Применение скалярного произведения в физике сообщение

Обновлено: 25.06.2024

Если вектор (рис. 151) изображает смещение материальной точки, а вектор силу, действующую на эту точку, то скалярное произведение численно равно работе силы

Действительно, работу совершает только компонента Значит, работа по абсолютному значению равна произведению длин векторов При этом она считается положительной, если векторы равнонаправлены, и отрицательной в противном случае. Следовательно, работа равна модулю вектора а, умноженному на алгебраическую проекцию вектора по направлению вектора а, т. е. работа равна скалярному произведению

Пример. Вектор силы имеет модуль, равный Длина вектора смещения а равна Пусть сила

В старших классах на уроках алгебры, геометрии и физики ученики решают задачи с числами-скалярами. Для нахождения результата используется формула скалярного произведения векторов: (а, а) > 0, для всех а≠0. Полученное значение не зависит от системы координат. Оно характеризует длину сомножителей и угол, образованный между ними. Подобной операции соответствует линейность.

Что такое скалярное произведение векторов

Трактовка понятий

Под скалярным произведением (СП) в пространстве над полем вещественных чисел подразумевается функция (x, y) для соответствующих элементов, принадлежащих указанному координатному пространству. Из определения вытекает линейность СП по первичному аргументу.

Для косинуса и синуса справедливо смешанное сопряжение. СП принимает положительную определённость, если соблюдается условие, что x=0. Для вычислений показателя в алгебре используется следующая форма: а = [a1, a2, …, an] и b = [b1, b2, …, bn].

Пример: нужно найти в трёхмерном пространстве произведение двух скаляров [1, 3, −5] и [4, −2, −1]. Решение: необходимо перемножить градиенты (вектора). [1, 3, −5] х [4, −2, −1] = 1 х 4 + 3 х (-2) + (-5) х (-1) = 3.

Формула для проведения операций

Геометрическое определение отличается от физического и алгебраического. Чтобы вычислить СП, используя длину и угол между градиентами, которые введены независимым способом, используется следующее выражение: (а, b) = lal x lbl x cos (a, b). Базисом аксиоматики считается скалярное произведение. После его нахождения определяется длина основного вектора и угла.

Сам угол является числом. Чтобы дать ему значение, вычисляется гиперболический косинус: отношение модуля СП к произведению длин векторов. При перпендикулярности либо ортогональности на плоскости СП равняется нулю. Это свойство скалярного произведения векторов характерно для любого промежутка с положительно определённым СП.

Свойства векторов и их применение на практике

При соблюдении такого условия пространство называется вещественным либо комплексным. Конечномерный вещественный промежуток с положительным СП называется евклидовым, а комплексный — унитарным (эрмитовым).

Если скалярное произведение отрицательное либо не считается знакоопределённым, промежуток называется индефинитной метрикой. Примером такого промежутка является пространство Минковского. СП на таких участках не порождает нормы. Из бесконечномерных выделяются пространства:

Описание свойств

С помощью специальных математических онлайн сервисов или калькулятора легко находится значение СП через теорему косинусов: a = arccos (a, b)/√(а, а)(b, b). Знак зависит от косинуса угла. В норме значения векторов только положительные. СП больше нуля, если угол острый, и меньше, когда он тупой.

Главные свойства умножения скаляров:

Как используется в алгебре и геометрии

  1. Если умножить СП само на себя, получится значение, равное либо большее нуля.
  2. СП, умноженное само на себя, равно нулю, если скаляр равен нулевому вектору.
  3. СП скаляра самого на себя равняется квадрату его модуля.
  4. Для скалярного умножения характерна коммуникативность.
  5. Если СП двух отличных от нуля векторов равно 0, тогда множители считаются ортогональными.
  6. Для операции скалярного умножения характерна дистрибутивность (согласованные бинарные операции, определённые на одном множестве).

Задача 1: вычислить СП векторов а = и b = . Решение: а х b = 1 х 4 + 2 х 8 = 20.

Задача 2: найти СП скаляров а и b, если из длины равны 3 и 6, а угол — 60 градусов. Решение: а х b = lal x lbl cos α = 3 х 6 х cos60 = 9. Для лучшего усвоения материала два вектора перемножается с помощью матрицы. Чтобы различать множители, первый оформляется в строку, а второй — в столбец. Если в условиях задачи указываются три величины, тогда последняя оформляется в скобки в форме квадратов. Их скалярное произведение вычисляется путём умножения матриц. Результат — единственное число.

Задача 3: нужно найти СП пар векторов: а = (1; 5; 1), b = (1; -5; 2) и с = (2; 1; 3/2), d = (0; 0; 1). Решение: вычисления проводятся с помощью матричного представления. Первый вектор записывается в строку, а второй — в столбец. Чтобы найти скалярное произведение векторов, потребуется умножить матрицу-строку на матрицу-столбец. Если вектор а умножить на вектор b, получится -22. Аналогично находится значение второй пары. Результат равен 3/2. Простым обобщением конечномерного СП в тензорной (линейной) алгебре считается свёртка с повторяющимся индексом.

Применение в физике

Впервые скалярное произведение ввёл У. Гамильтон в 1846 году. Одновременно учёные начали использовать в своих работах векторное произведение, сумму скаляров. Понятие получило широкое применение и в физике. На его основе сформулированы главные законы электродинамики и механики.

Скаляр является физической величиной. Чтобы его задать, используется одно число. Примеры скаляров в физике:

  • масса тела, равная 4 кг;
  • температура воздуха на уровне +10 градусов.

 вычисление значения угла и матриц

В каждом предложенном варианте величина задаётся с помощью одного числа, поэтому масса тела и температура относятся к скалярам. Но это понятие в физике не считается простым числом. Для него характерна размерность.

Если в условиях задачи известно, что масса тела равна 3, необходимо указывать единицу измерения (килограммы, граммы). В математике можно сложить числа 3 и 10, а в физике суммируются только скаляры с одинаковой размерностью: массы с массой, градусы с градусами.

Если рассматривать векторную физическую величину, она характеризуется следующим образом:

  1. Неотрицательность.
  2. Направленность в пространстве.

Понятие скаляр — модуль вектора либо абсолютная величина. Если предположить, что транспортное средство двигается со скоростью 60 км/ч, такая информация считается неполной. В физике важно знать направление движения. Кроме модуля скорости как абсолютной величины, потребуется знать направление в пространстве, поэтому скорость считается векторной величиной.

Если на земле лежит кирпич массой в 1 кг и на него действует сила в 100 Н (модуль), потребуется найти направление движения объекта. Невозможно выяснить параметр, если нет информации о направлении действия силы. Если она идёт вверх, тогда и кирпич будет двигаться в аналогичном направлении.

Если сила идёт вдоль горизонта, тогда объект поедет горизонтально. При вертикальном воздействии силы вниз кирпич останется на прежнем месте. Он будет вжиматься в землю. Подобные явления указывают на то, что сила является вектором, поэтому для неё характерна размерность, модуль.

Для обозначения вектора в физике используются латинские буквы и стрелка:

Начало вектора

Стрелка является направленным отрезком. Её начальная точка — начало вектора, а конечная или остриё — конец вектора. В математике величина с начальной точкой А и концом В обозначается →АВ. Если начало и конец направленного отрезка совпадают, тогда получается нулевой вектор. Он обозначается →0.

Такой отрезок считается точкой. У него нет конкретного направления, а длина равняется нулю. К безразмерным скалярам относятся коэффициенты трения и полезного действия, показатель преломления света.

В физике и других естественных науках вектора часто перемножают друг с другом. Делать это можно разными способами, но чаще всего используется скалярное произведение.

План урока:

Угол между векторами

Любую пару векторов можно отложить от одной точки. Если при этом вектора не сонаправлены друг с другом, то они образуют некоторый угол. Его и именуют углом между векторами.

Если же пара векторов сонаправлена, то принято считать, что угол между такими векторами составляет 0°.

На рисунке показаны два вектора, a и b. Чтобы определить угол между a и b, надо отложить их от одной и той же точки:

В приведенном примере угол составил 135°. Для обозначения этого угла может быть использована такая запись:

Задание. В квадрате АВСD проведены диагонали, они пересекаются в точке О. Определите, какой угол образуют вектора:

Так как в квадрате диагонали пересекаются под углом 90°, а со сторонами образуют угол 45°, то мы легко определим, что

Здесь нам помог тот факт, что вектора из пунктов а) и б) изначально отложены из одной точки. С пунктом в) ситуация сложнее. Надо отложить от точки А вектор ОА и определить угол, образующийся при этом:

Пусть после откладывания вектора ОА от А получился вектора АА’. Нам надо найти ∠ВАА’. Нам уже известен ∠ОАВ, который является смежным с ∠ВАА’, поэтому можно записать равенство:

Ответ: а) 45°; б) 90°; в) 135°.

Понятие скалярного произведения векторов

Большое распространение в науке получила математическая операция, именуемая скалярным произведением векторов. В геометрии оно помогает находить угол между векторами, а в физике вычислять некоторые физические величины. В рамках школьной программы его используют для нахождения работы, совершенной той или иной силой. В рамках же более сложных дисциплин, с которыми мало кто сталкивается, оно применяется в квантовой механике и специальных разделах математики – тензорной алгебре, теории многообразий и т. п. Ввел его в науку Уильям Гамильтон в 1846 г, который разрабатывал теорию особых чисел – кватерионов. Они, кстати, используются компьютерами для расчетов трехмерной графики в играх и других приложениях.

Прежде, чем мы научимся применять на практике скалярное произведение, сначала сформулируем правило, позволяющее вычислить его.

Например, пусть есть вектора a и b, причем даны их длины:

Угол между a и b тоже известен и составляет 60°, это записывается таким образом:

Задание. Вычислите скалярное произведение векторов d и f, если их длины составляют 6 и 10 соответственно, а угол между векторами равен 45°.

Решение. Просто подставляем числа из условия в формулу:

Задание. АВС – равносторонний треугольник со стороной 4. Каково скалярное произведение векторов АВ и АС?

Решение. Все углы в равностороннем треугольнике равны 60°, поэтому и угол между АВ и АС также составляет 60°.

Напомним, что косинус, взятый от острого угла – это положительная величина, а косинус тупого угла – это отрицательное число. У прямого же угла косинус равен нулю. Это означает, что по знаку скалярного произведения можно определить тип угла между векторами.

Часто скалярное произведение применяется в физике. Например, с его помощью рассчитывается работа, совершаемая силой при перемещении того или иного тела. И сила, и перемещение – это векторные величины. Чтобы найти работу силы, надо скалярно перемножить вектора силы и перемещения:

Эта формула отражает физический смысл скалярного произведения.

Задание. Под воздействием силы 10Н тело переместилось в горизонтальном направлении на 3 метра. При этом сила образует угол 60° с направлением перемещения тела. Какую работу совершила сила?

Скалярное произведение в координатах

Оказывается, что для перемножения векторов достаточно знать только их координаты.

Докажем эту формулу. Сначала рассмотрим случай, когда один из перемножаемых векторов, например a, является нулевым. Тогда у него нулевая длина и нулевые координаты:

Теперь рассмотрим случай, когда оба перемножаемых вектора ненулевые. Тогда отложим их от некоторой точки О и, если вектора неколлинеарны, то мы получим ∆ОАВ:

Для частных случаев, когда a и b коллинеарны (то есть либо сонаправлены, либо противоположно направлены), эта формула также справедлива. Если aи b сонаправлены, то угол α принимается равным нулю (и cosα = 1):

Если же a и b направлены противоположно, то α = 180° (и cosα = – 1):

Итак, мы убедились, что в любой ситуации формула (1) справедлива. При этом вектор АВ можно представить как разность a и b:

Если вектор а имеет координаты 1; у1>, а координаты b– это 2; у2>,то координаты их разности a – b будут записываться в виде 1 – х21 – у2>. С учетом этого (2) примет вид

В результате нам удалось доказать формулу скалярного произведения через координаты:

Задание. Перемножьте скалярно вектораa и b, если определены их координаты:

Ответ: а) 23; б) 0; в) 5.

Определение перпендикулярности векторов и прямых

Напомним, что скалярное произведение оказывается нулевым исключительно в случае перпендикулярности векторов. Это позволяет использовать его для проверки перпендикулярности векторов.

Задание. Проверьте, являются ли перпендикулярными вектора:

Решение. В каждом случае мы должны скалярно перемножить пару векторов. Если результат окажется нулевым, то можно сделать вывод о перпендикулярности векторов. В противном случае они не перпендикулярны. Первый вектор будет обозначать буквой а, а второй – буквой b:

Ответ: а) да; б) нет; в) да; г) нет.

Задание. При каком значении переменной х вектора а и bx; – 6> окажутся перпендикулярными?

Решение. Перемножим скалярно вектора и получим некоторое выражение с переменной x:

Найдем, при каком х это выражение обращается в нуль, то есть вектора становятся перпендикулярными:

Задание. Определите, перпендикулярны ли прямые АВ и CD, если даны координаты точек: А(3; 8), В(4; 10), С(7;12) и D(5;13).

Решение. В этой задаче сначала надорассчитать координаты векторов АВ и CD по координатамих начальной и конечной точки:

Мы вычислили координаты векторов: АВ и CD. Теперь мы можем проверить их перпендикулярность, скалярно перемножив вектора:

Мы получили ноль. Это означает, что АВ и CD – перпендикулярные вектора. Значит, и прямые, на которых они лежат, также перпендикулярны.

Задание. Перпендикулярны ли друг другу прямые, задаваемые уравнениями

Названия точкам в данном примере присвоены произвольно. На следующем шаге по координатам точек мы находим координаты векторов, лежащих на исследуемых прямых:

Полученный ноль показывает, что исходные прямые перпендикулярны.

В случае, когда прямые заданы уравнениями, необязательно проделывать столь длительные вычисления для определения их перпендикулярности. Есть теорема, сокращающая объем вычислений.

Докажем это утверждение. Пусть две прямые заданы уравнениями

Найдем какие-нибудь точки этих прямых. Для этого подставим в уравнения значения х = 0 и х = 1:

Прямые окажутся перпендикулярными исключительно в том случае, если это выражение будет нулевым. Это условие перпендикулярности можно записать как уравнение:

В результате мы получили доказываемую нами формулу.

Задание. Проверьте, какие из этих пар прямых перпендикулярны:

Решение. В каждом случае надо просто перемножить угловые коэффициенты прямых, то есть числа, стоящие перед переменной х. Другие числа в этих уравнениях (свободные коэффициенты) никак не влияют на перпендикулярность. Если вычисленное произведение окажется равным (– 1), то из этого будет вытекать перпендикулярность прямых.

Вычисление угла между векторами

Мы научились по координатам векторов определять, перпендикулярны ли они. Однако в более общем случае можно рассчитать угол и между двумя неперпендикулярными векторами.

В самом деле, по известным координатам векторов легко как рассчитать длину каждого из них, так и скалярно перемножить вектора. Тогда из формулы скалярного произведения можно выразить значение косинуса угла между векторами:

Зная же косинус, можно рассчитать и сам угол, используя специальные таблицы либо функцию арккосинуса на калькуляторе.

Задание. Вычислите угол между векторами а и b.

Решение. Сначала рассчитываем длины векторов:

Задание. Точки А(2; 8), В(– 1; 5) и С(3; 1) соединили отрезками и получили ∆АВС. Вычислите угол ∠А в ∆АВС.

Решение.∠А данного треугольника представляет собой угол между двумя векторами АВ и АС. Вычислим координаты этих векторов:

Осталось лишь с помощью калькулятора найти сам ∠А:

Свойства скалярного произведения

Существует несколько важных свойств скалярного произведения. Эти свойства очень схожи с законами алгебры, которые используются при работе с обычными числами.

Переместительный закон легко доказать, опираясь только на определение операции скалярного произведения:

Задание. Известно, что угол между векторами a и с составлет 60°, так же как и угол между векторами b и с. Определены и длины векторов:

Задание. Найдите скалярное произведение векторов p и q, если

Решение. Сначала надо перемножить вектора и раскрыть при этом скобки также, как они раскрываются при перемножении обычных чисел:

Примечание. Иногда скалярное произведение вектора на самого себя именуют скалярным квадратом.

Тогда выражение (1) примет вид:

В сегодняшнем уроке мы узнали, что такое скалярное произведение. Оно имеет много приложений в физике и других науках, в частности, с его помощью вычисляется работа. В геометрии оно помогает вычислять углы между векторами, а значит, и между прямыми. В будущем, при более углубленном изучении геометрии, вы узнаете о существовании других типов произведений векторов – векторном и смешанном.

Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.

Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:

a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ - обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0

При умножении вектора самого на себя, получим квадрат его дины:

a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2

Скалярное умножение вектора самого на себя называют скалярным квадратом.

Вычисляется по формуле:

a → , b → = a → · b → · cos a → , b → ^ .

Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → - это числовая проекция a → на b → , n p a → a → - проекция b → на a → соостветсвенно.

Сформулируем определение произведения для двух векторов:

Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.

Скалярное произведение в координатах

Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.

Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .

При вычислении на плоскости скаларного произведения заданных векторов a → = ( a x , a y ) , b → = ( b x , b y ) в декартовой системе используют:

a → , b → = a x · b x + a y · b y ,

для трехмерного пространства применимо выражение:

a → , b → = a x · b x + a y · b y + a z · b z .

Фактически это является третьим определением скалярного произведения.

Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = ( a x , a y ) , b → = ( b x , b y ) на декартовой системе.

Следует отложить векторы

O A → = a → = a x , a y и O B → = b → = b x , b y .

Тогда длина вектора A B → будет равна A B → = O B → - O A → = b → - a → = ( b x - a x , b y - a y ) .

Рассмотрим треугольник O A B .

A B 2 = O A 2 + O B 2 - 2 · O A · O B · cos ( ∠ A O B ) верно , исходя из теоремы косинусов.

По условию видно, что O A = a → , O B = b → , A B = b → - a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе

b → - a → 2 = a → 2 + b → 2 - 2 · a → · b → · cos ( a → , b → ^ ) .

Тогда из первого определения следует, что b → - a → 2 = a → 2 + b → 2 - 2 · ( a → , b → ) , значит ( a → , b → ) = 1 2 · ( a → 2 + b → 2 - b → - a → 2 ) .

Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ( ( a 2 x + a y 2 ) 2 + ( b 2 x + b y 2 ) 2 - ( ( b x - a x ) 2 + ( b y - a y ) 2 ) 2 ) = = 1 2 · ( a 2 x + a 2 y + b 2 x + b 2 y - ( b x - a x ) 2 - ( b y - a y ) 2 ) = = a x · b x + a y · b y

( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = = a x · b x + a y · b y + a z · b z

– соответственно для векторов трехмерного пространства.

Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) и ( a → , a → ) = a x 2 + a y 2 .

Скалярное произведение и его свойства

Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :

  1. коммутативность ( a → , b → ) = ( b → , a → ) ;
  2. дистрибутивность ( a → + b → , c → ) = ( a → , c → ) + ( b → , c → ) , ( a → + b → , c → ) = ( a → , b → ) + ( a → , c → ) ;
  3. сочетательное свойство ( λ · a → , b → ) = λ · ( a → , b → ) , ( a → , λ · b → ) = λ · ( a → , b → ) , λ - любое число;
  4. скалярный квадрат всегда больше нуля ( a → , a → ) ≥ 0 , где ( a → , a → ) = 0 в том случае, когда a → нулевой.

Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.

Доказать свойство коммутативности ( a → , b → ) = ( b → , a → ) . Из определения имеем, что ( a → , b → ) = a y · b y + a y · b y и ( b → , a → ) = b x · a x + b y · a y .

По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .

Отсюда следует, что ( a → , b → ) = ( b → , a → ) . Что и требовалось доказать.

Дистрибутивность справедлива для любых чисел:

( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b → ) = ( a ( 1 ) → , b → ) + ( a ( 2 ) → , b → ) + . . . + ( a ( n ) → , b → )

и ( a → , b ( 1 ) → + b ( 2 ) → + . . . + b ( n ) → ) = ( a → , b ( 1 ) → ) + ( a → , b ( 2 ) → ) + . . . + ( a → , b → ( n ) ) ,

( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b ( 1 ) → + b ( 2 ) → + . . . + b ( m ) → ) = = ( a ( 1 ) → , b ( 1 ) → ) + ( a ( 1 ) → , b ( 2 ) → ) + . . . + ( a ( 1 ) → , b ( m ) → ) + + ( a ( 2 ) → , b ( 1 ) → ) + ( a ( 2 ) → , b ( 2 ) → ) + . . . + ( a ( 2 ) → , b ( m ) → ) + . . . + + ( a ( n ) → , b ( 1 ) → ) + ( a ( n ) → , b ( 2 ) → ) + . . . + ( a ( n ) → , b ( m ) → )

Скалярное произведение с примерами и решениями

Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:

  1. ( a → , b → ) = a → · b → · cos ( a → , b → ^ ) ;
  2. ( a → , b → ) = a → · n p a → b → = b → · n p b → a → ;
  3. ( a → , b → ) = a x · b x + a y · b y или ( a → , b → ) = a x · b x + a y · b y + a z · b z ;
  4. ( a → , a → ) = a → 2 .

Рассмотрим некоторые примеры решения.

Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.

Решение

По условию имеем все данные, поэтому вычисляем по формуле:

( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2

Ответ: ( a → , b → ) = 21 2 .

Заданны векторы a → = ( 1 , - 1 , 2 - 3 ) , b → = ( 0 , 2 , 2 + 3 ) . Чему равно скалярной произведение.

Решение

В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:

( a → , b → ) = a x · b x + a y · b y + a z · b z = = 1 · 0 + ( - 1 ) · 2 + ( 2 + 3 ) · ( 2 + 3 ) = = 0 - 2 + ( 2 - 9 ) = - 9

Ответ: ( a → , b → ) = - 9

Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A ( 1 , - 3 ) , B ( 5 , 4 ) , C ( 1 , 1 ) .

Решение

Для начала вычисляются координаты векторов, так как по условию даны координаты точек:

A B → = ( 5 - 1 , 4 - ( - 3 ) ) = ( 4 , 7 ) A C → = ( 1 - 1 , 1 - ( - 3 ) ) = ( 0 , 4 )

Подставив в формулу с использованием координат, получим:

( A B → , A C → ) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .

Ответ: ( A B → , A C → ) = 28 .

Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.

Решение

( a → , b → ) = ( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) . Применив свойство дистрибутивности, получим:

( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) = = ( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → )

Выносим коэффициент за знак произведения и получим:

( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → ) = = 7 · 5 · ( m → , m → ) + 7 · 8 · ( m → , n → ) + 3 · 5 · ( n → , m → ) + 3 · 8 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → )

По свойству коммутативности преобразуем:

35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → )

В итоге получим:

( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) .

Теперь применим формулу для скалярного произведения с заданным по условию углом:

( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · m → 2 + 71 · m → · n → · cos ( m → , n → ^ ) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .

Ответ: ( a → , b → ) = 411

Если имеется числовая проекция.

Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = ( 9 , 3 , - 3 ) , проекция b → с координатами ( - 3 , - 1 , 1 ) .

Решение

n p a → b → → = - n p a → b → → = - ( - 3 ) 2 + ( - 1 ) 2 + 1 2 = - 11 ,

Подставив в формулу, получим выражение:

( a → , b → ) = a → · n p a → b → → = 9 2 + 3 2 + ( - 3 ) 2 · ( - 11 ) = - 33 .

Ответ: ( a → , b → ) = - 33 .

Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.

Какое значение должна принять λ при заданном скалярном произведении a → = ( 1 , 0 , λ + 1 ) и b → = ( λ , 1 , λ ) будет равным -1.

Решение

Из формулы видно, что необходимо найти сумму произведений координат:

( a → , b → ) = 1 · λ + 0 · 1 + ( λ + 1 ) · λ = λ 2 + 2 · λ .

В дано имеем ( a → , b → ) = - 1 .

Чтобы найти λ , вычисляем уравнение:

λ 2 + 2 · λ = - 1 , отсюда λ = - 1 .

Физический смысл скалярного произведения

Механика рассматривает приложение скалярного произведения.

При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:

Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .

Решение

Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , ( F → , S → ^ ) = 45 ° , получим A = ( F → , S → ) = F → · S → · cos ( F → , S → ^ ) = 5 · 3 · cos ( 45 ° ) = 15 2 2 .

Ответ: A = 15 2 2 .

Материальная точка, перемещаясь из M ( 2 , - 1 , - 3 ) в N ( 5 , 3 λ - 2 , 4 ) под силой F → = ( 3 , 1 , 2 ) , совершила работа равную 13 Дж. Вычислить длину перемещения.

Решение

При заданных координатах вектора M N → имеем M N → = ( 5 - 2 , 3 λ - 2 - ( - 1 ) , 4 - ( - 3 ) ) = ( 3 , 3 λ - 1 , 7 ) .

По формуле нахождения работы с векторами F → = ( 3 , 1 , 2 ) и M N → = ( 3 , 3 λ - 1 , 7 ) получим A = ( F ⇒ , M N → ) = 3 · 3 + 1 · ( 3 λ - 1 ) + 2 · 7 = 22 + 3 λ .

По условию дано, что A = 13 Д ж , значит 22 + 3 λ = 13 . Отсюда следует λ = - 3 , значит и M N → = ( 3 , 3 λ - 1 , 7 ) = ( 3 , - 10 , 7 ) .

Чтобы найти длину перемещения M N → , применим формулу и подставим значения:

Читайте также: