Краткое сообщение о математике

Обновлено: 20.05.2024

Зародилась математика в древнейшие времена. В те доисторические времена человек активно осваивал окружающий мир, накапливал фактический материала и преумножал жизненный опыт. Долгое время счет у древних людей был вещественным, то есть осуществлялся с помощью палочек, камней, пальцев и прочего. Постепенно к первобытному человеку пришло понимание того, что число можно отделить от его конкретного представителя. Древние люди сумели понять, что два яблока и два камня, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека. Так постепенно сформировалось понятие о натуральных числах, а к концу VII V вв. до н. э. и другие основные постулаты математики.

Бурное развитие математической науки обусловлено потребностями хозяйственной жизни человека. Земледелие, ремесло, обмен, торговля, налоги, обеспечение продовольствием, создание армии, измерение площадей земельных владений, объемов сосудов и многое другое заставляло людей заниматься счетом и вычислением. Со временем накопленные знания были приведены в четкую систему, благодаря чему человек смог вычленить особые понятия, методы и способы решения трудных задач, которые впоследствии легли в основу современной математической науки.

Еще в глубокой древности задолго до наступления нашей эры были сформулированы три основных понятия математики: число, величина и геометрическая фигура. В процессе тщательного счета и упорядочивания убитых на охоте зверей, сделанных горшков в мастерской, собранного урожая, возникло понятие натурального числа, как количественного, так и порядкового. В результате сравнения масс и объемов разнообразных сосудов и предметов человек пришел к пониманию понятия величина. В следствие изучения форм изделий и предметов, зданий и земельных участков и т.д. люди сформировали понятие геометрической фигуры, являющейся частью геометрического (буквально означает — измерение земли) пространства, сформированные абстрактные понятия были введены в арифметические действия над натуральными числами. Спустя некоторое время была установлена связь между натуральными числами и величинами, в результате чего появились дробные числа. Они получались в случае, когда результат измерений не выражался натуральным числом. Постепенно путем наблюдений и простейших логических рассуждений, люди пришли к простым, но гениальным по своей сути формулам для вычисления геометрических величин — длин, площадей, объемов. Из этого следует, что в это время арифметика и геометрия считались частями одного целого.


Цифры – условные знаки для обозначения чисел.
Первые цифры появились у египтян и вавилонян. У ряда народов (древние греки, финикияне, евреи, сирийцы) цифрами служили буквы алфавита, аналогичная система применялась и в России до 16 в. В средние века в Европе пользовались системой римских цифр (I, II, III, IV, V, VI и т. д.), основанной на употреблении особых знаков для десятичных разрядов
I = 1, X = 10, С = 100, М = 1000 и их половин V = 5, L = 50, D = 500. Современные цифры (арабские) перенесены в Европу арабами в 13 в. (по-видимому, из Индии) и получили широкое распространение со 2-й пол. 15 в. В узком смысле слова цифрами называются знаки: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Элементарная математика

С VI- XVIII веках до нашей эры длился полный уникальных открытий период в развитии математической науки. К этому времени математика становится самостоятельной наукой, с целым рядом своеобразных понятий и методов. Теперь начинается систематическое и логически последовательное посторенние основ математической науки.


Наиболее ценный вклад в становление математики внесли ученые Древней Греции. Главным достижением математической мысли того времени является становление и развитие понятия о доказательстве. В данный период развития цивилизации ученые стремились к четкому, последовательному и логическому построению своих мыслей. Древние греки строго выстраивали свои мысли и высказывания, в результате чего переход от одного смыслового звена к следующему не допускал места сомнениям, был неоспорим и заставлял всех принимать его без спора. Такой метод логических рассуждений получил название дедуктивного.

Дошедшие до нас тексты древнегреческого ученого Фалеса из Милета, позволяют считать его первым философом, который использовал в математике дедуктивный метод и доказательства. Именно Фалес доказал равенство углов при основании равнобедренного треугольника, равенство вертикальных углов, один из признаков равенства треугольников, равенство частей, на которые диаметр разбивает круг, и другие геометрические утверждения.


Метод логического доказательства математических утверждений Фалеса был всесторонне развит и усовершенствован учеными пифагорейцами в конце VI в. — середине V в. до н. э. Ученые пифагорейской школы доказали математическое утверждение, известное нам как теорема Пифагора.

Следующим этапом развития элементарной математики явилась попытка греческих ученых обосновать математику, оперируя геометрическими понятиями. С этого момента начинается развитие геометрической алгебры. Геометрический подход к алгебре сохранился и по сей день в некоторых терминах, к примеру, квадрат числа, куб числа, геометрическое среднее, геометрическая прогрессия и т. д.Вклад древнегреческих математиков трудно переоценить. Благодаря их трудам математическая наука продвинулась очень далеко. Именно древние греки классифицировали открыли все виды правильных многогранников, вывели основные формулы для определения объемов тел, изучили кривые линии — эллипс, гиперболу, параболу, спирали.

XVII — XVIII века— третий период развития математической науки. Начало века было ознаменовано выдающимися математическими исследованиями Рене Декарта. В своих трудах Декарт исправляет ошибочные представления античных математиков и вновь возвращает числу алгебраическое понимание взамен геометрического. К тому же Декарт показывает новый способ перевода геометрических предложений на алгебраический язык. Это осуществлялось с помощью системы координат, которая впоследствии стала носить имя своего создателя. Благодаря декартовой системе координат эффективность математических исследований становится на порядок выше. Таким образом, появилась аналитическая геометрия. Кроме того, именно Рене Декарту принадлежит заслуга введения нового математического понятия переменной величины.

Выдающимся достижением рассматриваемого периода в становлении математической науки явилось введение нового обобщенного понятия функции. Введенное в конце XVII в. немецким математиком и философом Г. В. Лейбницем, понятие функции воплотило в себе общефилософскую идею о всеобщей взаимосвязи явлений материального мира.

Понятия переменной и функции есть не что иное, как абстракции конкретных переменных величин таких, как координата, скорость, ускорение и тому подобные, и конкретных зависимостей между ними, к примеру, закон свободного падения. Результатом углубленного изучения общих свойств зависимостей между переменными величинами стало создание математического анализа. XVIII век по праву называют веком анализа в математике. Благодаря обмену идеями, происходившему в процессе взаимодействия, была сформирована математическая физика.

В области геометрии и механики конца XVII в. было также сделано немало важных открытий. Выдающийся английский физик и математик Исаак Ньютон создал основу дифференциального и интегрального исчисления. Это открытие Ньютон совершил одновременно с Г.В. Лейбницем. Анализ и механика развивались в тесном взаимодействии, однако впервые эти две области научного знания объединил Эйлер. Теперь механика стала прикладным разделом анализа.

Значительные успехи в этой области были достигнуты в XVIII-XIX столетиях. К этому времени математики научились составлять и решать дифференциальные уравнения и уравнения в частных производных, в которых соединялись многие вопросы математической физики.
На рубеже XVIII — XIXвв в свет выходят многочисленные специализированные математические журналы. Значительно увеличивается количество научно-популярной литературы. В это же время возникает и развивается теория вероятностей.
В современный период развития математической науки, впитавший в себя достижения предыдущих эпох, было сделано много невероятных открытий, опровергнуты ошибочные убеждения, созданы и развиты новые теории.

Одним из самых выдающихся открытий того времени является построение так называемой неевклидовой геометрии. Созданная великим русским математиком Н. И. Лобачевским новая геометрия стала своеобразным символом внутреннего развития математики. Теперь аксиомы рассматривают как гипотезы. К концу XIX века сложился ряд строгих требований к практической работе математиков, который сегодня составляет предмет математической логики.

Не менее важным этапом в развитии математической науки стало углубленное изучение геометрических пространств. Весомый вклад в развитие этой области внес Риман. Интенсивное изучение функциональных пространство позволило создать новый раздел математики — функциональный анализ, в котором геометрические понятия и идеи используются для решения сложных задач математического анализа.

В области механики и математической физики разработана теория обыкновенных дифференциальных уравнений и дифференциальных уравнений с частичными производными и пр.

Направление алгебраических исследований изменяется в сторону общих алгебраических систем, теории групп, полей, колец. На стыке алгебры и геометрии возникает новая теория непрерывных групп.

Новые методы анализа и алгебры, созданные в начале ХХ века, были использованы при создании и дальнейшем использовании ЭВМ. Таким образом, было найдено практическое применение результатов теоретико-математических исследований, а методы анализа и алгебры легли в основу нового раздела науки — вычислительную математику.


Математика – точная дисциплина, которую называют царицей всех наук. Принято считать, что первые числа появились тысячи лет тому назад, вместе с речью. По этому поводу Ф. Энгельс писал, что самый древний источник математических знаний – это пальцы рук. Среди самых древних математических документов, дошедших до наших дней, считают записи вавилонян. По оценкам ученых, они сделаны более восьми тысяч лет назад. Математические записи встречаются и у других народов. Так как появилась математика, и кто ее придумал?

Как появилась математика

История

Никто точно не может сказать, как появилась математика. Сведения о ней содержатся в разных письменах у различных народов. Самые древние сведения, дошедшие до наших дней – клинописные таблички.

Найденные артефакты эпохи Вавилона показывают, что даже шесть тысяч лет тому назад люди вели подсчеты домашних расходов, торговых сделок, решали математические задачки. Позже вавилоняне начали решать сложные алгебраические задачки, кубические и квадратные вычисления.

А как появилась математика с дробями, когда это было? Такие сложные действия люди научились вычислять не сразу, однако уже в Древнем Египте умели проводить вычисления с дробями, у которых в числительном была единица. Десятичные дроби появились благодаря самаркандскому математику Д. ибо-Самосуд аль-Каши пятьсот лет назад. Спустя почти два столетия фламандский математик Стивен ввел их в Европе.

Даже сегодня в математике совершаются различные открытия. Это связано с тем, что математика – наука, которая не стоит на месте, а постоянно движется вперед.

Рукописи Тимбукту

Становление науки

С тех пор, как появилась математика, люди стали более разумными. В давние времена счет был нужен для занятия всеми видами деятельности. Математику применяли в скотоводстве, торговле. Чтобы было удобнее пользоваться счетом, применяли части тела: пальцы рук, ног. Об этом свидетельствуют древние наскальные рисунки, которые изображают числа в виде определенного количества изображенных пальцев рук.

Первые открытия

Многие ученые пытаются разгадать загадку истории – как появилась математика. Однако точную дату возникновения науки никто не может назвать.

Среди всех существующих открытий, самое значимое – изобретение самого числа и четырех основных действий: сложения, вычитания, деления и умножения. Среди геометрических понятий, первыми достижениями стали прямая и окружность. Далее огромный вклад в развитие науки внесли вавилоняне и египтяне примерно три тысячи лет назад. Исходя из этого, отвечая на вопрос, где появилась математика, можно сказать, что она зародилась в Вавилоне, а затем в Египте. Сохранившиеся таблички показывают, какие вычисления проводились в те времена.

Откуда появилась математика

Наука в Вавилоне и Египте

В Вавилоне, откуда появилась математика, постоянно разрабатывались исследования, в которых применялись единицы и десятки. Именно вавилонские ученые придумали градусы, разрабатывались системы исчисления. Однако в вавилонской системе не было нуля, из-за чего обозначение некоторых чисел было сложным.

В Египте числа обозначались в виде иероглифов.

До семнадцатого века математика считалась наукой, которая изучает числа, геометрические фигуры, величины. Ее применяли в торговле, астрономии, архитектуре, при проведении земляных работ. И только с восемнадцатого столетия она начала свое бурное развитие.

История о математике

Ученые все еще задаются вопросом, в какой стране появилась математика. Есть свидетельства, показывающие, что простые измерения проводились у инков. Этот народ разработал особую узелковую систему счета, которая позволяла вести подсчеты доходов и расходов.

Из Древнего Египта до нас дошли тексты решения задач. Египтяне знали дроби, проводили расчеты площадей, объемов. Одному из документов более четырех тысяч лет – это папирус Ринда.

Из библиотеки Ашшурбанипала до нас дошли глиняные таблички. Междуречье считалось высокоразвитым. Здесь даже математика была более высокого уровня, чем в других странах.

Не малый вклад в развитие науки сделали древние греки. Около трехсотого года до нашей эры, Евклидий создал манускрипт, посвященный геометрии. Позже вклад в науку внесли другие ученые.

Табличка счет

Интересные факты

Ниже представлено краткое содержание, как появилась математика, какие с ней связаны интересные факты. Оказывается, что эта наука еще сложнее, чем кажется.

  1. Вся наука математики умещается в 100 000 книг.
  2. Первая женщина-математик – Гипатия, жившая в Древней Византии еще за 500 лет до нашей эры.
  3. Самое загадочное число, с которым связано не только множество математических открытий, но и религиозных писаний – 666.
  4. В парламенте Европы имеется кресло с номером 666, которое всегда пустое.
  5. По всему миру все объекты, которые попадают под номер 666, заменяются на другие цифры. Так, в мире не существует трасс с номером 666, маршруток, кодов телефонов.
  6. Самые первые найденные математические свидетельства были обнаружены в Свазиленде. На кости бабуинов выбиты черточки. Возраст данной находки более 40 000 лет.
  7. У каждого народа есть свое суеверное число. В России – это 13, а в Китае – 4, причем, у китайцев нет квартир с этим номером, в лифте нет четвертого этажа. В Италии не любят 17.
  8. Самые счастливые и популярные цифры по результатам опроса – это 7 и 3. Такие результаты не удивительны, ведь в древней религии с числом 7 связана положительная энергетика.
  9. Самое большое число в мире – это центилион. У него на конце 600 нулей.
  10. Самое малое число, известное ученым, даже не получило название. Это десятичная дробь, у которой после запятой перед единицей стоит сто миллионов триллионов триллионов нулей. Эта цифра не используется математиками, но применяется астрономами при расчетах вероятности формирования новой Вселенной из атома.

Древняя математика

Математика в жизни

Ежедневно люди применяют математику и даже не догадываются, что с этой наукой связано много интересного.

Когда-то в Англии жил ученый А. де Муавр. Его заинтересовал факт увеличения продолжительности сна. Ученый заметил, что его сон увеличивается на пятнадцать минут. Как математику, ему стало интересно, к чему это может привести. Ученый подсчитал, когда его сон будет занимать 24 часа. Эта дата выпала на 27 ноября 1754 г. – дату его смерти.

В российских школах число ноль не считается натуральным, а вот в западных – оно относится к множеству натуральных чисел.

Математики всегда пытаются выполнять с цифрами различные действия, даже играя в казино. Оказывается, если сложить все цифры рулетки, то сумма будет 666.

Математические таблички в Индии

В истории много занимательных математических фактов. К примеру, число пи стали использовать еще в шестом веке до нашей эры, квадратные уравнения появились в Индии в VI веке нашей эры. Древнегреческие ученые писали труды, посвященные математике, на десятки томов. Их работы до сих пор используются учеными.

Кто из величайших и самых известных математиков когда-либо жил? Что ж, его ответ нелегок, поскольку математика была известна человечеству с доисторических времен, задолго до рождения Христа.

Роль математики в нашей жизни огромна. Математика позволила передавать электричество на тысячи километров, помогла изучить концепцию ДНК, породила компьютеры, и в нашем стремлении лучше понять вселенную.

Без математики ученые не могут разрабатывать лучшие лекарства, а инженеры не могут исследовать новые технологии. У этого списка нет конца.

Как и большинство вещей, математика, которую мы знаем сегодня, возникла не просто случайно. Математикам требуются десятилетия, чтобы сформулировать новую революционную теорему и уравнение. Так кто же эти математики? Давайте разберемся.

16. Сриниваса Рамануджан


Известен: гипотеза Рамануджана – Петерссона; Основная теорема Рамануджана

Сриниваса Рамануджан был, пожалуй, самым замечательным математиком в современной Индии. Хотя Рамануджан не имел формальной подготовки, его продвинутые математические знания в очень молодом возрасте приводили многих в замешательство.

К 16 годам он смог изучать числа Бернулли, которые он сам разработал, и рассчитал постоянную Эйлера-Маскерони. Перед смертью в молодом возрасте 32 лет Рамануджан успешно собрал почти 4000 различных математических тождеств.

Он приобрел международную известность после того, как выдающийся британский математик Дж. Харди узнал его работу и сравнил его с такими, как Эйлер и Якоби.

15. Жозеф-Луи Лагранж


Известен: Лагранжевой механики; Небесная механика; Теория чисел

Джозеф Лагранж был одним из самых заметных учеников великого Леонарда Эйлера. Лагранж начал свою математическую карьеру с вариационного исчисления (в 1754 году), которое привело к формулировке уравнения Эйлера – Лагранжа.

Лагранж переформулировал классическую механику, чтобы представить механику Лагранжа несколько лет спустя. Его знаменитая работа по аналитической механике (Mécanique analytique) помогла другим исследователям развить область математической физики.

14. Эндрю Уайлс


Награды: Приз Волка (1995/6); Премия Абеля (2016)

В 1975 году под руководством Джона Х. Коутса Эндрю Уайлс начал работать над теорией Ивасавы, которую он продолжил с американским математиком Барри Мазуром.

Однако его крупнейший прорыв произошел в начале 1990-х, когда он смог доказать большую часть теоремы модульности (ранее гипотеза Танияма-Шимура). Теорема модульности, по сути, связана с последней теоремой Ферма и была достаточной для ее доказательства.

Мистер Уайлз в настоящее время работает профессором-исследователем в Оксфордском университете.

13. Карл Густав Джейкоб Якоби


Известен: эллиптических функций Якоби; Преобразование Якоби

Карл Густав Якоби был одним из выдающихся математиков 19-го века. Его формулировка теории эллиптических функций , возможно, является его величайшим вкладом в эту область. Якоби также сыграл важную роль в исследованиях дифференциальных уравнений и рациональной механики (теория Гамильтона-Якоби).

Кроме того, он внес фундаментальный вклад в области механической динамики и теории чисел.

12. Алан Тьюринг


Известен: Криптоанализ загадки, Доказательства Тьюринга, премия Смита (1936)

Во время Второй мировой войны немецкая разведывательная сеть считалась почти непробиваемой. Многие союзные страны боялись, что, если они не смогут перехватить важные передачи нацистского верховного командования, они могут в конечном итоге проиграть войну.

Это был Алан Тьюринг, который благодаря своим беспрецедентным математическим и криптоаналитическим способностям значительно улучшил бомбу польского производства и разработал машину, способную быстрее декодировать Enigma.

После окончания войны Тьюринг присоединился к Национальной физической лаборатории (Великобритания), где он разработал автоматический вычислительный движок, один из самых ранних компьютеров с хранимой программой.

Позже в своей карьере он отвлек свое внимание на теоретическую биологию. Именно в это время он предсказал (математически) реакцию Белоусова – Жаботинского , которая позднее наблюдалась в 1960-х годах.

11. Г.Ф. Бернхард Риман


Известен: интеграл Римана; Ряд Фурье

Георг Бернхард Риман родился в небольшой деревне недалеко от Данненберга, Германия. Под руководством Карла Фридриха Гаусса Риман изучал дифференциальную геометрию и выдвигал свою теорию дополнительных или более высоких измерений. Его работа теперь известна как риманова геометрия.

На Римана оказал сильное влияние Иоганн Густав Дирихле, который также оказал влияние на его математическую карьеру. Только используя принцип Дирихле, он смог сформулировать знаменитую теорему Римана о отображении.

Некоторые из его математических уравнений были позже использованы Эйнштейном в его общей теории относительности.

10. Анри Пуанкаре


Анри Пуанкаре Генри Пуанкаре вместе с Мари Кюри на Сольвеевской конференции 1911 года

Известен: проблема с тремя телами; Теория хаоса; Теорема Пуанкаре – Хопфа

По словам Эрика Белла, известного шотландского математика, Анри Пуанкаре был, вероятно, одним из последних универсалистов, поскольку в то время он процветал почти во всех известных областях математики.

В течение своей жизни Пуанкаре внес многочисленные теории в области математической физики, прикладной математики и астрономии. Он сыграл важную роль в разработке теории специальной теории относительности.

Более того, его исключительные работы по преобразованию Лоренца и проблеме трех тел проложили путь математикам, а также астрофизикам к открытиям о нашей планете и космосе. Его теоретические работы даже вдохновили известных художников, таких как Пикассо и Брак, создать художественное движение (кубизм) в 20-м веке.

9. Дэвид Гильберт


Известен: теории доказательств; Проблемы Гильберта

Дэвид Гильберт был, пожалуй, самым известным математиком времени. Он сыграл важную роль в разработке фундаментальных теорий в области коммутативной алгебры, вариационного исчисления и математической физики.

Проблемы Гильберта (набор из двадцати трех математических задач, которые он опубликовал в 1900 году) повлияли на новаторские исследования в различных областях математики. Некоторые из этих проблем до сих пор не решены.

В последние дни Дэвид Гильберт посвятил себя физике. Именно в это время он соревновался с Альбертом Эйнштейном в общей теории относительности.

8. Фибоначчи


Известен по: числам Фибоначчи

Фибоначчи, также известный как Леонардо из Пизы, был одним из самых опытных математиков высокого средневековья.

Возможно, его самым важным вкладом в этот предмет является книга Либера Абачи, в которой он популяризировал индо-арабскую систему счисления (0,1,2,3,4. ) и последовательность Фибоначчи в Европе.

Последовательность Фибоначчи используется в компьютерных алгоритмах и базах данных.

7. Семья Бернулли


В мире математики семья Бернулли занимает особое место. Родом из Антверпена (Бельгия), Джейкоб и его брат Иоганн Бернулли были первыми математиками в этой семье.

И Джейкоб, и Иоганн работали вместе над бесконечно малым исчислением, и им приписывают теоремы и обоснования, такие как числа Бернулли и кривая Брахистохрона.

Даниэль Бернулли, сын Джейкоба, был одним из самых выдающихся членов семьи Бернулли. Его наиболее известная работа, принцип Бернулли, математически объясняет работу карбюратора и крыла самолета. Он также внес существенный вклад в области вероятности и статистики.

6. Пифагор


Пифагор (пишет книгу), изображенный на фреске Рафаэля "Афинская школа"

Известен: теорема Пифагора; Теория Пропорций

Пифагор Самосский родился около 570 г. до н.э. Как и большинство древних греков, о его молодости известно немногое. Как философ, его работы оказали влияние на Платона и Аристотеля, а также на Иоганна Кеплера и Исаака Ньютона.

Хотя его подлинность остается дискуссионной, многие математические выводы приписываются Пифагор. Возможно, самая известная из них - теорема Пифагора (названная в его честь). Многие историки утверждают, что эта теорема была известна вавилонянам задолго до Пифагора.

Пифагор, возможно, также был ответственен за открытие Теории Пропорций.

5. Карл Фридрих Гаусс


Награды: премия Лаланде (1809), медаль Копли (1838)

Карл Фридрих Гаусс был, пожалуй, самым влиятельным математиком со времен древних греков. Его вклад в различные области математики и физики практически не имеет аналогов. Гаусс начал проявлять математические способности в возрасте семи лет, когда он мог решать арифметические прогрессии намного быстрее, чем кто-либо в своем классе.

Некоторые из его популярных работ включают Закон Гаусса и Теорема Egregium, в которых сделан вывод, что Земля не может быть отображена на карте без искажений. Он был первым, кто предположил возможность неевклидовой геометрии, хотя его работы никогда не публиковались.

4. Иссак Ньютон


Известен: законы движения Ньютона; Исчисление; Ньютоновская механика

Сэр Иссак Ньютон является одним из основателей классической механики, а также исчисления бесконечно малых. Его взгляды на гравитацию оставались общепринятыми до теории относительности Эйнштейна.

Самый замечательный вклад Ньютона в математику — исчисление (тогда называемое бесконечно малыми), которое он разработал независимо от своего современника Готфрида Вильгельма Лейбница.

Это был Ньютон, который первым объяснил причину приливных возмущений на Земле и помог проверить закономерности движения планет Кеплера. Его работы по оптике дали нам первый в мире преломляющий телескоп.

3. Леонард Эйлер


Известен: догадки Эйлера; Уравнения Эйлера; Числа Эйлера

Эйлер внес значительный вклад почти во все основные области математики, включая алгебру, тригонометрию и геометрию. В физике его работы по гидродинамике и рядам Фурье не имеют себе равных.

2. Архимед


Известен: принцип Архимеда; гидростатика

Архимед родился примерно в 287 г. до н.э. в Сиракузах, Сицилия. Он хорошо разбирался в математике, физике и астрономии того времени. Он был эрудитом. Однако большинство его литературных произведений не сохранилось.

Архимед был одним из пионеров геометрии, который вывел формулы для площади круга, объема и площади поверхности сферы. Его метод определения значения числа пи оставался бесспорным и единственным известным способом вычисления окружности круга на протяжении десятилетий.

Филдса, самая высокая честь в области математики, несет портрет (справа облицовочный) Архимед вместе с цитатой приписываемой ему.

1. Евклид


Известен: евклидовой геометрии; Евклидов алгоритм

Евклид Александрийский был греческим математиком, которого многие считают основателем геометрии. Euclid's Elements, сборник из 13 книг, считается одной из самых старых и влиятельных книг по математике.

Хотя геометрия (которая теперь известна как евклидова геометрия) является фокусом в Элементах Евклида, она также имеет всеобъемлющее введение в теорию элементарных чисел. Его работы по оптике также получили широкое признание.

Системный подход Евклида в его работе - начиная с аксиом и затем логически получая сложные результаты, оказал влияние на некоторые из величайших умов последующих поколений. Principia Mathematica Ньютона - прекрасный пример этого.


Матема́тика (от др.-греч. μάθημα — изучение, наука) — наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов [1] . Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов [2] . Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы [3] .

Содержание

Основные сведения

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики (см. ниже).

Этимология

Определения

Одно из первых определений предмета математики дал Декарт [6] :

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

В советское время классическим считалось определение из БСЭ [7] , данное А. Н. Колмогоровым:

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Это определение Энгельса [8] ; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств,— именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Приведём ещё несколько современных определений.

Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований [11] .

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

    , : планиметрия и стереометрия
  • теория элементарных функций и элементы анализа

и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.

Программа обучения по специальности математика [13] образована следующими учебными дисциплинами:

2. Математика как специальность научных работников Министерством образования и науки Российской Федерации [14] подразделяется на специальности:

  • Вещественный, комплексный и функциональный анализ , динамические системы и оптимальное управление и топология и математическая статистика , алгебра и теория чисел и математическая кибернетика

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.

Обозначения

Вследствие того, что математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также математического анализа (понятия функции, производной и т. д.). Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история



Академиком А. Н. Колмогоровым предложена такая структура истории математики:


Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Основные темы

Числа

Преобразования

Структуры

Пространственные отношения

Более наглядные подходы в математике.

Дискретная математика

Дискретная математика включает средства, которые применяются над объектами, способными принимать только отдельные, не непрерывные значения.

Коды в системах классификации знаний

Онлайновые сервисы

Существует большое число сайтов, предоставляющих сервис для математических расчётов. Большинство из них англоязычные. [20] Из русскоязычных можно отметить сервис математических запросов поисковой системы Nigma.


Матема́тика (др.-греч. μᾰθημᾰτικά [1] μάθημα — изучение, наука) — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов [2] . Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов [3] . Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы [4] .

☀"математика это, скорее, язык, созданный для описания количественных отношений и пространственных форм объективного Мiръ(а) и математических языков несколько.

  • Каким математическим языком пользовались, например, Пифагор Архимедом, я так от современных математиков и не добился — не в курсе оне. Но то, что с помощью римских цыфирь доказать теорему пифагора невозможно оне, однако, соглашаются.

Содержание

Основные сведения

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики [5] .

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Этимология

Определения

Одно из первых определений предмета математики дал Декарт [9] :

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

В советское время классическим считалось определение из БСЭ [10] , данное А. Н. Колмогоровым:

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Это определение Энгельса [11] ; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

    , : планиметрия и стереометрия
  • теория элементарных функций и элементы анализа

и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.

Программа обучения по специальности математика [14] образована следующими учебными дисциплинами:

2. Математика как специальность научных работников Министерством образования и науки Российской Федерации [15] подразделяется на специальности:

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.

Обозначения

Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история


Кипу, использовались инками для записи чисел

Академиком А. Н. Колмогоровым предложена такая структура истории математики:

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Основные темы

Числа

Натуральные числа ( >" width="" height="" />
) • Целые ( >" width="" height="" />
) • Рациональные ( >" width="" height="" />
) • Алгебраические ( >>>" width="" height="" />
) • Периоды • Вычислимые • Арифметические

Читайте также: