + 8CO 2 ^ + 4H 2 O Постоянная жесткость обусловлена другими солями кальция и магния (сульфаты, хлориды, нитраты, дигидро-ортофосфаты и др.). Такая жесткость не устраняется кипячением воды. Поэтому для удаления из жесткой воды большей части всех солей ее умягчают, используя химические реактивы и специальные (ионообменные) способы. Умягченная вода пригодна для питья и приготовления пищи.

Умягчение воды достигается, если ее обработать различными осадителями – гашеной известью, содой и ортофосфатом натрия: устранение временной жесткости: Са (НСO 3 ) 2 + Са (ОН) 2 = 2СаСO 3 v + 2Н 2 O Mg (HCO 3 ) 2 + Ca (OH) 2 = CaMg (CO 3 ) 2 v + 2Н 2 O 4Fe(HCO 3 ) 2 + 8Са(ОН) 2 + O 2 = 4FeO(OH)v + 8СаСO 3 v + 10Н 2 O устранение постоянной жесткости: Ca (NO 3 ) 2 + Na 2 CO 3 = СаСO 3 v + 2NaNO 3 2MgSO 4 + Н 2 O = Na 2 CO 3 = Mg 2 CO 3 (OH) 2 v + СO 2 ^ + 2Na 2 SO 4 3FeCl 2 + 2Na 3 PO 4 = Fe 3 (PO 4 ) 2 v + 6NaCl В химической лаборатории и в промышленности используется полностью обессоленная вода (для питья она непригодна). Для получения обессоленной воды природную воду подвергают перегонке (дистилляции). Такая дистиллированная вода является мягкой, подобно дождевой воде .

Тест по теме Выбираем один правильный ответ: 1.Все металлы: восстановители; окислители; не изменяют степеней окисления; 2. Самый большой радиус атома имеет металл: литий; мышьяк; уран; 3.Наименьшей электроотрицательностью обладает: дубний; натрий; марганец;

4.Восстановительные свойства наиболее ярко выражены у металла: магния; полония; франция; 5. Самый большой заряд ядра имеет атом металла: индий; лантан; актиний; 6.Во всех металлах вид химической связи: ионная; металлическая; ковалентная;

7.Наиболее пластичным является металл: золото; натрий; ртуть; 8. Наибольшей отражательной способностью обладает: палладий; кальций; хром; 9. Наибольшую электрическую проводимость имеет металл: свинец; медь; марганец;

10. Самый легкий металл: литий; кальций; калий; 11. Самый тяжелый металл: свинец; осмий; вольфрам; 12.Самый твердый металл: хром; полоний; калий;

13.К ферромагнетикам относят: гадолиний; рубидий; барий; 14. К благородным металлам относят: платина; аргон; железо; 15 Натрий взаимодействует с: кислородом, галогенами, водородом; кислородом, инертными газами, водородом; азотом, кислородом, оксидом лития;

16. Натрий взаимодействует с: водой, фенолом, этиловым спиртом; кальцием, хлором, оксидом алюминия; водой, хлором, оксидом углерода;

Критерии оценки: 2 ошибки-оценка 4 3ошибки- оценка 3 4 ошибки и более-оценка 2

Рефлексия что понравилось на уроке? что было непонятно? что было сложным? Сегодня я узнал. Сегодня я понял Сегодня я научился Сегодня я смог Сегодня меня удивило

Домашнее задание Письменно ответьте на вопросы: Что такое коррозия? Какие виды коррозии вы знаете? Чем химическая коррозия отличается от химической? Опишите способы защиты металлов от коррозии? Что такое руды? Что такое металлургия? Что такое пирометаллургия? Пример реакции Что такое гидрометаллургия? Пример реакции Что такое электрометаллургия?

По теме: методические разработки, презентации и конспекты


ТЕСТ 3.2. (1-16) по теме «Общая характеристика металлов главных подгрупп I-III групп" для 11 кл ЕГЭ

ТЕСТ 3.2. 11 класс ( профиль) подготовка к ЕГЭТема: «Общая характеристика металлов гла.


Урок: Металлы главной подгруппы I группы периодической системы.

Продолжительность занятия: 45 минут.Цель занятия: Изучение физических и химических свойств щелочных металлов, основных способах их получения и областях применения.Методичес.


V группа главная подгруппа. Азот

Данная мультимедийная презентация может быть использована на уроке в 9 классе, при изучении данной темы.


IV группа главная подгруппа. УГЛЕРОД

Данная презентация может быть использована на уроке в 9 классе при изучении данной темы.


Элементы II группы главной подгруппы. План-конспект урока
Урок химии в 9 классе. Зачет по теме VI-VII группа главная подгруппа

Обобщающий урок после изучения VI-VII Группы главной подгруппы. Позволяет расширить знания обучающихся по темам и получить дополнительные оценки.Способствует сплочению коллектива работа в группах.

В периодической системе элементов металлы в основном располагаются в главных подгруппах I—Ill групп, а также в побочных подгруппах.


В IA группе у атомов элементов на внешнем энергетическом уровне находится 1 электрон в состоянии s 1 , во IIA группе у атомов на внешнем ЭУ 2 электрона в состоянии s 2 . Эти элементы относятся к s-элементам. В IIIA группе у всех элементов на внешнем ЭУ 3 электрона в состоянии s 2 p 1 . Они относятся к p-элементам.

В IA группу входят щелочные металлы Li, Na, K, Rb, Cs, Fr, активность которых при движении сверху вниз увеличивается вследствие увеличения радиуса атомов, металлические свойства возрастают также, как и у щелочеземельных металлов IIA группы Be, Mg, Ca, Sr, Ba, Ra и металлов IIIA группы Al, Ga, In, Tl.

Оксиды типа R2O характерны только для Li, для всех остальных щелочных металлов характерны пероксиды R2O2, которые являются сильными окислителями.

Все металлы этих групп образуют основные оксиды и гидроксиды, кроме Be и Al, которые проявляют амфотерные свойства.


В свободном состоянии все металлы – серебристо-белые вещества. Магний и щелочноземельные металлы – ковкие и пластичные, довольно мягкие, хотя тверже щелочных. Бериллий отличается значительной твердостью и хрупкостью, барий при резком ударе раскалывается.

В кристаллическом состоянии при обычных условиях бериллий и магний имеют гексагональную кристаллическую решетку, кальций, стронций – кубическую гранецентрированную кристаллическую решетку, барий – кубическую объемоцентрированную кристаллическую решетку с металлическим типом химической связи, что обуславливает их высокую тепло- и электропроводность.

Металлы имеют температуры плавления и кипения выше, чем у щелочных металлов, причем с увеличением порядкового номера элемента температура плавления металла изменяется немонотонно, что связано с изменением типа кристаллической решетки.

Бериллий и магний покрыты прочной оксидной пленкой и не изменяются на воздухе. Щелочноземельные металлы очень активны, их хранят в запаянных ампулах, под слоем вазелинового масла или керосина.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Общая характеристика металлов главных подгрупп I-III групп ПСХЭ Д.И.Менделеев.

Описание презентации по отдельным слайдам:

Общая характеристика металлов главных подгрупп I-III групп ПСХЭ Д.И.Менделеев.

Характеристика металлов главной подгруппы I группыЩелочны́е мета́ллы: литий L.

Строение атомов щелочных металловВсе щелочные металлы имеют один s-электрон н.

Строение атомов щелочных металлов
Все щелочные металлы имеют один s-электрон на внешнем электронном слое, который при химических реакциях легко теряют, проявляя степень окисления +1. Поэтому щелочные металлы являются сильными восстановителями.

Физические свойстваВсе металлы этой подгруппы имеют серебристо-белый цвет (кр.

Физические свойства
Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней. Поэтому хранят эти металлы под слоем керосина или парафина.
калий
рубидий
литий
натрий
цезий


Получение щелочных металлов 1. Для получения щелочных металлов использу.


Получение щелочных металлов

1. Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:
катод: Li+ + e → Li
анод: 2Cl- — 2e → Cl2
2. Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:
катод: Na+ + e → Na
анод: 4OH- — 4e → 2H2O + O2
Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.

Химические свойства Реакции с неметаллами (образуются бинарные соединения).

Реакции с неметаллами
(образуются бинарные соединения):
4Li + O2 2Li2O(оксид лития)
2Na + O2 Na2O2(пероксид натрия)
K + O2 KO2(надпероксид калия)
2Li + Cl2 = 2LiCl(галогениды)
2Na + S = Na2S(сульфиды)
2Na + H2 = 2NaH(гидриды)
6Li + N2 = 2Li3N(нитриды)
2Li + 2C = 2Li2C2(карбиды)

Активно взаимодействуют с водой: 2Na.

Активно взаимодействуют с водой:
2Na + 2H2O 2NaOH + H2
2Li + 2H2O 2LiOH + H2


Реакция с кислотами:
2Na + 2HCl 2NaCl + H2

Качественная реакция на катионы щелочных металлов - окрашивание пламени в сле.

Качественная реакция на катионы щелочных металлов - окрашивание пламени в следующие цвета:
Li+ - карминово-красный
Na+ - желтый
K+, Rb+ и Cs+ - фиолетовый
Так выглядит проба на окрашивание пламени солями натрий
Карминово-красное окрашивание пламени солями лития
Окрашивание пламени горелки ионами калия

Обобщим химические свойства щелочных металлов

Обобщим химические свойства щелочных металлов

Характеристика металлов главной подгруппы II группыАтомы этих элементов имеют.

Характеристика металлов главной подгруппы II группы
Атомы этих элементов имеют на внешнем электронном уровне два s-электрона: ns2.
В реакциях атомы элементов подгруппы легко отдают оба электрона внешнего энергетического уровня и образуют соединения, в которых степень окисления элемента равна +2.

Физические свойстваБериллий, магний, кальций, барий и радий - металлы сере.

Физические свойства
Бериллий, магний, кальций, барий и радий - металлы серебристо-белого цвета. Стронций имеет золотистый цвет. Эти металлы легкие, особенно низкие плотности имеют кальций, магний, бериллий. Радий является радиоактивным химическим элементом.

Получение щелочноземельных металловЭлектролизом расплавов их хлоридов или тер.

Получение щелочноземельных металлов
Электролизом расплавов их хлоридов или термическим восстановлением их соединений:
BeF2 + Mg = Be + MgF2
MgO + C = Mg + CO
3CaO + 2Al = 2Ca + Al2O3
3BaO + 2Al = 3Ba + Al2O3

Химические свойстваЩелочноземельные элементы - химически активные металлы. Он.

Химические свойства
Щелочноземельные элементы - химически активные металлы. Они являются сильными восстановителями. Из металлов этой подгруппы несколько менее активен бериллий, что обусловлено образованием на поверхности этого металла защитной оксидной пленки.

Взаимодействие с простыми веществами Все легко взаимодействуют с кислородом.


Взаимодействие с простыми веществами
Все легко взаимодействуют с кислородом и серой, образуя оксиды и сульфаты:
2Be + O2 = 2BeO
Ca + S = CaS
Бериллий и магний реагируют с кислородом и серой при нагревании, остальные металлы - при обычных условиях.
Все металлы этой группы легко реагируют с галогенами:
Mg + Cl2 = MgCl2
При нагревании все реагируют с водородом, азотом, углеродом, кремнием и другими неметаллами:
Ca + H2 = CaH2 (гидрид кальция)
3Mg + N2 = Mg3N2 (нитрид магния)
Ca + 2C = CaC2 (карбид кальция)

Взаимодействие с кислотами Все взаимодействуют с хлороводородной и разбавле.


Взаимодействие с кислотами
Все взаимодействуют с хлороводородной и разбавленной серной кислотами с выделением водорода:
Be + 2HCl = BeCl2 + H2
Разбавленную азотную кислоту металлы восстанавливают главным образом до аммиака или нитрата аммония:
2Ca + 10HNO3(разб.) = 4Ca(NO3)2 + NH4NO3 + 3H2O
В концентрированных азотной и серной кислотах (без нагревания) бериллий пассивирует, остальные металлы реагируют с этими кислотами.

Взаимодействие со щелочами Бериллий взаимодействует с водными растворами щел.

Взаимодействие со щелочами

Бериллий взаимодействует с водными растворами щелочей с образованием комплексной соли и выделением водорода:

Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2

Остальные металлы II группы с щелочами не реагируют.

Алюминий13Al [Ne] 3s23p1 Алюминий находится в главной п/группе III группы.

Алюминий
13Al [Ne] 3s23p1
Алюминий находится в главной п/группе III группы периодической системы.
На внешнем энергетическом уровне имеются свободные р-орбитали, что позволяет ему переходить в возбужденное состояние. В возбужденном состоянии атом алюминия образует три ковалентные связи или полностью отдает три валентных электрона, проявляя степень окисления +3.

Физические свойстваМеталл серебристо-белого цвета, легкий, плотность 2,7 г/см.

Химические свойстваС простыми веществами: 1) С кислородом: 4Al0 + 3O2 → 2.

Химические свойства
С простыми веществами:
1) С кислородом:
4Al0 + 3O2 → 2Al+32O3

2) С галогенами:
2Al0 + 3Br20 → 2Al+3Br3

3) С другими неметаллами (азотом, серой, углеродом) реагирует при нагревании:
2Al0 + 3S t°→ Al2+3S3(сульфид алюминия)
2Al0 + N2 t° → 2Al+3N(нитрид алюминия)
4Al0 + 3С → Al4+3С3(карбид алюминия)
Сульфид и карбид алюминия полностью гидролизуются:
Al2S3 + 6H2O → 2Al(OH)3¯ + 3H2S­
Al4C3 + 12H2O → 4Al(OH)3¯+ 3CH4­

Со сложными веществами: 4) С водой (после удаления защитной оксидной плен.

Со сложными веществами:
4) С водой (после удаления защитной оксидной пленки):
2Al0 + 6H2O ® 2Al+3(OH)3 + 3H2­
5) Со щелочами:
2Al0 + 2NaOH + 6H2O ® 2Na[Al+3(OH)4]
(тетрагидроксоалюминат натрия) + 3H2­
6) Легко растворяется в соляной и разбавленной серной киcлотах:
2Al + 6HCl ® 2AlCl3 + 3H2­
2Al + 3H2SO4(разб) ® Al2(SO4)3 + 3H2­
При нагревании растворяется в кислотах - окислителях:
2Al + 6H2SO4(конц) ® Al2(SO4)3 + 3SO2­ + 6H2O
Al + 6HNO3(конц) ® Al(NO3)3 + 3NO2­ + 3H2O
7) Восстанавливает металлы из их оксидов (алюминотермия):
8Al0 + 3Fe3O4 ® 4Al2O3 + 9Fe
2Al + Cr2O3 ® Al2O3 + 2Cr

Получение алюминия

Применение алюминия— в электротехнике — для производства легких сплавов (дюр.

Применение
алюминия
— в электротехнике
— для производства легких сплавов (дюралюмин, силумин) в самолето- и автомобилестроении
— для алитирования чугунных и стальных изделий с целью повышения их коррозионной стойкости
— для термической сварки
— для получения редких металлов в свободном виде
— в строительной промышленности
— для изготовления контейнеров, фольги и т.п.

Задания для закрепления знаний:Осуществить цепочку превращений: Аl → АlСl3 →.

Задания для закрепления знаний:
Осуществить цепочку превращений:
Аl → АlСl3 → Аl(ОН)3 → Аl2 О3 → Nа Аl О2 → Аl2(SО)3 → Аl(ОН)3 → АlСl3 → NаАlО2

Найди соответствие1. Активные металлы 2. Металлы средней активности 3. Благор.

Найди соответствие
1. Активные металлы
2. Металлы средней активности
3. Благородные металлы

А) Au, Ag, Pt
Б) Zn, Fe, Cu
В) Na, K, Ca

Вставьте пропущенное слово:Наиболее выраженные металлические свойства проявля.

Вставьте пропущенное слово:
Наиболее выраженные металлические свойства проявляет:
? алюминий
? натрий
? магний
? бериллий
? железо
Активнее других реагирует с кислородом.
? алюминий
? серебро
? цинк
? барий
При комнатной температуре вытесняет водород из воды.
? медь
? железо
? литий
? цинк

Калий взаимодействует с водой с образованием. и . ? соли ? водорода.

Калий взаимодействует с водой с образованием. и .
? соли
? водорода
? щелочи
? оксида калия
В химических реакциях атом алюминия - .
? окислитель
? восстановитель
? окислитель и восстановитель
? не отдает и не принимает электроны
Какой металл не используют для вытеснения менее активных металлов из растворов их солей?
? железо
? магний
? натрий
? цинк

Решите задачи:Задача № 1 При обработке 8г смеси магния и оксида магния соляно.

Решите задачи:
Задача № 1 При обработке 8г смеси магния и оксида магния соляной кислотой выделилось 5,6 л водорода(н.у.). Какова массовая доля (в %) магния в исходной смеси?
Задача № 2 Калий массой 3,9 г растворили в воде массой 206,2 г. Определите массовую долю полученного раствора.

Домашнее задание: напишите уравнения согласно схеме, составьте рассказ о сво.

Домашнее задание: напишите уравнения согласно схеме, составьте рассказ о свойствах алюминия

Al
+
простые
вещества
сложные
вещества
О2

Схема ответа:Строение атома металлаНахождение в природеОткрытие металла и.

Схема ответа:
Строение атома
металла
Нахождение
в природе
Открытие
металла и
получение
Физические
свойства
Химические
свойства
Применение

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов


Курс повышения квалификации

Охрана труда


Курс профессиональной переподготовки

Охрана труда


Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 605 533 материала в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 27.06.2020 1172
  • PPTX 3.1 мбайт
  • 280 скачиваний
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Куликова Ольга Петровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Онлайн-тренинг: нейрогимнастика для успешной учёбы и комфортной жизни

Время чтения: 2 минуты

Студенты российских вузов смогут получить 1 млн рублей на создание стартапов

Время чтения: 3 минуты

В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных

Время чтения: 1 минута

Каждый второй ребенок в школе подвергался психической агрессии

Время чтения: 3 минуты

Школы граничащих с Украиной районов Крыма досрочно уйдут на каникулы

Время чтения: 0 минут

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

I группа главная подгруппа Периодической системы Менделеева представляет собой щелочные металлы. К щелочным металлам относят химические элементы:

Литий Li,

Натрий Na,

Калий K,

Цезий Cs,

Рубидий Rb

Франций Fr

Эти металлы очень активны, поэтому их хранят под слоем вазелина или керосина.

Общая характеристика щелочных металлов

От Li к Fr (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Периодическая таблица-1 группа

Электронные конфигурации у данных элементов схожи, все они содержат 1 электрон на внешнем уровне ns 1 :

Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Нахождение щелочных металлов в природе

щелочные металлы_нахождение в природе

Способы получения щелочных металлов

Литий

  • Литий получают в промышленности электролизом расплавахлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):
  • Известен также способ получения лития из его оксида в вакууме при 300°С:

Натрий

  1. Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

  1. Натрий можно получить, прокаливая соду с углем в закрытых тиглях, пары металла конденсируются на крышке тигля, выход реакции невысокий:

Калий

  1. Калий получают также электролизом расплавов солей или расплава гидроксида калия, однако на практике таким способом их не получают из-за высокой химической активности
  1. Наиболее распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов.:

KCl + Na = K + NaCl

KOH + Na = K + NaOH

В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний

Цезий, Рубидий

  • Цезий и рубидий получают восстановлением их хлоридов специально подготовленным кальцием при 700–800 °С:

Са + 2CsCl → 2Cs + CaCl2

  • В качестве восстановителя также используют цирконий, реакция протекает при 650 °С:
  • В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме

Химические свойства щелочных металлов

Качественные реакции — окрашивание пламени солями щелочных металлов

Щелочные металлы_цвет пламени

Цвет пламени:

Li — карминно-красный
Na — желтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный

Взаимодействие щелочных металлов с простыми веществами — неметаллами

С кислородом

С галогенами (F, Cl, Br, I)

Щелочные металлы образуют галогениды:

С водородом

Щелочные металлы образуют гидриды:

С серой

Щелочные металлы образуют сульфиды:

С азотом

При комнатной температуре взаимодействует только литий:

Остальные щелочные металлы реагируют с азотом при нагревании:

С углеродом

Щелочные металлы при нагревании образуют карбиды, преимущественно ацетилениды:

С фосфором

Щелочные металлы активно реагируют с фосфором образуя фосфиды:

Взаимодействие щелочных металлов со сложными веществами

С водой

Щелочные металлы реагируют с водой при обычных условиях:

С кислотами

  • С растворами HCl, H2SO4щелочные металлы взаимодействуют с образованием соли и выделением водорода:

с концентрированной серной:

с разбавленной азотной

с концентрированной азотной

С солями

В расплаве щелочные металлы могут взаимодействовать с некоторыми солями:

3Na + AlCl3 → 3NaCl + Al

Запомните! В растворе щелочные металлы взаимодействуют с водой, а не с солями других металлов.

Читайте также: