Подготовьте сообщение по материалам таблицы приведенной в параграфе о роли термопластов

Обновлено: 06.07.2024

В статье приводится классификация термопластичных полимеров, описываются их особенности, физические характеристики и сфера применения.

Термопласты.

Термопласты – большая группа полимеров, которые обладают свойством переходить из твердого состояния в высокоэластичное или вязкотягучее при нагревании и восстанавливать свое первоначальное состояние при охлаждении. Этот процесс может проходить многократно в одну и другую сторону, что позволяет перерабатывать термопластовые отходы в новую продукцию. При этом существенно снижается себестоимость изделия и улучшается экологическая обстановка. Переработка ТПЕ полимеров происходит при помощи прессования, литья под давлением и выдувного формования. Переработке подлежит только высушенный материал, процент влаги в котором составляет не более 0,1.

Классификация термопластов.

Классификация термопластов производится по нескольким критериям. По своему физическому состоянию они делятся на аморфные и кристаллизующиеся. Первые, в зависимости от температуры воздействия, могут находиться в трех состояниях (в порядке ее повышения): стеклообразном, высокоэластичном и вязкотягучем. Первому свойственны небольшие упругие деформации, второе состояние характеризуется возможностью больших обратимых деформаций, дальнейшее повышение температуры приводит к тому, что в термопласте появляются уже необратимые изменения.

Термопласт

В зависимости от химической структуры термопласты можно разделить на полиолефины (полиэтилен, полипропилен), сложные полиэфиры, полиамиды, стирольные пластики, полимеры (акриловые и на основе целлюлозы и фторопластов).

По эксплуатационным характеристикам различают термопласты общетехнического, инженерно-технического назначения и термостойкие.

Для улучшения технологических и эксплуатационных характеристик термопластов могут применяться наполнители. По их виду полимеры разделяют на стеклопластик (наполнитель из стекла), углепластик (углеродное волокно) и специальные термопласты (с электропроводящими материалами, антифрикционными и увеличивающими износостойкость добавками и т. д.).

Все эти полимеры обладают целым рядом очень полезных и уникальных свойств, которые позволяют широко их использовать в самых разнообразных областях. Они имеют хорошую термостойкость, упругость, мягкость, практически не токсичны, очень эластичны даже при низких температурах, устойчивы к химическим воздействиям. Кроме того, они очень технологичны и служат долго.

Термопластичные полимеры часто применяются при производстве труб, электропроводки, фурнитуры для мебели. Используют их в сельском хозяйстве и при строительных работах. Свое место термопласты заняли также и в медицине (стоматология, протезирование).

Без термопластичных материалов сегодня не обходится и обувная промышленность (из них производятся высококачественные подошвы), и машиностроение (изготавливаются различные шестерни, муфты, подшипники, амортизаторы и т. д.), и производство спортивного инвентаря.

Поскольку у вторичных термопластов характеристики все-таки немного похуже, то для производства продуктов, к которым предъявляют повышенные требования к качеству, гигиеническим характеристикам (например, вещи для детей, упаковки для продуктов) в настоящее время используют только первичные материалы.

Конкретный термопластичный полимер выбирается, исходя из условий и особенностей применения готовой продукции. К примеру, у поликарбоната очень хорошая прочность, и он может эксплуатироваться в очень широком диапазоне температур (примерно от - 100 до + 140 °С), поэтому его используют при остеклении различных прозрачных сооружений (теплицы, остановки общественного транспорта и т. д.).

Полиэтилен.

Полиэтилен чаще всего используется там, где необходима высокая стойкость к химическим воздействиям, поэтому из него производят тару для хранения и транспортировки химически агрессивных жидких веществ (кислота, щелочь и т. д.). Когда необходима высокая прочность конструкции с большим количеством изгибов и поворотов, то используется полипропилен. Помимо прочности, этот материал характеризуется высокой износостойкостью, инертностью к различным химическим соединениям (например, к спиртам и кислотам), он не пропускает газ и пар.

Сэвилен

Для производства разнообразных прокладок, шлангов, пленок, надувных игрушек широко используется сэвилен. Применение сэвилена в данной области обусловлено его прозрачностью, гигиеничностью и безопасностью для организма человека, хорошими адгезивными характеристиками, сохранением исходных свойств в процессе переработки.

Какой бы термопластичный материал ни применялся в производстве, изделие из него всегда обладает низкой стоимостью, небольшим весом и хорошей эластичностью.

• Полиэтилен - упаковочные пленки, бутылки, ящики, канистры, бронепанель в бронежилетах, лодочные корпуса. Вспененный полиэтилен – теплоизолятор.

• Полипропилен – автодетали, трубы, пластиковые стаканчики, мешки, тары. Пенополипропилен (ППП) - вибро- и теплоизолирующие изделия.

• Полиметилметакрилат (ПММА, оргстекло) – газонепроницаемые контактные линзы, интраокулярные линзы (искусственный хрусталик), очки, подставки, витрины, ценники, аквариумы, циферблаты.

• Фенолформальдегидные смолы – машиностроение, вилки, розетки, выключатели, электросчетчики, клей БФ, шашки и шахматы, корпуса телефонов.

Отличие термопластов от термореактопластов заключается в их отношении к нагреванию: если первые при нагревании переходят в вязкое состояние, а при охлаждении возвращаются в твердое, то вторые сохраняют твердое состояние постоянно, а при достижении некоторой критической температуры просто разрушаются.

Этим отличием обусловлена разница в практическом применении данных двух типов полимеров. Так, термореактопласты применяются там, где от материала требуется механическая прочность и химическая инертность, и в тоже время отсутствуют очень высокие температуры: амортизаторы, подошвы для обуви (полиуретан), имплантаты, водоотталкивающие детали (силиконы), электроизоляторы (фенолформальдегидные смолы).

Термопласты же используются там, где требуется пластичный, но прочный материал, который может контактировать с источниками тепла: тефлоновые покрытия посуды (политетрафторэтилен), детали автомобилей, трубы (полипропилен), оргстекло (полиметилметакрилат), упаковка (полиэтилен).

*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.

Для корректного отображения информации рекомендуем добавить наш сайт в исключения вашего блокировщика баннеров.


Для просмотра в натуральную величину нажмите на картинку

Идея нашего сайта - развиваться в направлении помощи ученикам школ и студентам. Мы размещаем задачи и решения к ним. Новые задачи, которые недавно добавляются на наш сайт, временно могут не содержать решения, но очень скоро решение появится, т.к. администраторы следят за этим. И если сегодня вы попали на наш сайт и не нашли решения, то завтра уже к этой задаче может появится решение, а также и ко многим другим задачам. основной поток посетителей к нам - это из поисковых систем при наборе запроса, содержащего условие задачи

Использование пластических масс во всех отраслях промышленности и сельского хозяйства в качестве материалов конструкционного, защитного, электротехнического, декоративного, фрикционного и антифрикционного назначений. Технология изготовления термопластов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 13.11.2018
Размер файла 1,4 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Казанский национальный исследовательский технологический университет

Кафедра "Технологии основного органического и нефтехимического синтеза"

Тема: Термопластичные (термопласты) и термореактивные (реактопласты) полимеры. Свойства и применение

Выполнил: магистрант кафедры ТООНС

1. Общая характеристика

4. Свойства и применение

Пластические массы применяют во всех отраслях промышленности и сельского хозяйства в качестве материалов конструкционного, защитного, электротехнического, декоративного, фрикционного и антифрикционного назначений.

1. Общая характеристика

Полимерные материалы в настоящее время используются практически во всех областях человеческой деятельности, начиная от медицины и заканчивая авиационно-космической отраслью. Широкое распространение данные материалы получили благодаря уникальным свойствам, многие полимеры имеют высокую степень устойчивости к различным видам механических и химических воздействий, а также являются диэлектриками. Полимером называется органическое вещество, длинные молекулы которого построены из одинаковых многократно повторяющихся звеньев -- мономеров. По происхождению полимеры делятся на три группы.

Природные образуются в результате жизнедеятельности растений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выделения очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки являются искусственные полимеры. Примерами являются натуральный каучук, изготовляемый из латекса, целлулоид, представляющий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются незаменимыми и до сих пор, например в целлюлозно-бумажной промышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров - материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Развитие химической технологии высокомолекулярных веществ -- неотъемлемая и существенная часть современной НТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой.

По химической структуре полимеры делятся на линейные, разветвленные, сетчатые и пространственные.

Молекулы линейных полимеров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рисунок 1).

Рисунок 1 Схематическая диаграмма вязкости термопластичных полимеров в зависимости от температуры: Т1 - температура перехода из стеклообразного в высоко эластичное состояние, Т2 - температура перехода из высокоэластичного в вязкотекучее состояние.

Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов.

Разветвленные (привитые) полимеры более прочны, чем линейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изменению как механических, так и химических свойств. Обычная резина мягка, но при вулканизации серой образуются ковалентные связи типа S-0, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и работоспособности. Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством прочных поперечных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяющие свойства материала, который приобретает прочность и высокую вязкость, становится нерастворимым и неплавким. Вследствие большой реакционной способности молекул, проявляющейся при повышении температуры, такие полимеры называют термореактивными.

Термопластичные полимеры получают по реакции полимеризации, протекающей по схеме пММп (рисунок 2), где М -- молекула мономера, Мп-- макромолекула, состоящая из мономерных звеньев, п -- степень полимеризации. пластический термопласт фрикционный

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы. Современная химия создала новый инструмент -- реакцию полимеризации, а благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализуется лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Термореактивные полимеры могут образоваться более простым и естественным путем- реакцией поликонденсации. Высокая технологичность термореактивных полимеров предоставляет широкие возможности изготовлять различные изделия на нехимических предприятиях, в том числе на радиозаводах.

Рисунок 2 Реакции образования полимеров:

Термопласты представляют собой полимерные материалы, которые размягчаются при нагревании, а при остывании вновь приобретают свои изначальные свойства. При этом свойства материала не изменяются. К этому типу пластмасс относятся полистирол, полиэтилен, поливинилхлорид, полиметилметакрилат (органическое стекло) и др. Термопласты, в отличие от реактопластов, намного легче поддаются термопрессованию.

В настоящее время во всех странах развивается производство термопластичных материалов. В связи с ростом производства термопластов особенно широкое развитие получили такие методы переработки, как литье под давлением является одним из наиболее эффетивных методов.

Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная маас попадает в специальную форму, где происходит прессование и дальнейшее охлаждение. Как правило, большинство термопластов может быть использовано вторично.

Данный способ изготовления полимерных изделий применяется чаще всего при производстве различных видов серийных деталей, используемых, например, в радиотехнике. В некоторых случаях с помощью термопрессования изготавливаются мелкосерийный или уникальные изделия для различных областей человеческой деятельности. К наиболее известным термопластам в настоящее время относятся полиэтилен, полипропилен, лавсан, фторопласт и поливинилхлорид.

Реактопласты представляют собой полимерные материалы, которые разрушаются при достижении определенной температуры. Отвержденные термореактивные пластмассы нельзя повторным нагревом вновь перевести в вязкотекучее состояние, так как при этом они обугливаются и сгорают. Изделия из реактопластов изготавливают из технологических полуфабрикатов, представляющих собой однородные смеси, в основе которых находится не готовый полимер, а его полупродукт (мономер, олигомер и т. п.), превращающийся при нагреве в закопченное высокомолекулярное соединение с пространственной структурой макромолекул.

Изготовление реактопластов, в отличие от термопластов, происходит с помощью порошкового пресс-формование. Предварительно порошок, из которого изготовляется данный полимер, засыпается в пресс-форму, где происходит прессование при определенной температуре и давлении. Данный способ изготовления полимерных материалов позволяет получить необходимое вещество с заданными характеристиками.

По оценкам специалистов, в некоторых случаях получение реактопластов обходится дешевле, чем изготовление термопластов, но, с другой стороны, вторичная переработка реактопластов бывает очень сложной. В настоящее время отечественная и зарубежная промышленность выпускают различные виды реактопластов на основе фенолформальдегидных смол, а также различных видов эпоксидных материалов. Наибольшим спросом на рынке пользуются такие материалы, как бакелит и капролон.

В основе процесса формообразования изделий из пластмасс лежит свойство полимеров приобретать вязко текучее состояние при нагревании до сравнительно невысоких температур (90. 200 °С). Формообразование выполняется в закрытых рабочих формах -- пресс-формах при определенных параметрах процесса (температуре, давлении и времени выдержки).

Основные способы переработки пластмасс: прессование (прямое и литьевое); литье под давлением -- инжекционное прессование, экструзия; формование из листов (пневмоформование, формование штамповкой, вакуумное формование); формование крупногабаритных изделии из слоистых пластмасс (контактное, вакуумное, автоклавное, намоткой); сварка, механическая обработка.

К основным свойствам пластмасс относятся: механические, диэлектрические, теплофизические, фрикционные и др. Плотность пластмасс зависит от природы полимера, вида наполнителя, условий переработки изделий и других факторов. В среднем плотность пластмасс в 2 раза меньше, чем у алюминия, и в 5. 8раз меньше, чем у стали, меди и других металлов.

Прочность пластмасс колеблется в широких пределах и зависит от видов полимера и наполнителя, а также от их соотношения. Удельная прочность, т.е. прочность, отнесенная к плотности, для ряда пластмасс выше, чем у металлов, однако модуль упругости заметно ниже.

Основными недостатками пластмасс являются ограниченная теплостойкость (до 400 °С) и чувствительность к колебаниям влажности.

Все пластмассы являются диэлектриками. Теплопроводность пластмасс во много раз меньше, чем у металлов. Коэффициент линейного расширения у пластмасс гораздо выше чем у металлов, изменяется в широких пределах и зависит от структуры материалов и его наполнителя.

Пребывание пластмасс в воде или атмосфере с высокой влажностью во многих случаях приводит к снижению их физико-механических и диэлектрических характеристик. Большинство пластмасс стойки к действию нефтепродуктов, а некоторые из нескольких сильно агрессивным средам.

Фторопласты, полиамиды, текстолиты, древеспослоистые пластмассы имеют малый коэффициент трения, т. е. обладают антифрикционными свойствами и применяются в подшипниках скольжения.

Пластмассы на основе фенолформальдегидных смол с волокнистым наполнителем имеют высокий коэффициент трения (0,2. 0,6) и применяются как фрикционные материалы в тормозных системах и фрикционных передачах.

4. Свойства и применение

Физико-механические и другие эксплуатационные свойства ТП и РП различаются в очень широких пределах в зависимости от типа и содержания полимера, наполнителя и модифицирующих добавок. Так, для ненаполненных пластических масс кратковременный модуль упругости при обычных условиях изменяется от 4 ГПа для аморфных стеклообразных до 0,015 ГПа для кристаллических с низкой температурой стеклования, а прочность при растяжении - от 150-200 до 10 МПа соответственно. Плотность ненаполненных пластических масс лежит в пределах 0,85-1,50 г/см3 и только для фторопластов достигает 2,3 г/см3. В широких пределах различаются также диэлектрические и теплофизические свойства ненаполненных пластических масс. Очень резко изменяются свойства пластических масс при их наполнении - от легких и мягких пенопластов до жестких и прочных бороорганов и углепластиков, значительно превосходящих по прочностным показателям конструкционные металлы.

Основные достоинства пластических масс - возможность производства деталей сложной формы и полуфабрикатов (пленок, труб, профилей и т.п.) высокопроизводительными, малоэнергоемкими и безотходными методами формования, низкая плотность, устойчивость в агрессивных средах, к воздействиям вибрации и ударных нагрузок, радиационных излучений, атмосферостойкость, высокие оптические и диэлектрические свойства, легкость окрашивания. К недостаткам относятся горючесть, большое тепловое расширение, низкие термо- и теплостойкость, склонность к ползучести и релаксации напряжения, растрескивание под напряжением.

Читайте также: