Подготовить сообщение на тему важность дисциплины технических измерений

Обновлено: 02.07.2024

Для того чтобы можно было выяснить физическую сущность явлений, необходимо численно оценивать параметры этих явлений, необходимо эти параметры измерять. Такая оценка может быть произведена с помощью средств измерения, каждое из которых предназначено для измерения (численной оценки) определенной физической величины.

Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).

  • Принцип измерений — физическое явление или эффект, положенное в основу измерений.
  • Метод измерений — приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов. Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.

Классификация измерений:

По видам измерений:

  • Прямое измерение — измерение, при котором искомое значение физической величины получают непосредственно.
  • Косвенное измерение — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
  • Совместные измерения — проводимые одновременно измерения двух или нескольких неодноимённых величин для определения зависимости между ними.
  • Совокупные измерения — проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.
  • Избыточные измерения (точнее информативно-избыточные измерения) — измерения нескольких рядов однородных физических величин, размеры которых связаны между собой по закону арифметической или геометрической прогрессии, при неизменных или нормировано измененных значениях параметров нелинейной (в общем случае) функции преобразования сенсора (или измерительного канала в целом), при которых искомое значение физической величины получают приведенным ко входу измерительного канала путем обработки результатов промежуточных измерений по уравнению избыточных измерений, т.е. опосредованно.

Совокупные измерения — частный случай избыточных измерений.

Избыточные измерения обеспечивают автоматическое (естественное) исключение систематических составляющих погрешности конечного результата измерений.

По методам измерений:

  • Метод непосредственной оценки — метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений.
  • Метод сравнения с мерой — метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
  • Нулевой метод измерений — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.
  • Метод измерений замещением — метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.
  • Метод измерений дополнением — метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.
  • Дифференциальный метод измерений — метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.

По условиям, определяющим точность результата:

Метрологические измерения

  • Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения
  • Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др

По отношению к изменению измеряемой величины:

По результатам измерений:

  • Абсолютное измерение — измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
  • Относительное измерение — измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.

Классификация рядов измерений:

По точности

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

  • Равноточные измерения — однотипные результаты, получаемые при измерениях одним и тем же инструментом или им подобным по точности прибором, одним и тем же (или аналогичным) методом и в тех же условиях.
  • Неравноточные измерения — измерения, произведённые в случае, когда нарушаются эти условия.

По числу измерений

  • Однократное измерение — измерение выполненное один раз
  • Многократное измерение — Измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений

Метод измерений — совокупность приемов использования принципов средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические погрешности.

Точность измерений есть величина, обратная модулю относительной погрешности:


Классификация измеряемых величин

По точности

По результатам измерений

Измерительное устройство — средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, преобразования и (или) использования в автоматических системах управления.

Измерительные приборы — средства измерений, дающие возможность непосредственно отсчитывать значения измеряемой величины. В аналоговых из¬мерительных приборах отсчитывание производится по шкале, в цифровых — по цифровому отсчетному устройству. Показывающие измерительные приборы предназначены только для визуального отсчитывания, регистрирующие снабжены устройством записи: на бумаге, на магнитной ленте или в электронной памяти.

Все отрасли техники — от строительной механики и машиностроения до ядерной энергетики — не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, так и свойства и качество выпускаемой продукции.

Особенно возросла роль измерений в наш век широкого внедрения новой техники, развития электроники, автоматизации, атомной энергетики, космонавтики. Высокая точность управления полетами космических аппаратов достигнута благодаря современным совершенным средствам измерений, устанавливаемым как на самих космических аппаратах, так и в измерительно-управляющих центрах.

Всякое измерение неизбежно связано с погрешностями.

Погрешность измерений — разность между полученным при измерении X' и истинным 0 значениями измеряемой величины. Погрешность измерения определяется формулой:

Погрешность измерений вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом наблюдателя или особенностями его органов чувств.

Погрешности, связанные с несовершенством метода измерения, называют методическими. Эти погрешности вызваны неучетом в использованном методе измерений многих факторов, так или иначе искажающих измеряемую величину. Поскольку таких факторов бесчисленное множество, то в методике измерений должны быть учтены те, которые оказываются существенными для задачи, для которой производится измерение. Например, при измерении высоты с помощью барометрического высотомера оказывается необходимым учитывать изменение давления на земле при посадке самолета, но этого не нужно делать при занятии заданного эшелона, поскольку для всех самолетов эта ошибка одна и та же.

Погрешности, связанные с несовершенством инструмента измерения, называют инструментальными.

Погрешности измерений могут быть абсолютными, относительными или приведенными.

Абсолютными погрешностями являются погрешности, выраженные в единицах измеряемой величины; относительными — выраженные либо в процентах от нее, либо в процентах от верхнего предела измерений (диапазона); приведенные — в процентах от длины шкалы.

Погрешности, имеющие место при нормальных условиях применения прибора, называются основными, погрешности, вызванные отклонениями влияющих величин от нормальных, называются дополнительными.

При измерении достоянных величин погрешности являются статическими, при измерении изменяющихся во времени величин к ним добавляются динамические составляющие погрешности.

Погрешность в системах автоматического регулирования — разность между заданным и действительным значениями регулируемой величины в процессе регулирования. Погрешность в любой момент времени можно рассматривать как сумму погрешности в установившемся режиме (статическая) и погрешности в переходном процессе (динамическая). При статистическом анализе качество работы САР оценивают по критериям, связанным с вероятностными характеристиками погрешностей, например, по минимуму среднеквадратичной ошибки.

Поможем написать любую работу на аналогичную тему

Сущность процесса измерения. Виды измерений. Роль измерений в науке и технике.

Сущность процесса измерения. Виды измерений. Роль измерений в науке и технике.

Сущность процесса измерения. Виды измерений. Роль измерений в науке и технике.

Измерения являются одним из основных средств познания природы, ее явлений и законов.

Особенно важную роль играют электрические измерения, так как теоретическая и прикладная электротехника имеет дело с различными электрическими и магнитными величинами и явлениями, которые не воспринимаются непосредственно органами чувств. Поэтому обнаружение присутствия этих величин, количественное их, а так же изучение электрических и магнитных явлений возможно только при помощи электроизмерительных приборов.

Быстро развивающейся областью измерительной техники является измерение электрических величин электрическими приборами и методами. Это объясняется возможностью непрерывного измерения и записью его результатов на расстоянии, высокой точностью, чувствительностью и другими положительными свойствами электрических методов и приборов измерения. В современном производстве соблюдение любого технологического процесса и автоматизация управления обеспечиваются применением измерительной техники и тесно связанной с ней автоматики.

Таким образом, электрические измерения обеспечивают рациональное ведение любых технологических процессов, бесперебойную работу электроустановок и т.п., а следовательно, улучшают технико-экономические показатели работы предприятия.

Начертите структурную схему электронно-лучевого осциллографа и опишите назначение основных его узлов

Канал вертикального отклонения электронно-лучевого осциллографа предназначен для передачи входного напряжения на вертикальные отклоняющиеся пластины. Он включает аттенюатор, обеспечивающий ослабление входного сигнала до уровня получения на экране картинки необходимого размера, линию задержки и усилитель. С выхода усилителя сигнал поступает на вертикальные отклоняющиеся пластины.

Рис. 1 Структурная схема электронно-лучевого осциллографа

Канал горизонтального отклонения (канал развертки) служит для создания и передачи на горизонтально отклоняющие пластины напряжения, вызывающего горизонтальное перемещение луча, пропорционально времени.

Изображение формируется с помощью электронно-лучевой трубки, использующей электростатическое отклонение луча. В ней с помощью электронного прожектора формируется поток электронов в виде тонкого луча, который, достигая люминофора на внутренней поверхности экрана, вызывает его свечение. Отклонение луча по вертикали и горизонтали осуществляется с помощью двух пар пластин, на которые подаются отклоняющие напряжения. Исследуемое напряжение является функцией времени, и поэтому для его наблюдения необходимо, чтобы луч двигался по экрану в горизонтальном направлении пропорционально времени, а его перемещение по вертикали определялось входным исследуемым напряжением. Для движения луча по горизонтали к горизонтальным отклоняющимся пластинам прикладывается напряжение пилообразной формы, что обеспечивает перемещение луча слева направо с постоянной скоростью, быстрый возврат в начало экрана и очередное движение с постоянной скоростью слева направо. Исследуемое напряжение подается на вертикальные отклоняющие пластины, в результате положение луча в момент времени однозначно соответствует значению исследуемого сигнала в данный момент времени.

В осциллографе имеются два канала – канал вертикального (Y) и горизонтального (X) отклонения. Канал вертикального отклонения предназначен для передачи входного напряжения на вертикальные отклоняющие пластины. Он включает аттенюатор, обеспечивающий ослабление входного сигнала до уровня получения на экране картинки необходимого размера, линию задержки и усилитель. С выхода усилителя сигнал поступает на вертикальные отклоняющие пластины. Канал горизонтального отклонения (канал развертки) служит для создания и передачи на горизонтальные отклоняющие пластины напряжения вызывающего горизонтальное перемещение луча, пропорционально времени.

В осциллографах применяются несколько видов развертки, основная из которых образуется с помощью пилообразного напряжения. Чтобы линия развертки не мерцала при наблюдении, луч должен прочерчивать одну и ту же траекторию не менее 25…30 раз в секунду ввиду инерционной способности зрения человека.

Приведите схему и опишите, каким образом определяется место повреждения изоляции кабеля методом петли Муррея

Метод петли из жил кабеля – метод Муррея представляет собой использование схемы одинарного моста.

Для определения места пробоя между жилой и броней или землей концы б-б´ исправной и поврежденной жил кабеля закорачиваются. К двум другим концам а-а´ подключают магазины сопротивлений R и rА и гальванометр. Зажим, в котором соединены магазины резисторов, через батарею элементов соединен с землей.

Рис. 1 Схема метода петли из жил кабеля – метод Муррея

В результате имеем схему моста, равновесие которой определяется условием:

Определив rx, зная удельное сопротивление ρ материала жил кабеля и их сечение S, по формуле lx=rxS/ρ определяют расстояние от конца кабеля а´ до места повреждения изоляции.

При неизменном сечении жил кабеля rx и r можно заменить их выражением:

откуда определяется расстояние до места повреждения

Для проверки результата измерения производят второе аналогичное измерение, поменяв концы кабеля а и а´. При этом расстояние до места повреждения определяют по формуле:

где R´ и r´A – значения сопротивлений плеч моста при втором измерении. Правильность результатов измерений подтверждается равенством lx + ly =2l

Определите напряжение на сопротивлении и наибольшую возможную относительную погрешность при его определении если напряжение на зажимах сети равно 220 В, а напряжение на сопротивлении R1 = 180 В. Для измерения используются вольтметры класса точности 1,0 на 250 В

Из электротехники знаем:

где U1 – напряжение на сопротивлении R1, а U2 – напряжение на сопротивлении R2

U2 = U – U1 = 220 – 180 = 40 В

Наибольшая возможная относительная погрешность

где – относительная погрешность прибора, в нашем случае для класса точности 1,0 = 1,0%;

Uн – номинальное напряжение вольтметра;

U – показание вольтметра.

Измерительный прибор без шунта сопротивлением RA = 28 Ом имеет шкалу в 50 делений цена деления 0,01 A/дел. Определить цену деления этого прибора и предельную величину измеряемого тока при подключении шунта сопротивлением RШ = 0,02 Ом.

где rИ - сопротивление прибора; rШ – сопротивление шунта.

Найдем предельную величину измеряемого прибором тока

где W – количество делений прибора; N – цена деления

Найдем предельную величину измеряемого прибором тока при подключении шунта

где Imax – предельная величина измеряемого прибором тока;

р – шунтирующий множитель

Найдем цену деления прибора при подключении шунта

где I′max – предельная величина измеряемого прибором с шунтом тока; W – количество делений прибора

На щитке счетчика написано: 220В, 5А, 1кВт·ч – 2000 оборотов диска. Вычислить номинальную постоянную счетчика, действительную постоянную, относительную погрешность, поправочный коэффициент, если при проверке счетчика на неизменное напряжение U = 220 В и неизменной величине тока I = 5 А диск сделал N = 37 оборотов за 60 с.

Определим номинальную постоянную счетчика

где Wн – номинальное количество регистрируемой счетчиком энергии за Nн оборотов диска

Определим действительную постоянную счетчика

Определим относительную погрешность счетчика

где kн – номинальная постоянная счетчика; k – действительная постоянная счетчика, определенная при проверке.

Поправочный коэффициент будет равен

Ответ: Вт·ч/об, Вт·ч/об,

Номинальный ток амперметра 5А, класс точности его 1,5. Определить наибольшую возможную абсолютную погрешность.

Наибольшая возможная абсолютная погрешность:

где γд – относительная погрешность амперметра, в нашем случае для класса точности 1,5 γд = 1,5%; Iн – номинальный ток амперметра.

Электроизмерения и электроизмерительная техника, роль и значение измерений

Электрические измерения, относящиеся к наиболее обширным областям техники, затрагивают все отрасли человеческой деятельности.

Содержание раздела Электрические измерения на сайте в большей степени сосредоточено на области электрических измерений, используемых в электротехнической практике, т. к. измерения при техническом обслуживании, ремонте и капитальном ремонте электрооборудования являются одним из важнейших мероприятий, влияющих на безопасность и надежность электрооборудования.

Успешное измерение и получение правильных результатов предполагает не только внимательное считывание данных измерительного прибора, но и правильный выбор метода измерения и подбор подходящих средств измерений.

В настоящее время на рынке представлено несколько поколений средств измерений, и их развитие продолжается. Тем не менее, принципы измерения, измерительные приборы и методы измерения остаются прежними.

Аналоговый и цифровой осциллограф

Что такое измерение

Измерение принадлежит к числу древнейших операций, применяемых человеком в общественной практике, и с развитием общества все больше и больше проникает в различные области деятельности.

Измерение есть познавательный процесс: после измерения некоторой величины мы об этой величине всегда знаем нечто большее, чем это было до измерения: узнаем ее размер, что часто является для нас источником ряда дополнительных сведений, узнаем представление об этой величине, ее связи с другими величинами и т. д.

Процесс измерения есть физический эксперимент: измерение не может осуществляться умозрительно, путем лишь одних теоретических выкладок и т. п.

Измерение физической величины есть сравнение с некоторым значением такой же самой физической величины, принятым за единицу: измерять, например, длину можно только сравнением ее с какой-то определенной длиной.

Электроизмерительные приборы

Из приведенного выше определения вытекает, что для выполнения какого-либо измерения в общем случае необходимы:

мера — вещественное воспроизведение единицы измерения, например при взвешивании необходима гиря ;

измерительный прибор — техническое средство для осуществления процесса сравнения измеряемой величины с мерой.

Наличие меры абсолютно необходимо для выполнения измерения. Правда, в некоторых случаях мера как будто отсутствует при измерении: например, при взвешивании на циферблатных весах гири непосредственно могут и не применяться, однако это не означает, что при таком измерении мера не участвует: шкала этих весов предварительно была проградуирована с помощью соответствующих гирь .

Следовательно, в шкале таких весов как бы заложена мера массы, которая участвует, таким образом, при каждом взвешивании.

Точно так же при измерении электрического сопротивления с помощью омметра н е требуется п рименения мер сопротивления, однако без них можно обойтись вэтом случае только потому, что при изготовлении омметра его шкала была проградуирована с применением образцовых мер сопротивления, которые в скрытом виде участвуют при каждом применении прибора .

С другой стороны, измерительный прибор не всегда требуется для производства измерения: при простейших измерениях достаточно иметь только меру, прибор же может и отсут ст вовать.

Прямые, косвенные и совокупные измерения

По способу получения результата измерения надо различать:

Измерение параметров качества электрической энергии

Прямыми измерениями называются такие измерения, при которых измерению подвергается непосредственно сама интересующая нас величина: взвешивание на весах для определения массы какого-то тела, измерение длины путем непосредственного сравнения данного расстояния с соответствующей мерой длины, измерение электрического сопротивления с помощью омметра, электрического тока с помощью амперметра и т. п.

Прямые измерения являются весьма распространенным видом технических измерений. Косвенными измерениями называются такие измерения, при которых непосредственному измерению подвергается не сама интересующая нас величина, а некоторые другие величины, с которыми измеряемая величина находится в определенной зависимости; определив значения этих величин (путем прямых измерений) и пользуясь известной зависимостью между этими величинами и измеряемой величиной, можно подсчитать значение измеряемой величины.

Например, для определения удельного электрического сопротивления некоторого материала измеряют длину проводника, изготовленного из этого материала, площадь его поперечного сечения и его электрическое сопротивление. По результатам этих измерений можно подсчитать искомое удельное сопротивление.

Косвенные измерения сложнее прямых, но они применяются в технике и научных исследованиях довольно часто, тем более, что во многих случаях прямые измерения некоторых величин оказываются практически невыполнимыми.

Совокупными измерениями называются такие измерения, в которых искомый результат измерения выводится из результатов нескольких групп прямых или косвенных измерений отдельных величин, функциональная связь с которыми интересующих нас величин выражается в виде неявных функций.

По результатам групп прямых или косвенных измерений ряда величин составляется система уравнений, решение которой и дает значения интересующих нас величин.

Электроизмерительная техника на производстве

Роль измерений и значение метрологии в современном обществе

Развитие науки и техники неразрывно связано с развитием и совершенствованием средств измерения. Постановка каждой новой научной или технической задачи заставляет искать новые средства измерения, а совершенствование средств измерения способствует развитию новых отраслей науки и техники.

Накопление научных и прикладных знаний в области электричества и магнетизма чрезвычайно обогатило теорию и технику измерений и привело к образованию самостоятельной и разветвленной отрасли — электроизмерительной техники.

Электроизмерительная техника охватывает методы электрических измерений, проектирование и производство необходимых для этого технических средств (измерительных приборов), а также вопросы практического их использования.

Электрические измерительные приборы в лаборатории

В настоящее время объектами электрических измерений прежде всего являются все электрические и магнитные величины (ток, напряжение, мощность, электрическая энергия, количество электричества, частота тока, магнитные свойства материалов и т. д.).

Однако благодаря высокой точности, чувствительности и большому экспериментальному удобству электрических методов измерений, все шире распространяются приемы измерений, сводящиеся к предварительному преобразованию подлежащих измерению величин в пропорциональную им электрическую величину, которая затем непосредственно и измеряется.

Такие методы измерения, получившие название "не электрические измерения неэлектрических величин " (температуры, давления, влажности, скорости, ускорения, вибраций, упругих деформаций и т. п.), завоевали самое широкое признание, так как они обеспечивают значительное расширение диапазона измерений, повышение быстродействия и точности измерительных устройств, передачу значений измеряемых величин на расстояние, выполнение математических операций н ад измеряемыми величинами и большее удобство записи их во времени.

Электроизмерения в электроэнергетике

Электроизмерительная техника играет роль важнейшего фактора научно-технического прогресса в эксплуатации энергетических систем, а измерение электрических параметров энергетических установок является стимулом для рационализации энергетического хозяйства.

Исключительно важное значение электроизмерительная техника имеет также при контроле производственных процессов в самых различных отраслях промышленности, при контроле качества материалов, полуфабрикатов и многих изделий, в геологоразведочных работах и в самых разнообразных научных исследованиях, где методы электрических и магнитных измерений позволяют получить наиболее точные результаты в весьма широком диапазоне измеряемых величин.

Подборка статей про различные электроизмерительные приборы и их пракическое использование:

Современный уровень науки и техники позволяет выполнять многочисленные и точные измерения однако затраты на них равны затратам на исполнительные операции. Важной задачей Метрологии как науки является создание эталонов физических величин имеющих диапазон необходимый для современной науки и техники. Эти эталоны постоянно совершенствуются с учётом последних открытий науки. Стоимость поддержания мировой системы эталонов высока. Сотрудничество с зарубежными странами совместная разработка научных программ Её высокая точность, качество и достоверность единообразия принципов и способов оценки и точность измерения имеет огромное значение. Важную роль в использовании достижений в метрологии в промышленности играют нормативные документы ССМ.

Вложенные файлы: 1 файл

Документ Microsoft Office Word.docx

Измерение – один из важнейших путей познания природы человека. Они играют значительную роль в современном обществе. Наука, техника и промышленность не могут существовать без измерений. Каждую сек в мире производится 1 млрд. измерительных операции результаты которых используются для обеспечения технического уровня и необходимого качества продукта, безопасности работы транспорта и т.д. Практически нет ни одной сферы деятельности где бы не использовались результаты измерений. Диапазоны измеряемых величин постоянно растут. Например длина измеряется 10 -10 -10 -17 метра, температура 0,5–10 6 К, сопротивление 10 -26 -10 16 Ом, сила тока 10 -16 -10 4 А. С ростом диапазона измеряемых величин возрастает и сложность измерения. Измерения по сути своей перестают быть одноактивным действием, превращают сложную процедуру подготовки эксперимента, интерпретации измеренной информации. В этом случае следует говорить об измерительных технологиях понимающихся как последовательность действий направленных на получение измерительной информации. Другой фактор, подтверждающий фактор измерений – их значимость. Основой любой формы управления, анализа, планирования, контроля и регулирования является достоверная исходная информация, которая может быть получена путём измерения физических величин, параметров и показателей. Только высокая и гарантированная точность результатов измерений может обеспечить правильность применяемых решений.

Современный уровень науки и техники позволяет выполнять многочисленные и точные измерения однако затраты на них равны затратам на исполнительные операции. Важной задачей Метрологии как науки является создание эталонов физических величин имеющих диапазон необходимый для современной науки и техники. Эти эталоны постоянно совершенствуются с учётом последних открытий науки. Стоимость поддержания мировой системы эталонов высока. Сотрудничество с зарубежными странами совместная разработка научных программ Её высокая точность, качество и достоверность единообразия принципов и способов оценки и точность измерения имеет огромное значение. Важную роль в использовании достижений в метрологии в промышленности играют нормативные документы ССМ. Поэтому в процессе изучения курса МСС будут активно использовать последние нормативные материалы госстандартов.

Метрология (от греч. мера, измерительный инструмент и от др.-греч. мысль, причина) — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Предметом метрологии является извлечение количественной информации о свойствах объектов с заданной точностью и достоверностью. Средством метрологии является совокупность измерений и метрологических стандартов, обеспечивающих требуемую точность.

Метрология проникает во все науки и дисциплины, имеющие дело с измерениями и является для них единой наукой. Основные понятия, которыми оперирует метрология, это измерение, средство измерений, метрология, методики выполнения измерений.

Метрология состоит из 3 разделов:

теоретическая — рассматривает общие теоретические проблемы (разработка теории и проблем измерений, физических величин, их единиц, методов измерений.

прикладная — изучает вопросы практического применения разработок теоретической метрологии. В её ведении находятся все вопросы метрологического обеспечения.

законодательная — устанавливает обязательные технические и юридические требования по применению единиц физической величины, методов и средств измерений.

Цели и задачи метрологии:

5. Создание эталонов и образцовых средств измерений, поверка мер и средств измерений. Приоритетной подзадачей данного направления является выработка системы эталонов на основе физических констант.

Измерение как экспериментальные процедуры определяют определённые значения определённых величин разнообразны, что объясняется множеством известных величин, различных характеров изменения их во времени, различными требованиями.

По способу получения информации:

прямые измерения, при которых искомые значения физической величины определяют путём сравнения с мерой этой величины (линейка, вольтметр)

– косвенные. При которых искомые значения физической величины определяет на основании результатов других физических величин связанных с искомой величиной некоторых заранее известных функциональных зависимостей (измерение мощности тока)

– совокупные измерения, при которых проводят одновременно измерения нескольких однородных величин с определённой искомой величины путем решения системы уравнения.

– совместные измерения при которых производятся измерения двух или нескольких неоднородных физических величин с целью нахождения зависимости между ними.

Как при совокупных так и при совместных измерений искомые значения находят путём решения уравнений. Поэтому эти методы близки друг к другу и различаются только потому, что при совокупных однородных величины, у совместимы неоднородные. Если провести разделения операций проводимых при совокупных измерениях, то они приводят к прямым, однородные к косвенным.

По характеру измерения величин в процессе измерения:

– Статистические измерения, которые проводятся при практическом постоянстве измеряемой величины (статистический режим).

– Динамическое измерения. Величины изменяются во времени (динамический режим).

К статистическим относятся параметры которые в процессе наблюдения не изменяются во времени или рассматриваются неизменяемыми (размеры обрабатываемой детали, эл-ое напряж)

В других случаях результат динамического измерения может быть представлен некоторым усреднённым числовым значением

Статистические измерения связанны с определением характеристик случайных процессов, шумовых сигналов и т.д.

По количеству измерительной информации:

1. Однократные. При которых число измерений равно числу измеряемых величин. Если измеряется одна величина, то измеряют один раз. При этом иметь ввиду, что руководствоваться одним опытом при измерении той или иной величины не всегда оправдано. Во многих случаях рекомендуется выполнить не менее двух-трёх измерений которые позволяют избежать грубых ошибок – промахов. При этом результат измерений, т.е. значение физической величины получены при измерении, есть среднее из этих двух-трёх расчётов.

2. Многократные. При которых число измерений больше числа измеряемых величин в n/m раз, где n – число измерений каждой величины, m – число измеряемых величин. Обычно для многократных измерений n>=3. Многократные изменения проводят с целью уменьшения влияний случайных составляющих погрешностей измерения.

По отношению к основным единицам измерения:

1) абсолютные. При которых результат измерения основывается на прямых измерениях одной или нескольких основных величин, и (или) использовании физических констант.

2) Относительные. При которых производятся измерения отношение измеряемой величины к некоторой однородной величине играющей роль единицы или измерения величины по отношению к однородной величине принимаемой за исходную.

ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Любые измерения лишь тогда приобретают какую-либо значимость когда из результатом можно доверять и и проводятся со следующими различными целями:

1. когда надо удостовериться в том, что производимые (приобретаемая) продукция соответствует заданной качественными и количественными свойствами.

2. Когда необходимо определить неизвестное свойство объекта (физической системы, процессов, явления) измерения.

3. Когда необходимо наблюдать за количественными и качественными измерениями объекта измерения.

Если при использовании средства измерения о действительных значениях измеряемой величины экспериментатор не осведомлён и т.о. затрудняется определить погрешность, то применяется процедуры % а производятся многократные измерения величины и находится среднее арифметическое значение результатов измерений. Оно и принимается за действительное значение измеряемой величины. После этого по (2) можно найти погрешность любого из приведённых измерений. Часто для определения действительного определения величины применяют более точное средство измерения (эталон)

ГОСУДАРСТВЕННАЯ СЛУЖБА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

В России до перехода к рыночной экономике обеспечение единства измерения осуществлялась и регулировалась государством централизированно с помощью метрологических государственных и ведомственных центров, деятельность которых регламентировалась нормативно-техническими документами (ГОСТ, ОСТ и др.)

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Основные понятия метрологии, роль измерений в современном обществе.

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и др.

Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности. Все отрасли техники не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, так и свойства и качество выпускаемой продукций.

Велико значение измерений в современном обществе. Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета материальных ресурсов и планирования, для внутренней и внешней торговли, для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии, для обеспечения безопасности труда и других видов человеческой деятельности.

Особенно возросла роль измерений в век широкого внедрения новой техники, развития электроники, автоматизации, атомной энергетики, космических полетов. Высокая точность управления полетами космических аппаратов достигнута благодаря современным совершенным средствам измерений, устанавливаемым как на самих космических аппаратах, так и в измерительно-управляющих центрах.

Большое разнообразие явлений, с которыми приходится сталкиваться, определяет широкий круг величин, подлежащих измерению. Во всех случаях проведения измерений, независимо от измеряемой величины, метода и средства измерений, есть общее, что составляет основу измерений - это сравнение опытным путем данной величины с другой подобной ей, принятой за единицу. При всяком измерении мы с помощью эксперимента оцениваем физическую величину в виде некоторого числа принятых для нее единиц, т.е. находим ее значение.

В настоящее время установлено следующее определение измерения: измерение есть нахождение значения физической величины опытным путем с помощью специальных технических средств.

Отраслью науки, изучающей измерения, является метрология .

Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

В зависимости от решаемых задач различают три раздела метрологии: теоретический, законодательный и прикладной.

Под измерением понимают познавательный процесс, заключающийся в сравнении путем физического эксперимента данной физической величины с известной физической величиной, принятой за единицу измерения.

РМГ 29-99 трактует физическую величину как одно из свойств физического объекта, в качественном отношении общее для многих физических объектов, а в количественном - индивидуальное для каждого из них.

Физические величины - это измеренные свойства физических объектов и процессов, с помощью которых они могут быть изучены.

По условиям, определяющим точность результата, измерения делят на три класса:

- измерения максимально возможной точности, достижимой при существующем уровне техники;

- контрольно-поверочные измерения, выполняемые с заданной точностью;

- технические измерения, погрешность которых определяется метрологическими характеристиками средств измерений.

Технические измерения определяют класс измерений, выполняемых в производственных и эксплуатационных условиях, когда точность измерения определяется непосредственно средствами измерения.

Единство измерений - состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разное время, с использованием различны методов и средств измерении, а также в различных по территориальному расположению местах.

Единство измерений обеспечивается их свойствами: сходимостью результатов измерений; воспроизводимостью результатов измерений; правильностью результатов измерений.

Сходимость - это близость результатов измерений, полученных одним и тем же методом, идентичными средствами измерений, и близость к нулю случайной погрешности измерений.

Воспроизводимость результатов измерений характеризуется близостью результатов измерений, полученных различными средствами измерений (естественно одной и той же точности) различными методами.

Правильность результатов измерений определяется правильностью как самих методик измерений, так и правильностью их использования в процессе измерений, а также близостью к нулю систематической погрешности измерений.

Точность измерений характеризует качество измерений, отражающее близость их результатов к истинному значению измеряемой величины, т.е. близость к нулю погрешности измерений.

Процесс решения любой задачи измерения включает в себя, как правило, три этапа: подготовку, проведение измерения (эксперимента) и обработку результатов. В процессе проведения самого измерения объект измерения и средство измерения приводятся во взаимодействие.

Средство измерения - техническое устройство, используемое при измерениях и имеющее нормированные метрологические характеристики.

Результат измерения - значение физической величины, найденное путем ее измерения. В процессе измерения на средство измерения, оператора и объект измерения воздействуют различные внешние факторы, именуемые влияющими физическими величинами.

Эти физические величины не измеряются средствами измерения, но оказывают влияние на результаты измерения. Несовершенство изготовления средств измерений, неточность их градуировки, внешние факторы (температура окружающей среды, влажность воздуха, вибрации и др.), субъективные ошибки оператора и многие другие факторы, относящиеся к влияющим физическим величинам, являются неизбежными причинами появления погрешности измерения.

Мерой точности измерения является погрешность измерения.

Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.

Под истинным значением физической величины понимается значение, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующие свойства измеряемого объекта.

Основные постулаты метрологии: истинное значение определенной величины существует и оно постоянно; истинное значение измеряемой величины отыскать невозможно. Отсюда следует, что результат измерения математически связан с измеряемой величиной вероятностной зависимостью.

Поскольку истинное значение есть идеальное значение, то в качестве наиболее близкого к нему используют действительное значение. Действительное значение физической величины - это значение физической величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что может быть использовано вместо него. На практике в качестве действительного значения принимается среднее арифметическое значение измеряемой величины.

Рассмотрев понятие об измерениях, следует различать и родственные термины: контроль, испытание и диагностирование.

Контроль - частный случай измерения, проводимый с целью установления соответствия измеряемой величины заданным пределам.

Испытание - воспроизведение в заданной последовательности определенных воздействий, измерение параметров испытуемого объекта и их регистрация.

Диагностирование - процесс распознавания состояния элементов объекта в данный момент времени. По результатам измерений, выполняемых для параметров, изменяющихся в процессе эксплуатации, можно прогнозировать состояние объекта для дальнейшей эксплуатации.

Метод измерений - прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерения.

Читайте также: