Сообщение на тему клеточный цикл

Обновлено: 05.07.2024

Совокупность хромосом, содержащихся в ядре, называется хромосомным набором. Число хромосом в клетке и их форма постоянны для каждого вида живых организмов.

Число (диплоидный набор) хромосом у некоторых видов растений и животных

Пшеница твёрдая 28 Гидра 32
Пшеница мягкая 42 Дождевой червь 36
Рожь 14 Таракан 48
Кукуруза 20 Пчела 16
Подсолнечник 34 Дрозофила 8
Картофель 48 Кролик 44
Огурец 14 Шимпанзе 48
Яблоня 34 Человек 46

Соматические клетки обычно диплоидны (содержат двойной набор хромосом — 2n). В этих клетках хромосомы представлены парами. Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, размером и формой хромосом, называют кариотипом. Хромосомы, принадлежащие к одной паре, называются гомологичными. Одна из них унаследована от отцовского организма, другая — от материнского. Хромосомы разных пар называются негомологичными. Они отличаются друг от друга размерами, формой, местами расположения первичных и вторичных перетяжек. Хромосомы, одинаковые у обоих полов, называются аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами. В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Половые клетки гаплоидны (содержат одинарный набор хромосом — n). В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Деление клеток

Хромосомный набор

Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.

Соматические и половые клетки

Тип Хромосомный набор Характеристика
Соматические 2n Диплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными.
Половые 1n Гаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Клеточный цикл

Клеточный цикл (жизненный цикл клетки) — существование клетки от момента её возникновения в результате деления материнской клетки до её собственного деления или смерти. Продолжительность клеточного цикла зависит от типа клетки, её функционального состояния и условий среды. Клеточный цикл включает митотический цикл и период покоя.
В период покоя (G0) клетка выполняет свойственные ей функции и избирает дальнейшую судьбу — погибает либо возвращается в митотический цикл. В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим циклом, а период покоя отсутствует.
Митотический цикл состоит из четырёх периодов: пресинтетического (постмитотического) — G1, синтетического — S, постсинтетического (премитотического) — G2, митоза — М. Первые три периода — это подготовка клетки к делению (интерфаза), четвёртый период — само деление (митоз).

Интерфаза — подготовка клетки к делению — состоит из трёх периодов.

Периоды интерфазы

Периоды Число хромосом и хроматид Процессы
Пресинтетический (G1) 2n2c Увеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления.
Синтетический (S) 2n4c Происходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды.
Постсинтетический (G2) 2n4c Усиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли.

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:

  • амитоз (прямое деление),
  • митоз (непрямое деление),
  • мейоз (редукционное деление).

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.

Митоз

Митоз — тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. В результате митоза из одной диплоидной клетки образуется две диплоидные, генетически идентичные материнской.

Митоз состоит из четырёх фаз.

Фазы митоза

Фазы Число хромосом и хроматид Процессы
Профаза 2n4c Хромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки, и начинает формироваться веретено деления.
Метафаза 2n4c Хромосомы, состоящие из двух хроматид, прикрепляются своими центромерами (первичными перетяжками) к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.
Анафаза 2n2c Центромеры делятся, и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделённые хроматиды называются дочерними хромосомами.
Телофаза 2n2c Дочерние хромосомы достигают полюсов клетки, деспирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки. Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза:

  • достигается генетическая стабильность;
  • увеличивается число клеток в организме;
  • происходит рост организма;
  • возможны явления регенерации и бесполого размножения у некоторых организмов.

Мейоз

Мейоз — тип клеточного деления, сопровождающийся редукцией числа хромосом. В результате мейоза из одной диплоидной клетки образуется четыре гаплоидных, генетически отличающиеся от материнской. В ходе мейоза происходит два клеточных деления (первое и второе мейотические деления), причём удвоение числа хромосом происходит только перед первым делением.

Как и митоз, каждое из мейотических делений состоит из четырёх фаз.

Фазы мейоза

Биологическое значение мейоза:

  • основа полового размножения;
  • основа комбинативной изменчивости.

Деление прокариотических клеток

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

Фазы клеточного цикла

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где "n" - число хромосом, а "c" - число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Генетическая формула клетки

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу - подготовку к делению клетки.

    Пресинтетический (постмитотический) период G1 - 2n2c

Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.

Длится 6-10 часов. Важнейшее событие этого периода - удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Активно синтезируются структурные белки ДНК - гистоны.

Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу - делению клетки, синтезируются белки и АТФ, удваиваются центриоли, делятся митохондрии и хлоропласты.

Жизненный цикл клетки

Митоз (греч. μίτος - нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры - хромосомы - происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
  • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
  • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления

Профаза митоза

ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

Метафаза митоза

Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним - дочерние хромосомы) к полюсам клетки.

Анафаза митоза

  • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
  • Появляется ядерная оболочка, формируется ядро
  • Разрушаются нити веретена деления

В телофазе происходит деление цитоплазмы - цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений - формированием плотной клеточной стенки (которая растет изнутри кнаружи).

Телофаза митоза

Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид - 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

  • В результате митоза образуются дочерние клетки - генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Фазы митоза

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки - способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

Мейоз

Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio - уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление - эквационное (лат. aequatio — уравнивание) очень похоже на митоз.

    Профаза мейоза I

Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

Профаза мейоза I

Конъюгация (лат. conjugatio — соединение) - сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом - биваленты (лат. bi - двойной и valens - сильный).

После конъюгации становится возможен следующий процесс - кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

Кроссинговер

Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

Метафаза мейоза I

Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки - n2c, за счет чего мейоз I и называется редукционным делением.

Анафаза мейоза I

Происходит цитокинез - деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением - мейозом II.

Телофаза мейоза I

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

Мейоз II

В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку - nc. В этом и состоит сущность мейоза - образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки - половые клетки (гаметы).

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число - 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) ;)

Мейоз

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками - материал для эволюции, который проходит естественный отбор
Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам - бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.

Бинарное деление надвое

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Амитоз (от греч. ἀ - частица отрицания и μίτος - нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется "как кому повезет" - случайным образом.

Амитоз

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Раздел ЕГЭ: 2.7. … Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. …

Клеточный цикл (жизненный цикл клетки) — время существования клетки от начала одного деления до начала следующего деления, состоит из интерфазы и собственно процесса деления.

Интерфаза — период между делениями, в котором происходят процессы роста и развития клетки, удвоения ДНК, синтеза белков и органических соединений.

жизненный цикл клетки

  1. Пресинтетический (постмитотический) период G1 — образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, делятся митохондрии, клетка растет (хромосомный набор — 2n2c).
  2. Синтетический период S — удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид, активно синтезируются структурные белки ДНК — гистоны (хромосомный набор — 2n4c).
  3. Постсинтетический (премитотический) период G2 — подготовка к последующему процессу — делению клетки, синтезируются белки и АТФ, удваиваются центриоли (хромосомный набор — 2n4c).

Примечание. В схемах деления гаплоидный набор хромосом обозначают буквой n , а молекул ДНК (т. е. хроматид ) — буквой с . Перед буквами указывают число гаплоидных наборов, например:

виды деления клеток

Митоз и амитоз

Митоз (непрямое деление клетки) — процесс равномерного распределения между дочерними клетками ядерного наследственного материала.

В результате митоза из одной материнской клетки с диплоидным (двойным) набором хромосом образуются две диплоидные дочерние клетки, содержащие полную генетическую информацию в том же объёме, что и родительская. Митоз обеспечивает сохранность наследственных признаков и увеличение количества клеток или одноклеточных организмов.

Стадии (фазы) митоза:

  • Профаза (2n4c) — спирализация хромосом, уменьшение их функциональной активности; репликация практически не идёт; разрушение оболочки ядра; образование веретена деления; прикрепление хромосом к нитям веретена деления.
  • Метафаза (2n4c) — спирализация хромосом достигает максимума; хромосомы утрачивают свою функциональную активность, образуют экваториальную пластинку.
  • Анафаза (4n4c) — деление центромер; расхождение по нитям веретена сестринских хромосом. Анафаза заканчивается, когда центромеры достигают полюсов клетки.
  • Телофаза (2n2c) — деспирализация хромосом; образование ядерной оболочки; деление цитоплазмы; между дочерними клетками формируется клеточная стенка.

митоз

Амитоз — прямое деление клетки, при котором ядро делится путём перешнуровки без предшествующей перестройки:

  • хромосомы не проходят цикла спирализации;
  • не образуется веретено деления;
  • клетка делится сразу после репликации ДНК;
  • ДНК между дочерними клетками распределяется неравномерно.

Амитоз проходит быстрее, чем митоз. В результате амитоза увеличивается количество дочерних клеток, но одновременно могут появляться двух- и многоядерные клетки. Амитоз характерен для одноклеточных и некоторых клеток многоклеточных организмов (клетки при патологических состояниях).

Мейоз

Мейоз — способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются четыре дочерние с уменьшенным в два раза набором хромосом. На этапе интерфазы (предшествует мейозу) происходит репликация ДНК с последующим удвоением хромосом. Клетки с диплоидным набором хромосом, каждая состоит из одной хромосомной нити (хромонемы). После интерфазы хромосомы становятся удвоенными, а их диплоидное число 2n сохраняется. Центриоли в клеточном центре удваиваются.

Стадии (фазы) мейоза I (редукционное деление):

  1. Профаза I — спирализация хромосом; конъюгация; кроссинговер; хроматиды начинают расходиться; биваленты обособляются и располагаются по периферии ядра; ядрышко исчезает (хромосомный набор клетки — 2n4c).
  2. Метафаза I — начинается с момента разрушения ядерной оболочки; биваленты располагаются в экваториальной плоскости, прикреплённые к нитям веретена деления (хромосомный набор клетки — 2n4c).
  3. Анафаза I — центромеры каждой пары гомологичных хромосом разъединяются, и к полюсам клетки отходят гомологичные хромосомы, состоящие из двух хроматид (хромосомный набор клетки к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c).
  4. Телофаза I — начинается с достижения хромосомами полюсов клетки (у каждого полюса — n хромосом): происходит редукция числа хромосом; образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка (хромосомный набор каждой из образовавшихся клеток — 1n2c).

Завершение мейоза I сопровождается образованием двух дочерних клеток, содержащих гаплоидный набор хромосом, которые в свою очередь остаются удвоенными.

Во время кратковременной интерфазы (интеркинеза) не происходит репликация ДНК, нет удвоения хромосомы, две дочерние клетки вступают во второе деление мейоза.

Стадии (фазы) мейоза II (по типу митоза — равное деление):

  1. Профаза II — непродолжительная, так как хроматиды спирализованы (хромосомный набор клетки — 1n2c).
  2. Метафаза II — образуются экваториальная пластинка, хромосомы, состоящие из двух хроматид, центромерными участками прикрепляются к нитям веретена деления (хромосомный набор клетки — 1n2c).
  3. Анафаза II — хроматиды расходятся к полюсам клетки (хромосомный набор у каждого полюса — 1n1c , в клетке — 2n2c).
  4. Телофаза II — образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка. Образуются четыре гаплоидные клетки 1n1c (хромосомные наборы образовавшихся клеток не идентичны).

мейоз

Мейоз II проходит по типу митоза. В результате мейоза из одной клетки с диплоидным набором хромосом после двух последовательных делений образуются 4n клетки.

Черты мейоза

  1. Редукция числа хромосом (если бы не было уменьшения числа хромосом при образовании половых клеток, то из поколения в поколение их количество возрастало бы и был бы утрачен один из важнейших признаков каждого вида — постоянство числа хромосом),
  2. Конъюгация (сближение и переплетение) гомологичных хромосом.
  3. Рекомбинация генетического материала, обусловленная случайным расхождением материнских и отцовских гомологичных хромо сом в дочерние клетки, а также кроссинговером (процессом обмена участками гомологичных хромосом).

Таким образом, мейоз — непрерывный процесс, состоящий из двух последовательных делений ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время интерфазы I.

Наборы хромосом и количество ДНК в клетке (мейоз)

Наборы хромосом и количество ДНК в клетке (мейоз)

Митотический клеточный цикл

Сначала я хотел написать статью про митоз: какие клетки в него вступают, через какие фазы он проходит и его биологическое значение. Но передумал. Почему? Митоз или непрямое деление клетки — это только часть, а иногда и небольшая, более общего понятия. Я говорю про клеточный цикл. Поэтому сначала давайте разберемся с ним, а дальше уже перейдем к митозу. В самом конце статьи проведем сравнение между митозом и мейозом.

Клеточный цикл

Клеточный цикл — это время от образования клетки до ее деления или гибели. Состоит из двух периодов — интерфазы и митоза. Интерфаза в свою очередь состоит еще из трех периодов: G1 — пресинтетический, S — синтетический и G2 — постсинтетический. На самом деле, такие периоды клеточного цикла только у одного типа клеток, но давайте сначала разберем классику. Последовательность периодов интерфазы:

Митотический клеточный цикл

Рисунок. Клеточный цикл.

Пресинтетический или постмитотический период — G1

Клетка только образовалась путем митоза, а значит ей нужно немного подрасти — восстановить свои органеллы (рибосомы и митохондрии), синтезировать белок и РНК. Митоз все-таки был затратным, часть белков была потрачена на образование новой клетки. Хромосомный набор 2n2c, подробнее о хромосомном наборе здесь. Длительность G1 периода интерфазы — 9 часов.

Синтетический период или S-период

В этом периоде клетка удваивает количество молекул ДНК и синтезирует гистоны — белки, которые упаковывают новообразованную молекулу ДНК. Но зачем ее упаковывать? Потому что они огромные. 46 молекул ДНК в одной клетке — это примерно два метра, а тут молекул 92, то есть в одной клетке целых четыре метра ДНК. Шок контент. Но я отвлекся, так вот — молекула ДНК упаковалась и стала хроматидой. По сути, это почти готовая хромосома, но она связана со второй хроматидой с помощью центромеры. Поэтому хромосомный набор — 2n4c. Длительность S-периода интерфазы — 10 часов.

Хромосомный набор в интерфазу

Рисунок. Синтетический период интерфазы.

Постсинтетический период — G2

Клетка синтезирует тубулин. Запасает энергетические субстраты — АТФ. Созревают центриоли(они тоже удваиваются), вместе с тубулином они образуют веретено деления. Подготовка к делению идет полным ходом.

Дальше клетка вступает в митоз и мы его рассмотрим ниже, но перед этим… Нам нужно серьезно поговорить. Такая схема клеточного цикла подходит не всем клеткам, а только одному виду. Есть идеи почему? Да, правильно! У нас в организме множество клеток, очень разных по структуре и функциям. Какие-то делятся постоянно (стволовые клетки), а другие не делятся вообще (эритроцит — у него ведь даже ядра нет, какое там деление?). Значит у разных клеток — разные клеточные циклы. Дальше мы увидим, что такой рисунок подходит только одному типу клеток. Набор без изменений — 2n4c. Длительность G2— периода интерфазы — 4,5 часа.

Типы клеточных циклов

Всего есть три варианта клеточных циклов, но у каждого есть свои особенности.

Митотический цикл

Здесь все просто, у клетки только одна задача — делиться. Зачем ей постоянно делиться? Затем, что ее последователи мрут как мухи.

  • Гемопоэтические — нужно постоянно поддерживать количество эритроцитов, тромбоцитов и лейкоцитов в организме.
  • Клетки базального слоя эпидермиса.
  • Эпителиальные клетки кишечника.
  • Ещё так делятся сперматогонии и оогонии — они образуют множество диплоидных клеток, которые потом вступят в мейоз.

Для таких клеток подходит круг и все его периоды.

Клеточный цикл у условно постмитотических клеток

Клетка образовалась, восстановила свои органоиды, синтезировала белки и РНК — G1 период. Дальше она дифференцируется и начинает выполнять свои функции. Клетка сохранила способность к делению, но есть один нюанс. Клетка может вступить в митотический цикл при определенном условии — чаще всего при повреждении. Эти клетки обеспечивают регенерацию тканей и органов в случае их травмы. Такие клетки:

  • Фибробласты
  • Гепатоциты
  • Лимфоциты
  • Стволовые клетки мышечной ткани и костной — эти просто “покоятся” и активируются при повреждении.

Клеточный цикл условно постмитотических клеток

Схема. Клеточный цикл условно постмитотических клеток.

Клеточный цикл у постмитотических клеток

Клетка проходит через G1 период и дифференцировку. Но такие клетки не могут делиться. Но почему? Тут несколько вариантов, но все они связанны с функцией клетки.

Первый вариант — клетка настолько преисполнилась в своем познании, что ей уже это не интересно. Шуточка, на самом деле эти клетки выполняют такие сложные функции, что им не до деления — нервные клетки, клетки сердечной мышцы и обычных мышц (правда тут не совсем клетки, а симпласты — клетки объединились и если мы на них посмотрим, то увидим одну цитоплазму и кучу ядер).

Второй вариант — чтобы клетка могла нормально выполнять свои функции ей пришлось чем-то пожертвовать. Эритроциту нужно переносить как можно больше кислорода, поэтому он избавился от ядра. Клетки всех слоев кожи, кроме базального — постепенно наполняются кератином и погибают, а все для защиты внутренней среды организма.

Клеточный цикл у постмитотических клеток

Схема. Клеточный цикл постмитотических клеток.

Вроде все, с клеточными циклами разобрались. Теперь можно переходить к митозу.

Митоз или непрямое деление клетки

В ходе митоза из одной материнской клетки образуется две генетически идентичные дочерние клетки. Можно даже сказать, что клетка образует своего клона. Хромосомный набор клетки остается без изменений: как был 2n2c, так и остается. Перед митозом произошла интерфаза и количество молекул ДНК удвоилось, мы видели это выше. Получается, что клетка готова к делению и входит в свою первую фазу.

Профаза митоза

Начинается с упаковки хромосом (конденсации). Зачем это нужно клетке? Так она пытается сохранить свой генетический материал и передать его в целостности и сохранности. Такая упаковка снижает риск его потери. Помните, что в микроскоп нельзя увидеть хромосомы? Так вот, здесь клетка постаралась и упаковала из настолько, что они видны. Каждая хромосома состоит из двух хроматид (одна хроматида — одна молекула ДНК). Из-за упаковки ДНК исчезают ядрышки и прекращается синтез РНК. Ядерная оболочка, эндоплазматическая система и аппарат Гольджи распадаются. Происходит формирование веретена деления — за счет удвоенных центриолей и тубулина.

Профаза митоза

Схема. Профаза митоза

2n4c

Хромосомный набор в профазу митоза

Метафаза митоза

Заканчивается образование веретена деления, конденсация хромосом максимальна. Нити веретена деления прикрепляются к центромерам — хромосомы располагаются на экваторе клетки.

Метафаза митоза

Схема. Метафаза митоза

2n4c

Хромосомный набор в метафазу митоза

Анафаза митоза

Нити веретена деления тянут хроматиды к полюсам клетки, таким образом из одной двухроматидной хромосомы образуется две хромосомы. И всего в клетке — четыре хромосомы.

Анафаза митоза

Схема. Анафаза митоза

У полюсов 2n2c, в клетке 4n4c

Хромосомный набор в анафазу

Телофаза митоза

Хромосомы постепенно раскручиваются, клетка прибыла в место назначения — теперь можно распаковать чемоданы. Вокруг хромосом образуется ядерная оболочка, а затем и клеточная перетяжка. Органеллы распределяются между двумя дочерними клетками. Вот и всё, митоз завершен.

Телофаза митоза

Схема. Телофаза митоза

Две диплоидных клетки — 2n2c

Результат митоза

Общая схема митоза

Общая схема митоза

Длительность митоза — полчаса. Следовательно, длительность митотического цикла = G1 + S + G2 + митоз = 9 + 10 + 4,5 + 0,5 = 24 часа.

Биологическое значение митоза

  • Поддержание постоянного набора хромосом в клетке.
  • Получение идентичных клеток в ходе деления.
  • Митоз обеспечивает рост и регенерацию тканей.

Сходства и различия между мейозом и митозом

Таблица. Сравнение митоза и мейоза

Таблица. Сравнительная характеристика мейоза и митоза

Когда вы только родились, ваш вес составлял в среднем от 3 до 4кг, а рост всего около 50-60 см, но с каждым днем вы становились больше и выше..

А какой рост и вес у вас сегодня и почему произошло увеличение этих показателей по сравнению с прошлыми годами?

Всё это благодаря способности клеток к размножению, в основе которого лежит процесс деления.

Рост и развитие всех многоклеточных организмов всегда связаны с делением клеток.


У человека и животных во взрослом состоянии в некоторых тканях клетки постоянно отмирают и заменяются новыми, которые образуются как раз путем деления.

Следовательно, деление клеток является тем процессом, благодаря которому поддерживается жизнь всего организма и обеспечивается непрерывность жизни клетки.

Наряду с непрерывностью жизни клетки происходит и преемственность наследственных свойств от родительской клетки к дочерней.

То есть в процессе деления каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы обладать общей наследственной программой, специализироваться и выполнять функции, какие и выполняла материнская клетка.


Существуют два различных типа деления клетки: вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке -митоз, и репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства гамет - мейоз.

То есть клетки тела или соматические клетки образуются путем непрямого деления -митозом, а половые клетки (гаметы) образуются благодаря редукционному делению клетки или мейозу.

Сегодня наука может заглянуть в этот клеточный мир и проследить за процессами митоза и мейоза в клетках, приближая нас к раскрытию и пониманию еще одной тайны живой природы - самовоспроизведению.

Клеточный цикл

Для начала рассмотрим жизнь одной клетки нашего организма.

Весь период существования клетки от момента её образования до собственного деления или гибели называется клеточным циклом или жизненным циклом клетки.

Длительность жизненного цикла у разных клеток разная, но у большинства активно делящихся клеток, она составляет примерно от 10 до 24 часов.

У меня есть дополнительная информация к этой части урока!


Примеры длительности жизни клеток:

· у амебы жизненный цикл клетки равен 36 часам

· бактериальные клетки могут делиться каждые 20 минут

· у клеток кишечного эпителия грызунов цикл между делениями в среднем 15 часов

· клетки крови человека: тромбоциты живут около 7- 11 дней, лейкоциты - от одного дня до нескольких недель, эритроциты живут 30-120 дней

· нервные клетки перестают делиться ещё во время внутриутробного развития, их жизнь зависит от времени жизни ткани или органа, в состав которых они входят

Ученые выделяют следующие периоды в этом жизненном цикле клетки у эукариот:

· интерфаза- период клеточного роста, во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Интерфаза подразделяется на период G1-фазы, период S-фазы, период G2-фазы, период G0-фазы

· период клеточного деления, обозначается как М- фаза

Посмотрите на схему жизненного цикла клетки:


Периоды интерфазы:

Название периода

Процессы, происходящие в клетке

Пресинтетический период- G1-фаза или фаза начального роста

2n- набор хромосом (двойной),

2c- количество ДНК

синтез всех РНК, ферментов, белков, образование рибосом, синтез АТФ, образование одномембранных органелл клетки, рост клетки, создание запаса питательных веществ

Синтетический период- S-фаза

2n4c- количество хромосом осталось прежним, а количество ДНК увеличилось вдвое

происходит репликация ДНК клеточного ядра, построение второй хроматиды и формирование двухроматидных хромосом

Постсинтетический период- G2-фаза

происходит подготовка к митозу, интенсивный синтез белков, РНК, деление митохондрий и пропластид (предшественники всех типов пластид) у растений, синтез АТФ, удвоение массы цитоплазмы, увеличение массы ядра

Период функционирования клеток- фаза покоя G0

период клеточного цикла, в течение которого клетки находятся в состоянии покоя и не делятся, клетка как бы находится вне клеточного цикла.

Примеры: нервные клетки или клетки сердечной мышцы. Они вступают в состояние покоя при достижении зрелости (то есть когда закончена их дифференцировка).

Некоторые клетки могут выйти из этого состояния и начать вновь деление.

У меня есть дополнительная информация к этой части урока!


Прохождение клеткой фаз клеточного цикла регулируется специальными белками- циклинами.

Циклины получили своё название от того, что их концентрация в клетке периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях

Период деления клетки.

Деление клетки- процесс образования из родительской клетки двух и более дочерних клеток.


Обычно деление клетки - это малая часть большого клеточного цикла.

У эукариот есть два различных типа деления клетки:

1) непрямое деление:

· митоз- вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке

· мейоз- репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства половых клеток

2) прямое деление- амитоз, встречается относительно редко и проявляется в отмирающих тканях, а также в клетках опухолей

Для того чтобы понять, как происходят процессы деления клеток, необходимо знать строение хромосом, ведь именно они играют важнейшую роль в передаче наследственной информации от клетки к клетке.

Пройти тест и получить оценку можно после входа или регистрации

Строение хромосом в различные периоды клеточного цикла

Хромосомы- это структуры, в которых сосредоточена большая часть наследственной информации.

Они располагаются в ядре эукариотической клетки, состоят из молекулы ДНК, которая связана с белками-гистонами.


Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки- центромеров.

Центромера- специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две сестринские хроматиды в митозе, а в мейозе гомологичные хромосомы в профазе и метафазе первого деления.

• центромера играет важную роль при расположении хромосом в виде метафазной пластинки в процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления

• каждая центромера разделяет хромосому на два плеча

Строение хромосомы:


В жизненном цикле клетки, а конкретно в синтетический период происходит репликация ДНК (удвоение), именно с этого момента каждая хромосома состоит уже не из одной хроматиды, а из двух хроматид.


Хроматида (от греч. chroma - цвет, краска + eidos - вид)- это нить молекулы ДНК, соединенная с белками. Является частью хромосомы от момента ее дупликации до разделения на две дочерние хроматиды в анафазе митоза или анафазе второго деления мейоза.

Типы хромосом (морфологические типы):

• акроцентрические (центромера расположена близко к концу хромосомы, и одно плечо значительно короче другого)

• субметацентрические (центромера смещена от середины хромосом, и одно плечо короче другого)

• метацентрические (центромера расположена в середине хромосомы, и плечи ее равны)

· телоцентрическая хромосома- хромосома, состоящая только из одного плеча и имеющая центромеру на самом краю; считается, что истинных телоцентрических хромосом не существует, т.к. даже маленькое второе плечо (визуально на хромосомных препаратах не выявляемое), по-видимому, всегда присутствует; часто такой вид хромосом используется в качестве синонима термина "акроцентрическая хромосома"


Гомологичные хромосомы- парные хромосомы, одинаковые по форме, размерам и набору генов.

Их гены в соответствующих (идентичных) участках представляют собой аллельные гены.

Аллельные гены- различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом.

Но следует отметить, что гомологичные хромосомы не идентичны друг другу по следующим причинам:

• хотя гомологичные хромосомы имеют один и тот же набор генов, но этот набор может быть представлен различными формами одного и того же гена.

К примеру, у вас в гомологичных хромосомах есть участок с аллельными генами, которые определяют цвет ваших глаз. От матери в вашу гомологичную хромосому попал ген, отвечающий за карий цвет глаз- доминантный (сильный) признак, а от отца в хромосому попал ген, отвечающий за серый цвет глаз- это рецессивный (слабый) признак. Таким образом, аллельные гены отвечают за один признак- цвет глаз, но этот ген представлен в данном случае различными формами (доминантный и рецессивный, серый и карий).

То есть ген один, а проявление его разное, поэтому мы говорим о гомологии, а не о идентичности.

• также в результате некоторых мутаций (удвоение хромосом, утраты ее частей и других причин) могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов

Для каждого эукариотического организма характерен свой набор хромосом.

Количество, формы размеры хромосом у каждого организма различны.

К примеру, у человека всего 46 хромосом с 20-25 тыс. активных генов, а у коровы 60 хромосом с 22 тыс. активных генов.

А для проведения анализа и исследования всех хромосом клетки, ученые выделили такое понятие как кариотип.

Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры.

Кариотип- совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида данного организма (индивидуальный кариотип).

В комплекс характеристик кариотипа входят:

• число хромосом, характерное для данного вида

• положение центромеры каждой хромосомы

• рисунок дифференциального окрашивания хромосом (специальный метод окрашивания, который позволяет по рисунку чередующихся поперечных темных и светлых полос на хромосоме идентифицировать конкретную хромосому или ее участок)

Рассмотрим кариотип человека:


По рисунку мы видим кариотип здорового человека, который включает 22 пары неполовых хромосом (аутосом) и пару половых хромосом (ХХ (женский пол) или ХY (мужской пол).

Хромосомы в кариотипе различаются размерами, формой, положением центромеры, рисунком окрашивания.

Каждая хромосома содержит определенный набор генов (например, в первой хромосоме хранятся гены A, B, C, D, во второй хромосоме - гены K, L, M, N). Каждый ген отвечает за свой признак (один ген отвечает за цвет глаз, другой за структуру волос, третий отвечает за проявление праворукости или леворукости и так далее.

Хромосомы также нумеруют: самая большая хромосома- первая, и далее, чем меньше хромосома, тем больший номер она получает.

На рисунке вы видите, что каждая хромосома состоит из двух сестринских хроматид (не забывайте, что каждая хроматида содержит 1 молекулу ДНК).

Поэтому получается, что хромосома одна, но она содержит 2 молекулы ДНК.

Помимо этого у диплоидного организма имеется двойной набор хромосом.

То есть у каждой хромосомы есть гомологичная ей хромосома, это тоже вы можете разглядеть на рисунке.

У человека имеются 22 пары гомологичных хромосом (плюс пара половых хромосом, которые негомологичны друг другу).

Один набор хромосом человек получает от матери, другой от отца.

Объединение этих наборов происходит при оплодотворении.

Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Такой набор хромосом называется гаплоидный или одинарный (от греч. haploos- одиночный, простой и eidos- вид).

У человека путем мейоза образуются половые клетки (гаметы), каждая из них несет 23 хромосомы, а не 46, как в обычной соматической клетке.

В биологии обычно количество хромосом в клетке обозначается буквой n:

1n или просто одной буквой n- гаплоидный (одинарный) набор хромосом

2 n- диплоидный (двойной) набор хромосом

с- количество ДНК в хромосоме.

Количество хромосом в жизненном цикле разных организмов может быть разным.

У животных хромосомный набор диплоидный, а гаплоидны только гаметы.

Например, у хламидомонады, наоборот, гаплоидный набор хромосом на протяжении всего жизненного цикла, а диплоидна лишь зигота, которая сразу вступает в мейоз.

У некоторых растений наблюдаются сразу две фазы:

• у мхов преобладает гаметофит - он обладает гаплоидным набором хромосом

• у папоротников взрослого растения спорофита, наоборот, основная жизненная стадия представлена диплоидным набором хромосом

На спорофите путем митоза образуются клетки спорангия- органы, производящие споры, клетки которого имеют также диплоидный набор хромосом.

Сами споры имеют гаплоидный набор хромосом, благодаря мейозу.

Также у папоротников есть стадия заростка, который прорастает из споры, - значит, и у него гаплоидный набор хромосом.

У семенных растений самостоятельной гаплоидной стадии не существует.

Нарушение структуры хромосом.

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений:

• генные мутации (изменения на молекулярном уровне)

• делеции- хромосомная перестройка, при которой происходит потеря участка хромосомы

• дупликации или удвоение- структурная хромосомная мутация, заключающаяся в удвоении участка хромосомы

• транслокации- тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому, приводят к развитию лимфом, сарком, лейкемии, шизофрении

• инверсии- это поворот определенного участка хромосомы на 180°; является следствием двух одновременных разрывов в одной хромосоме

Читайте также: