Применение радиоактивных изотопов в археологии сообщение

Обновлено: 02.07.2024

Радиоуглеродный метод, разработанный более 60 лет назад и отмеченный Нобелевской премией, первоначально использовался для определения возраста археологических и геологических объектов, но вскоре сфера его применения существенно расширилась. Метод доказал свою универсальность и с большим успехом продолжает применяться в науке, технике, медицине и других областях человеческой деятельности.

Радиоуглеродный метод оказывает существенное влияние на развитие разных областей науки - от ядерной физики до криминалистики, но в первую очередь геологии и археологии. В марте 1949 г. была опубликована статья, в которой обосновывался принцип работы данного метода [1]. Его авторы - учёные из Университета Чикаго (США) Уиллард Ф. Либби, Эрнст С. Андерсон и Джеймс Р. Арнольд - показали, что могут определить возраст геологических или исторических событий, которые имели место не только сотни и первые тысячи лет назад, но и вплоть до 40-50 тыс. лет назад. При этом предложенный метод обладал достаточно высокой точностью и был совершенно независим от других технологий, применявшихся в то время в науках о Земле и в археологии. Можно без преувеличения сказать, что радиоуглеродный метод произвёл подлинную революцию в представлениях о времени в научном знании. Признанием важности этого открытия явилось присуждение У.Ф. Либби в 1960 г. Нобелевской премии по химии.

В данной статье даётся краткая информация об открытии и становлении метода, его физических основах; затем следует обзор применения радиоуглеродного метода в различных областях науки и технологий, его влияния на систему научных знаний XX в. в целом. Существует обширная литература, посвящённая радиоуглеродному методу (см., например: [2, с. 157–198; 3]), поэтому в статье автор ссылается лишь на самые общие и исчерпывающие источники.

Сразу после первых работ У.Ф. Либби и его коллег Американская антропологическая ассоциация и Геологическое общество США создали специальную комиссию для оценки первых результатов радиоуглеродного датирования, которая в 1951 г. пришла к выводу о надёжности полученных данных и их соответствии существующей научной парадигме. Научное сообщество с энтузиазмом восприняло новый исследовательский подход и стало активно использовать его при изучении прошлого Земли и человечества; на многие годы метод стал ведущим в определении возраста тех или иных объектов. С середины 1950-х годов радиоуглеродный метод распространился по всему миру.

Были у нового метода и противники. Так, археологи В. Милойчич и С. Яманоучи считали, что радиоуглеродные даты доисторических памятников Европы и Японии слишком удревнены, однако развитие археологических знаний в этих регионах подтвердило правильность радиоуглеродного метода [4]. Одновременно с накоплением фактического материала, то есть радиоуглеродных дат, шло постоянное совершенствование методических основ, заложенных основоположниками метода, и к концу 1970-х годов были сформулированы базовые положения радиоуглеродного метода с учётом новых данных [5].

Основы радиоуглеродного метода

Рис. 1. Цикл радиоуглерода (14С) в атмосфере, гидросфере и биосфере Земли (по [3], с дополнениями и зменениями)

Рис. 1. Цикл радиоуглерода (14С) в атмосфере, гидросфере и биосфере Земли (по [3], с дополнениями и зменениями)

Иными словами, находя в природе и на поселениях древнего человека остатки растений и животных, а также некоторые другие вещества, содержащие углерод, можно с помощью радиоуглеродного метода определить, сколько времени прошло с момента прекращения жизни организма, то есть установить возраст данных объектов. А это, в свою очередь, значит, что можно ответить на извечный вопрос геологов и археологов: как давно существовал данный организм или древнее поселение? Радиоуглеродный метод позволяет установить возраст углеродсодержащих веществ вплоть до 47 000 14 С лет, что соответствует астрономическому возрасту около 50 000 лет [8].

Радиоуглеродные лаборатории и их аппаратура


Первая радиоуглеродная лаборатория в нашей стране была организована в 1956 г. при Радиевом институте АН СССР и Ленинградском отделении Института археологии АН СССР (ныне Институт истории материальной культуры РАН); вдохновителями её создания были И.Е. Старик и С.И. Руденко.

В настоящее время в России реально работают 7 лабораторий: в Москве – в Геологическом институте РАН, Институте географии РАН, Институте проблем экологии и эволюции им. А.Н. Северцова РАН; в Санкт-Петербурге – в Институте истории материальной культуры РАН, Санкт-Петербургском государственном университете и ВСЕГЕИ; в Новосибирске – в Институте геологии и минералогии СО РАН.

Для проведения радиоуглеродных исследований потребовались сложные приборы, создание которых было важнейшей частью становления метода. К ним относятся: сеточно-стенной счётчик Гейгера-Мюллера с твёрдым углеродом как носителем 14 С (У.Ф. Либби, конец 1940-х годов); пропорциональный газовый счётчик (используется с 1950-х годов); жидкостно-сцинтилляционный счётчик – наиболее распространённый сегодня тип прибора (используется с 1960-х годов); ускорительный масс-спектрометр.

Рис. 3. Ускорительный масс-спектрометр Университета Аризоны (г. Тусон, штат Аризона, США) производства компании National Electrostatics Corporation: а – схема, б – пульт управления и источник ионов С?, в – ускорительный танк, г – детектор изотопов углерода. Фото Дж.С. Бурра

Рис. 3. Ускорительный масс-спектрометр Университета Аризоны (г. Тусон, штат Аризона, США) производства компании National Electrostatics Corporation: а – схема, б – пульт управления и источник ионов С?, в – ускорительный танк, г – детектор изотопов углерода. Фото Дж.С. Бурра

Применение радиоуглеродного метода

В четвертичной геологии и палеогеографии радиоуглеродный метод применяется так же широко, как и в археологии. С его помощью установлены хронологические параметры основных тёплых и холодных эпох за последние 40–50 тыс. лет [6], особенно для последних 10 тыс. лет (эпоха голоцена) (см., например: [12, 18]). Литература по применению радиоуглеродного метода в геологии чрезвычайно обширна (см., например: [19, p. 2899–2965]), поэтому остановимся лишь на некоторых примерах: геохронология второй половины позднего плейстоцена Сибири [20, 21], датирование извержений вулканов Камчатки [22]; хронология ледникового века северо-запада Европейской России [6, с. 243–271] и севера Евразии в целом [23].

Широко используется радиоуглеродный метод в геофизике, океанологии, биологии, медицине и многих других науках. Измерения содержания 14 С в морской воде прочно вошли в практику океанологических исследований (это позволяет выявить закономерности циркуляции вод Мирового океана) и в изучение грунтовых вод суши [12] и минеральных источников. Динамично развивающимся направлением можно назвать исследование содержания 14 С в таких объектах, как метеориты и ледники [2, 12]. Радиоуглеродный метод помогает в изучении астрофизических явлений – колебаний солнечной активности, взрывов сверхновых звёзд и др. [7, 12].


Рис. 4. Содержание изотопа 14С в атмосфере Земли с начала ядерных испытаний (1945–1952) до настоящего времени (по [29], с изменениями)

Одним из направлений радиоуглеродных исследований, важным для всех наук, в 1960–2000-х годах стала калибровка 14 С-дат [2]. Необходимость калибровки вызвана тем обстоятельством, что количество изотопа 14 С в атмосфере, гидросфере и биосфере не оставалось постоянным (как полагали поначалу У.Ф. Либби и его коллеги), а изменялось под воздействием ряда внешних условий, главное из которых – колебания в недавнем геологическом прошлом активности космических лучей, продуцирующих радиоуглерод (см. рис. 1). Следовательно, зависимость между 14 С и календарным возрастом не является линейной. Влияние этого фактора, осложняющего перевод радиоуглеродного возраста в астрономические (календарные) даты, в настоящее время преодолено для отрезка времени от наших дней до 20 000 лет назад; успешно ведутся работы по составлению графиков пересчёта 14 С-дат в календарные вплоть до предела чувствительности радиоуглеродного метода (около 45 000–50 000 14 С лет) [8].

Перспективы радиоуглеродного метода

Имеется много примеров влияния 14 С-метода на развитие научного знания и пересмотр ряда положений. Так, именно на основании результатов 14 С-датирования разрезов позднеплейстоценовых и голоценовых отложений удалось построить надёжную хронологическую основу для истории климата и природной среды Земли в целом, что крайне важно при прогнозировании климатических изменений в будущем.

Открытость и свободный доступ к информации – один из основных принципов работы сообщества специалистов, использующих 14 С-метод. Так, постоянно проводятся межлабораторные сверки радиоуглеродного возраста специально отобранных образцов. Идёт работа по совершенствованию процедуры калибровки 14 С-дат, которая зависит прежде всего от степени достоверности исходных данных. В последние годы получены результаты, которые позволяют надеяться, что вскоре будет возможна надёжная калибровка 14 С-дат вплоть до 50 000 лет назад.

Большой научный и практический потенциал применения радиоуглеродного метода, вероятно, не будет исчерпан и в XXI в. Являясь одним из наиболее универсальных и точных способов определения геологического и археологического возраста, а также будучи чувствительным индикатором загрязнения природной среды радиоактивными материалами и другими углеродсодержащими веществами, радиоуглеродный метод сегодня востребован в самых различных сферах фундаментальной науки и прикладных исследований. Это лишний раз подтверждает прозорливость У.Ф. Либби и его учеников – основоположников нового научного направления.

Первая публикация: Вестник Российской Академии Наук, 2011, том 81, № 2, с. 127–133

1. Libby W.F., Anderson E.C., Arnold J.R. Age determination by radiocarbon content: world-wide assay of natural radiocarbon // Science. 1949. V. 109. № 2827. P. 227–228.

2. Вагнер Г.А. Научные методы датирования в геологии, археологии и истории. М.: Техносфера, 2006.

3. Taylor R.E. Radiocarbon dating // Handbook of Archaeological Science. Chichester: John Wiley & Sons, 2001. P. 23–34.

4. Kuzmin Y.V. Radiocarbon and Old World archaeology: shaping a chronological framework // Radiocarbon. 2009. V. 51. № 1. P. 149–172.

5. Stuiver M., Polach H. Discussion: reporting of 14C data // Radiocarbon. 1977. V. 19. № 3. P. 355–363.

6. Арсланов Х.А. Радиоуглерод: геохимия и геохронология. Л.: Изд-во ЛГУ, 1987.

7. Дергачёв В.А., Векслер В.С. Применение радиоуглеродного метода для изучения природной среды прошлого. Л.: Изд-во ФТИ АН СССР, 1991.

8. IntCal09: Calibration Issue / Ed. Reimer P.J. // Radiocarbon. 2009. V. 51. № 4. P. 1111–1186.

9. Waterbolk H.T. Archaeology and radiocarbon dating 1948–1998: a golden alliance // M?moires de la Societ? Pr?historique Fran?aise. 1999. T. 26. P. 11–17.

10. Jull A.J.T. AMS method // Encyclopedia of Quaternary Science. V. 4. Amsterdam: Elsevier B.V., 2007. P. 2911–2918.

11. Taylor R.E. Six decades of radiocarbon dating in New World archaeology // Radiocarbon. 2009. V. 51. № 1. P. 173–211.

12. Radiocarbon after Four Decades: An Interdisciplinary Perspective / Eds. Taylor R.E., Long A., Kra R.S. New York?Berlin?Heidelberg: Springer-Verlag, 1992.

13. Damon P.E., Donahue D.J., Gore B.H. et al. Radiocarbon dating of the Shroud of Turin // Nature. 1989. V. 337. № 6208. P. 611–615.

14. Jull A.J.T., Donahue D.J., Broshi M., Tov E. Radiocarbon dating of scrolls and linen fragments from the Judean Desert // Radiocarbon. 1995. V. 37. № 1. P. 11–19.

15. Valladas H., Tisn?rat-Laborde N., Cachier H. еt al. Radiocarbon AMS dates for Paleolithic cave paintings // Radiocarbon. 2001. V. 43. № 2B. P. 977–986.

16. Кузьмин Я.В. Возникновение древнейшей керамики в Восточной Азии (геоархеологический аспект) // Российская археология. 2004. № 2.

17. Hillman G., Hedges R., Moore A., Colledge S., Pettitt P. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates // The Holocene. 2001. V. 11. № 4. P. 383–393.

18. Хотинский Н.А. Голоцен Северной Евразии. Опыт трансконтинентальной корреляции этапов развития растительности и климата. М.: Наука, 1977.

19. Encyclopedia of Quaternary Science / Ed. Elias S.A. V. 1–4. Amsterdam: Elsevier B.V., 2007.

20. Кинд Н.В. Геохронология позднего антропогена по изотопным данным. М.: Наука, 1974.

21. Ложкин А.В. Радиоуглеродное датирование в геохронологических и палеогеографических исследованиях на Северо-Востоке СССР // Региональная геохронология Сибири и Дальнего Востока. Новосибирск: Наука, 1987.

22. Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Сулержицкий Л.Д. Катастрофические извержения Авачинского вулкана (Камчатка) в голоцене: хронология, динамика, геолого-геоморфологический и экологический эффекты, долгосрочный прогноз // Вулканология и сейсмология. 2004. № 6.

23. Svendsen J.I., Alexanderson H., Astakhov V.I. et al. Late Quaternary ice sheet history of northern Eurasia // Quaternary Science Reviews. 2004. V. 23. № 11–13. P. 1229–1271.

24. Kuzmin Y.V. The extinction of woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia: review of chronological and environmental issues // Boreas. 2010. V. 39. № 2. P. 247?261.

25. Вартанян С.Л. Остров Врангеля в конце четвертичного периода: геология и палеогеография. СПб.: Изд-во Ивана Лимбаха, 2007.

26. Stuart A.J., Kosintsev P.A., Higham T.F.G., Lister A.M. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth // Nature. 2004. V. 431. № 7009. P. 684–689.

27. Janz L., Elston R.G., Burr G.S. Dating North Asian surface assemblages with ostrich eggshell: implications for palaeoecology and extirpation // Journ. of Archaeological Science. 2009. V. 36. № 9. P. 1982– 1989.

28. Wild E., Golser R., Hille P. et al. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator // Radiocarbon. 1998. V. 40. № 1. P. 273–281.

29. Geyh M.A. Bomb radiocarbon dating of animal tissues and hair // Radiocarbon. 2001. V. 43. № 2B. P. 723– 730.

30. Kretschmer W., von Grundherr K., Kritzler K. et al. The mystery of the Persian mummy: original or fake? // Nuclear Instruments and Methods in Physics Research. Section B. 2004. V. 223–224. P. 672–675.

31. Zoppi U., Skopec Z., Skopec J. et al. Forensic applications of 14C bomb-pulse dating // Nuclear Instruments and Methods in Physics Research. Section B. 2004. V. 223– 224. P. 770–775.

32. Kouznetsov D.A., Ivanov A.A., Veletsky P.R. Effects of fi res and biofractionation of carbon isotopes on results of radiocarbon dating of old textiles: the Shroud of Turin // Journ. of Archaeological Science. 1996. V. 23. № 1. P. 109–121.

34. Van Strydonck M., Boudin M., De Mulder G. 14C dating of cremated bones: the issue of sample contamination // Radiocarbon. 2009. V. 51. № 2. P. 553–568.


Начнем с того, что уран-ториевый метод датировки горных пород был изобретен значительно раньше, чем радиоуглеродный метод археологической датировки. Эрнест Резерфорд впервые упомянул о возможности использования уран-гелиевого метода для датировки горных пород еще в 1904 году, после чего Бертрам Болтвуд предложил использовать для этой цели не уран и гелий, а уран и свинец; свинец также образуется при распаде урана, но, в отличие от гелия, надежнее удерживается в родительской горной породе. В целом изыскания Резерфорда, связанные с радиоизотопной датировкой, были обусловлены его резким несогласием с оценкой возраста Земли, предложенной Уильямом Томсоном (лордом Кельвином). Как известно, Томсон (1824-1907), пользовавшийся колоссальным авторитетом в английском научном сообществе в конце XIX века, не признавал дарвиновскую теорию эволюции, а в 1903 году также отказался признать факт радиоактивного распада. Поэтому, опираясь на чистую термодинамику, Томсон в 1862 году вычислил возраст Земли, исходя из скорости остывания горных пород и получил значение около 100 миллионов лет. В 1899 году он пересмотрел свои расчеты и счел, что реальный возраст Земли составляет 20-40 миллионов лет. Такого срока было совершенно недостаточно, чтобы могла состояться биологическая эволюция, но именно такое несоответствие во многом вдохновило Резерфорда на уточнение возраста горных пород.

Недостатки радиоуглеродного метода

Наиболее серьезный недостаток радиоуглеродного метода заключается в сравнительно кратком периоде полураспада углерода-14, составляющем около 5370 лет. Лабораторно обнаружимые количества углерода-14 в образце могут сохраниться по истечении примерно 13 периодов полураспада. Таким образом, радиоуглеродный метод позволяет заглянуть в прошлое не далее, чем на 70 000 лет, а на отрезках свыше 25 000 лет уже может сбоить.

Поэтому даже в сравнительно недавних исторических масштабах оценки, полученные радиоуглеродным методом, необходимо проверять. В качестве такого страховочного метода зачастую применяется дендрохронология, о которой очень подробно и наглядно рассказано в вышеупомянутой статье "Застывшее время. Научные подходы к датированию". Когда на месте раскопок сохраняется большое количество деревянных фрагментов и артефактов, как, например, при исследовании культурных слоев Великого Новгорода, можно изучить последовательность узких и широких годичных колец в древесине и достаточно точно определить, когда дерево умерло (то есть, перестало наращивать годичные кольца, например, было срублено). Для подобной калибровки используются целые дендрошкалы. Правда, этот метод также может сильно сбоить, поскольку подразумевает, что бревно пошло в строительство или обработку сразу после того, как было срублено, и дата изготовления артефакта или сруба примерно соответствует дате гибели дерева. Разумеется, эти даты могут серьезно отличаться.

В недавней статье, посвященной радиоуглеродной датировке событий около 1500 года до н.э., в частности, извержения вулкана Санторини, указывается, что калибровка радиоуглеродных данных при помощи дендрохронологии также неточна. Дело в том, что в Европе дерево фотосинтезирует примерно с апреля по октябрь, тогда как в жарком климате Ближнего Востока этот процесс сдвинут примерно на полгода и длится примерно с октября по апрель.

Геохронологические методы датировки

Геохронологические методы датировки связаны с измерением соотношения изотопов тех или иных элементов в горной породе. Естественным продолжением уран-гелиевого и уран-свинцового метода, о которых упоминалось в начале этой статьи, стал калий-аргоновый метод. При расщеплении радиоактивного ядра калия-40 образуется ядро аргона-40. Период полураспада у калия-40 гораздо больше, чем у углерода-14 и составляет 1,25 миллиарда лет. Подсчитав количество аргона-40 в породе, можно подсчитать количество актов полураспада и, соответственно, возраст породы. Калий-аргоновый метод удобнее уран-гелиевого, так как ядро аргона крупнее ядра гелия и не так быстро покидает породу. Тем не менее, калий-аргоновый метод применим лишь для датировки магматических, но не осадочных пород.

Тем не менее, принципиальная разница между дендрохронологией и радиоуглеродным анализом с одной стороны и геохронологическими методами – с другой, заключается, прежде всего, в области их применения. Культурный слой и осадочные породы плохо поддаются калий-аргоновой датировке, а подсчет содержания аргона-40 в магматической породе лишь косвенно позволяет определить возраст органических включений, попавших в эту породу. В отличной статье с сайта института ядерной физики МГУ дается обзор основных геохронологических методов датировки, из которого я скопирую две наиболее интересные, на мой взгляд, таблицы.

Основные геохронологические методы (исходный и конечный элемент)


Определение возраста осадочных отложений в Дагестане калий-аргоновым методом


Для полноты картины поговорим о других изотопных методах датировки. Все они упомянуты в вышеприведенной таблице по ядерной хронологии.

Калий-аргоновый метод впервые описал Карл фон Вайцзеккер (1912-2007) в 1937 году. Он показал, что радиоактивный калий-40 может превратиться в радиоактивный аргон-40 путем K-захвата либо в радиоактивный кальций-40 путем бета-распада. Поскольку калий является седьмым по содержанию элементом в земной коре, а скорость превращения калия-40 в аргон-40 достаточно стабильна, именно этот метод используется на практике чаще других изотопных методов. Правда, с 1960-х активно используется и более сложный аргон-аргоновый метод, связанный с измерением соотношения радиогенного и нерадиогенного аргона в образце.

Таким образом, изотопные методы датировки связаны с измерением соотношения изотопов родительского радиоактивного элемента и дочернего радиоактивного элемента в породе. В качестве таких пар подходят комбинации, в которых период полураспада родительского элемента достаточно велик, а сам родительский радиоактивный изотоп (и продукты его распада) достаточно распространены в земной коре.

Рубидий-стронциевый метод связан с бета-распадом рубидия-87 и превращения его в стабильный стронций-87. Впервые предложен для определения геологического возраста в 1937 году. Этот метод удобен благодаря тому, что стронций легко замещает кальций в горных породах и долго в них сохраняется. Тем не менее, в большинстве земных пород такой изотоп стронция очень сложно отделить от природного, поэтому метод находит лишь ограниченное применение: он удобен для определения возраста метеоритов, а также применялся для определения возраста лунного грунта.

Самарий-неодимовый метод впервые описан в 1947 году и является одним из наиболее точных, так как 1) период полураспада самария очень велик – выше упоминалось, что он составляет 106 миллиардов лет; 2) при распаде самария-147 образуется изотоп неодим-143, который легко отделить от более распространенного в природе неодима-144. При этом, 3) самарий и неодим являются редкоземельными металлами, и отличаются значительно меньшей химической реактивностью, чем щелочные металлы калий и рубидий и щелочноземельные кальций и стронций. Поэтому содержание самария и неодима меняется относительно стабильно, и с их помощью можно измерять возраст не только магматических, но и метаморфических, и осадочных пород, в том числе, подвергшихся химическому воздействию. Основной недостаток метода заключается в значительной редкости самария и неодима, а также минералов, в которых они содержатся.

Рений-осмиевый метод принципиально похож на вышеупомянутые. Он связан с превращением рения-187 в осмий-187. Оба этих элемента очень редки, но этот метод датировки позволил определить как возраст земной мантии, так и возраст метеоритов. Более того, именно по данным рений-осмиевого метода удалось установить, что возраст мантии и возраст метеоритов примерно совпадают, а, значит, метеориты и планеты образовались в Солнечной системе в один и тот же период времени.

Согласно обзору 2015 года, существуют до 40 различных изотопных геохронологических методов, в том числе, лютеций-гафниевый (Lu-Hf), лантан-бариевый (La-Ba) и лантан-цериевый (La-Ce). Все эти экзотические методы предназначены, в основном, для определения относительного возраста небесных тел и с исследованием космологических процессов. Мы же в оставшейся части этой статьи поговорим об уран-торий-свинцовом методе датировки, как об одном из самых первых и точных. Уран-торий-свинцовый метод замечателен тем, что и уран-238, и торий-232 обладают огромными периодами полураспада (4,5 млрд лет и 14,01 млрд лет соответственно), и в ходе длинной цепочки изотопных превращений дают на выходе стабильные изотопы свинца – соответственно, свинец-206 (ряд урана) и свинец-208 (ряд тория). При этом исключительная археологическая ценность урана и тория заключается в том, что их микродозы, как правило, содержатся в различных карбонатах и натечных образованиях, встречающихся во множестве пещер. Карбонаты содержатся в ракушках, и именно для определения их возраста уран-ториевый метод исходно применялся в археологии.

Датировка плейстоценовых окаменелостей и неандертальских стоянок

Итак, изучение неандертальской культуры находится на пределах возможности радиоуглеродного метода. Считается, что неандертальцы обитали в Европе и на Ближнем Востоке в период со 130 примерно по 30-35 тысяч лет назад, а максимальный расцвет в Европе пережили около 100 000 лет назад (мустьерская культура). Этот период относится к позднему плейстоцену (плейстоценовая эпоха в истории Земли продолжалась с 2,58 млн лет назад примерно до 11,7 тыс. лет назад). Важно отметить, что датировка плейстоценовых окаменелостей давно и успешно осуществляется именно с использованием уран-ториевого метода. Поскольку, как указано ниже, микродозы урана и тория содержатся в карбонатах, эти изотопы можно обнаружить в костях доисторических животных, в частности, мамонтов, и даже в остатках коллагена.

При анализе возраста наскальной живописи особое внимание уделялось рисункам, выполненным с использованием древесного угля – поскольку этот материал подходит для радиоуглеродного анализа.

В 2012 году вышла одна из первых объемных статей, доказывающих высокую точность уран-ториевого метода при датировке наскальной живописи. Авторы отмечают, что древесный уголь сравнительно редко применялся в наскальной живописи кантабрийских пещер, но в силу возраста (40 000 лет и более) эти рисунки уже успели покрыться существенным слоем натечных образований, содержащих уран и торий. Соответственно, их возраст примерно равен возрасту непосредственно прилегающего к ним слоя карбонатов.

Тем не менее, 40 000 лет назад – это уже эпоха кроманьонцев, антропологически современных людей. До самого недавнего времени наличие развитого изобразительного искусства у неандертальцев оставалось под сомнением, пока в 2018 году не была опубликована статья о рисунках в пещере Куэва-де-лос-Авионес в юго-восточной Испании. Возраст наскальной живописи в этой пещере был определен при помощи уран-ториевого метода и составил порядка 66-70 тысяч лет. Там же были найдены окрашенные раковины, также поддающиеся именно уран-ториевой датировке.


Вот примеры неандертальской живописи, взятые на сайте института им. Макса Планка:

1) Возраст – 64 000 лет


2) Возраст – 66 000 лет


Эти находки позволяют предположить, что неандертальцы, как минимум, обладали богатым (в том числе, абстрактным) мышлением, сложной социальной организацией, а также хорошо разбирались в окружающих минералах. При этом датировка кальцитовых отложений уран-ториевым методом показывает, что древнейшие образцы наскальной живописи на Пиренейском полуострове могли быть созданы еще 115 000 лет назад.

Тема когнитивных возможностей и абстрактного мышления доисторического человека, бесспорно, заслуживает отдельной публикации. Завершая эту, хотелось еще раз подчеркнуть, насколько неожиданные результаты может давать научный поиск, в особенности – междисциплинарный. Фрэнк Уиллард Либби был удостоен Нобелевской премии за изобретение метода, поначалу обеспечивавшего датировку археологических образцов в значительно более скромных исторических масштабах (до 10 000 лет). Эрнест Резерфорд же первым начал исследовать соотношение урана и гелия в горных породах, преследуя отнюдь не археологические цели, а борясь с абсурдными хронологическими построениями Кельвина, величайшего ученого своего времени. Но лишь в начале XXI века пришло время применить метод Резерфорда и Болтвуда в археологии, и результаты превзошли все ожидания.


Это целебесская свинья, эндемик острова Сулавеси. Обитает там до сих пор, и даже была одомашнена местными жителями. Уран-ториевый метод показывает, что этому рисунку порядка 43 900 лет (по Википедии — 45500). Скорее всего, автор рисунка относился к людям современного типа.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Применение радиоактивных изотопов в археологии

Описание презентации по отдельным слайдам:

Применение радиоактивных изотопов в археологии

Применение радиоактивных изотопов в археологии

Интересное применение для определения возраста древних предметов орг.

Интересное применение для определения возраста древних предметов органического происхождения (дерева, древесного угля, тканей и т.д.) получил метод радиоактивного углерода.

В растениях всегда имеется р-радиоактивный изотоп углерода с период.

В растениях всегда имеется р-радиоактивный изотоп углерода с периодом полураспада 7-5700 лет. Он образуется в атмосфере Земли в небольшом количестве из азота под действием нейтронов. Последние же возникают за счет ядерных реакций, вызванных быстрыми частицами, которые поступают в атмосферу из космоса (космические лучи).

Соединяясь с кислородом, этот углерод образует углекислый газ, погло.

Соединяясь с кислородом, этот углерод образует углекислый газ, поглощаемый растениями, а через них и животными. Один грамм углерода из образцов молодого леса испускает около пятнадцати 3-частиц в секунду.

После гибели растений они перестают потреблять углерод и нестабильный.

После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет.

Определяя процентное содержание радиоактивного углерода в органичес.

Определяя процентное содержание радиоактивного углерода в органических остатках, можно определить их возраст, если он лежит в пределах от 1000 до 50 000 и даже до 100 000 лет.

Таким методом узнают возраст египетских мумий, остатков доисторически.

Таким методом узнают возраст египетских мумий, остатков доисторических костров и т. д.

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов


Курс повышения квалификации

Охрана труда

  • Сейчас обучается 132 человека из 45 регионов


Курс профессиональной переподготовки

Охрана труда


Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 608 654 материала в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 09.05.2020 587
  • PPTX 2.6 мбайт
  • 19 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Полтавский Анатолий Викторович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Минтруд предложил упростить направление маткапитала на образование

Время чтения: 1 минута

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Рособрнадзор предложил дать возможность детям из ДНР и ЛНР поступать в вузы без сдачи ЕГЭ

Время чтения: 1 минута

Каждый второй ребенок в школе подвергался психической агрессии

Время чтения: 3 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Диаграммы, составленные на основании данных электропотенциометра, по которым были обнаружены древние могилы в Италии.

АРХЕОЛОГИЯ И. ЕСТЕСТВОЗНАНИЕ! Казалось бы, что может быть общего между этими столь отдаленными областями науки: ведь археология изучает прошлое человечества по вещественным источникам и, следовательно, относится к разряду общественных наук. Но оказывается, что бывают случаи, когда эти науки довольно близко соприкасаются.

В течение многих лет на территории древнего Новгорода работает экспедиция Института археологии Академии наук СССР. Во время раскопок было обнаружено огромное количество предметов материальной культуры — от кораблей до посуды и игрушек включительно. Как определить, в каком веке эти вещи были созданы?

Тогда-то и понадобился так называемый метод дендрохронологии, позволяющий по годичным кольцам древесины определить возраст данного дерева, Известно, что на стволе дерева каждый год образуется одно кольцо, причем при благоприятных условиях оно бывает толстым, а при неблагоприятных — тонким. Так как основными условиями, определяющими рост годичного кольца, в первую очередь являются температура и влажность, то внутри определенной климатической зоны сочетание толстых и тонких колец на деревьях, выросших в одинаковых условиях, совпадает. Таким образом, годичные кольца — это своеобразная летопись леса.

Вот эти-то особенности роста деревьев использовали археологи. Изучая годичные кольца бревен, обнаруженных во время археологических раскопок, можно восстановить историю благоприятных и неблагоприятных условий в определенные годы жизни леса, на протяжении от 50 до 150 лет. А сопоставив эти условия у разных бревен и найдя совпадения годичных колебаний, мы можем по внешнему кольцу определить, когда данное бревно было срублено. Так можно установить относительную датировку памятника с точностью до одного года.

Археологи выяснили, что мостовая новгородской Великой улицы, построенная в десятых годах XIV века, существовала 29 лет. Затем после сильного пожара, во время которого сгорело несколько усадеб и обгорела мостовая, сделали новый настил. Он существовал 26 лет. Следующая мостовая продержалась только 13 лет, затем 15 лет и т. д.

Точные хронологические даты смены мостовых Великой улицы позволили археологам восстановить историю застройки данного участка древнего Новгорода и вместе с этим определить время бытования огромного количества археологических находок.

Подобная связь археологии с естественными науками не случайность. Так, один из важнейших разделов археологии, первобытная археология, смогла получить свое развитие благодаря эволюционной теории. Ведь именно представители естественных наук — антропологи и геологи во время своих научных изысканий добыли и изучили материал по истории происхождения человека на начальных этапах существования человеческого общества и, таким образом, явились пионерами первобытной археологии.

Эти связи не прервались и в дальнейшем, а возможности использования методов естественных наук для целей и нужд археологии возросли.

В настоящее время для открытия и исследования археологических памятников применяется более 40 методов, заимствованных из различных областей естественных наук. О некоторых из них нам и хотелось бы рассказать в этой статье.

Археология. с воздуха

Поселение, постройка или даже отдельная вещь, служившая человеку в древности, как правило, скрыты под землей. Для того, чтобы их обнаружить, требуется приложить немало усилий. Давно, однако, уже прошло время, когда археологи полагались на случайные находки. Разработана собственная археологическая методика поисков-разведок. Поселение обнаруживается по ряду внешних признаков, начиная с его местоположения на земной поверхности (например, в Средней России в древности были заселены все мысы над долинами рек) и кончая цветом земли или растительности, отличных от поверхностного покрова того места, где некогда было древнее сооружение. Опытный археолог не только знает, где следует искать тот или иной археологический объект, но и заранее предвидит, к какой эпохе он относится.

В последнее время громадную роль в открытии археологических памятников стала играть аэрофотосъемка, позволяющая по цвету и форме рельефа местности определить возможное местопребывание первобытных стоянок и могильников, Как известно, именно аэрофотосъемка помогла знаменитой Хорезмской экспедиции обнаружить среди причудливых очертаний песчаных барханов контуры башен и стен засыпанных древних городов.

Но вот ко всем этим методам присоединяется заимствованная у геофизиков разведка с помощью измерения электропроводимости и сопротивления верхних слоев почвы.

Вот что произошло несколько лет назад в Италии. Археолог Э. Карабелли и геофизик К. Леричи проводили исследования в провинции Тоскана. Аэрофотосъемкой к этом районе были обнаружены всхолмления древнего могильника. Что находится там внутри, под землей? Археологи решили подождать с раскопками. С помощью потенциометра они измерили сопротивление разных слоев холмов и составили подробный план их внутренней подземной части. Выяснилось, что под землей находятся погребения, расположенные в углубленных полых камерах. Поскольку эти камеры были точно зафиксированы, можно было с помощью электробура проделать в каждой из них с поверхности земли отверстие. Ученые спустили вовнутрь специально сконструированный фотоаппарат для съемки под землей. Полученные снимки позволили еще до начала раскопок точно обозначить не только устройство могил, но и положение каждого предмета под землей. Так были вскрыты этрусские погребения начала первого тысячелетия до нашей эры.

Изотоп-xрoнолог

Но вот археологический памятник открыт и раскопан. Теперь найденные вещи поступают в лабораторию для глубокого исследования.

Как известно, проблема датировок в археологии — одна из самых сложных. Даже для эпох, когда уже существовала письменность, часто бывает трудно установить, когда возникло или погибло найденное в раскопках поселение, в какой период была изготовлена та или иная вещь. Но археологи имеют дело с гигантским отрезком истории человечества, когда письменности вообще не было. Как же быть в этом случае?

Существуют целые системы специальных собственно археологических методов датировок, В одном и том же слое, например, могут быть обнаружены датированные и недатированные предметы. Тогда время изготовления последних легко устанавливается сопоставлением.

Вещи могут быть датированы по своему типу, характерному для каждого исторического периода, по технике изготовления и т. д. Это позволяет почти безошибочно отнести тот или иной предмет к большим историческим эпохам.

Но как установить абсолютные даты? Это очень трудная задача. Сходные исторические процессы протекали в различных точках земного шара в разное время. Например, каменный топор, которым европейцы пользовались в III тысячелетии до нашей эры, а египтяне — в VI тысячелетии до нашей эры, у тасманийцев был в употреблении в XVIII веке нашей эры. Как же установить дату изготовления такого топора?

И вот наряду с применяемыми в археологии геологическими, астрономическими, палеоклиматологическими и вышеописанным дендрохронологическим способами недавно появился новый оригинальный метод датировок — радиокарбонный анализ. Его подарили археологам физики. С помощью этого метода определяется содержание в ископаемых органических остатках изотопа углерода С-14.

Сущность этого метода заключается в том, что все растения, а соответственно и поедающие их живые существа усваивают из воздуха определенное количество изотопа углерода С-14. После смерти живого организма количество изотопа в органических остатках начинает убывать, и величина его распада может быть измерена. Таким образом можно установить время, когда было срублено дерево или существовало то животное, остатки которого найдены при раскопках.

В Ленинградском отделении Института археологии Академии наук СССР, в специально созданной лаборатории, для определения возраста органических остатков с помощью радиокарбонного анализа был определен возраст деревянных срубов, найденных при раскопках известных Пазырыкских курганов на Алтае.

Было установлено, что они относятся к IV веку до нашей эры. Таких примеров можно было бы привести немало. В результате подобных исследований многие представления в мировой археологии совершенно изменились. Так, например, оказалось, что эпоха раннего неолита в Европе относится к VI тысячелетию до нашей эры вместо IV тысячелетия, как это предполагали раньше. На новой хронология основывается важный вывод о том, что народы Европы в эпоху неолита не отставали в своем развитии от стран Востока.

С помощью магнита

Оказывается, что глина при определенных условиях может заставить реагировать магнит. Французскими, английскими и советскими учеными разрабатывается новый метод датировки керамики по данным археомагнетизма. Как известно, обожженная глина очень мало подвергается воздействиям времени. Поэтому изготовляемые из нее предметы являются основными объектами, находимыми археологами во время раскопок. Тысячи тонн керамики разных эпох хранятся во всех музеях мира. Археологи научились использовать этот материал в своих исследованиях и множество фактов устанавливают по черепкам, которые кажутся непосвященному совершенно однообразными и ничего не говорящими.

Читайте в любое время


Дендрохронологинеская схема относительной датировки. Таким образом по годичным кольцам дерева определяется, на сколько одно бревно старше другого: 1. бревно Б срублено после бревна А через 29 лет (71 — 42 = 29); 2. бревно В срублено после бревна Б через 26 лет (89 — 63 = 26); 3. бревно Г срублено после бревна В через 13 лет (64 — 51 = 13); 4. бревно Д срублена после бревна Г через 15 лет (42 — 27 = 15); 5. бревно Д срублено после бревна А через 83 года (29 + 26 + 13 + 15 = 83).

Читайте также: