Галактическая система координат в астрономии сообщение

Обновлено: 02.07.2024

Как известно, люди с древних времён использовали звездные координаты в своей повседневной жизни. Например, по светилам мореплаватели ориентировались в пространстве, да и не только они, начинались или заканчивались сельскохозяйственные работы и многое другое. Более того, создавались настоящие календари работ, где положение звезд, можно сказать, советовало и диктовало людям когда и чем заниматься.

Какие существуют звездные координаты и системы

Разумеется, с течением времени человек более или менее упорядочил информацию о светилах. В результате в астрономии существует несколько видов систематизации звёзд.

Горизонтальная или топоцентрическая система

Проще говоря, она отражает положение светил относительно земного горизонта. Если точнее, то показывает две звездные координаты:

1) Высота над горизонтом, имеющая угловое значение и измеряемая в градусах. Здесь важно понимать, что обозначает расположение объекта.

Во-первых, наивысшая точка — зенит (+90). Во-вторых, если звёздное тело лежит на линии горизонта, то значит имеет нулевое значение. И, в-третьих, прямо противоположное зениту положение-надир (-90), когда светило находится как будто прямо под наблюдателем.

2) Азимут — угловое значение между линиями, лежащими на горизонте, которые имеют направление на объект и на север.

Горизонтальную систему часто называют топоцентрической, поскольку данные звездные координаты связаны с какой-либо определённой точкой на земной поверхности.

Топоцентрическая система координат

Топоцентрическая система координат

Стоит отметить, что оба значения постоянно меняются, поэтому определять координаты звезд на звездной карте довольно проблематично.

Первая экваториальная система

В отличие от предыдущей, экваториальные координаты звезд связаны не только с земной поверхностью, но и со сферой неба. Более того, основной плоскостью выступает небесный экватор. Также имеет две основные звездные координаты:

1) Склонение, которое, к слову, относительно постоянно. Для его определения измеряют угол между экваториальной плоскостью и прямой линией, направленной на звезду.
Как оказалось, дуга круга склонения отсчитывается к северному полюсу мира от 0 до +90 градусов, а также к южному полюсу мира от 0 до -90 градусов.

2) Часовой угол между небесным меридианом и линией, направленной на светило. Прежде всего, эта координата зависит от того, где и в какое время располагается наблюдатель.
А вот отсчёт часового угла ведётся в сторону суточного вращения неба от 0 до 360 градусов (в сторону запада).

Часовой угол на небесной сфере

Небесный меридиан — круг небесной сферы, проходящий сквозь зенит, полюс мира, южный полюс и надир.

Однако применение данной системы не совсем удобно для того, чтобы определять положение звезд.

Вторая экваториальная система

Вот её как раз применяют для определения звездных координат на небесной сфере. Хотя основной плоскостью также является экваториальная плоскость неба. Правда, одна из её координат точно такая же, как у первой системы. А именно склонение.

Собственно говоря, отличие заключается во втором значении положения светила. Она называется прямым восхождением и отражает угол между двумя линиями, расположенными на небесном экваторе, которые пересекаются там, где этот экватор пересекается с осью мира.

Таким образом получается, что первая линия тянется к точке весеннего равноденствия, а вторая к точке проекции звезды на экватор неба.

Прямое восхождение, точнее его угол, измеряется по экваториальной дуге. Причем обязательно по часовой стрелке. Что интересно, единицей измерения могут быть как градусы, так и минуты и часы. Один час равен 15 градусам.

Между прочим, во второй системе оси являются недвижимыми для удалённых объектов космоса.

Ось мира — это прямая, соответствующая географической земной оси, которая проходит сквозь небесный свод в Северном и Южном полюсах мира.

Эклиптическая система

Для того, чтобы определять координаты близких к Земле звезд на звездной карте неба, используют эклиптическую систему. Главным образом, она отличается от других способов тем, что за основную плоскость берут плоскость эклиптики. То есть область, где проходит земная орбита при вращении вокруг Солнца.

Звездные координаты эклиптической системы:

  • Широта эклиптики-дуга круга широты, которая берёт начало от эклиптики и протянута до светила.
  • Долгота эклиптики-дуга от точки весеннего равноденствия до круга широты звёзд.

Помимо того, что такой подход позволяет узнать положение ближайших космических тел, его использование показывает, где находится Земля относительно других астрономических объектов.

Галактическая система

На самом деле, галактическая система координирования необходима при более масштабных поисках и расчётах. Поскольку ни один из перечисленных выше способов не актуален при определении расположения удалённых от нас космических объектов, к примеру галактик и туманностей.

Здесь, собственно говоря, основой выступает плоскость галактики Млечный Путь. А координирующими значениями являются галактические широта и долгота.

Таблица экваториальные координаты звезд

Как вы понимаете, здесь важно отметить значения склонения и прямого восхождения светил. Например, возьмём несколько разных звёзд.

ЗвездаСклонение (градусы/минуты)Прямое восхождение (ч/мин)
Альтаир+8/4419/48,3
Арктур+19/2714/13,4
Вега+38/4418/35,2
Ригель-8/155/12,1
координаты некоторых звезд

Итак, для того, чтобы найти звезды, используют поиск по координатам. Ведь они как раз отражают местоположение тела на карте неба. Кроме того, для определения их положения также применяют координаты или определённую систему.

Как видно, звездные координаты указывают с помощью двух величин или дуг, которые характеризуют, где располагается звезда на небесной сфере. Помимо этого, можно выделить главные различия между каждой системой. В первую очередь, это выбор центральной плоскости. А во вторую очередь, отличие заключается в выборе начала отсчёта.

Стоит отметить, что карта неба не отражает расстояние до светил. А лишь указывает, где они находятся. Вероятно, по этой причине при ориентировании на местности удобно обращаться к светящимся космическим соседям. Что, собственно говоря, на протяжении многих лет и делали люди.

НЕБЕ́СНЫЕ КООРДИНА́ТЫ, чис­ла, опи­сы­ваю­щие по­ло­же­ние све­ти­ла на не­бес­ной сфе­ре . Как пра­ви­ло, ис­поль­зу­ют сфе­рич. сис­те­мы ко­ор­ди­нат, в ко­то­рых по­ло­же­ние на за­дан­ной сфе­ре опи­сы­ва­ет­ся дву­мя уг­ло­вы­ми ве­ли­чи­на­ми. Ес­ли рас­стоя­ния до све­тил из­вест­ны, то при­ме­ни­мы так­же де­кар­то­вы сис­те­мы ко­ор­ди­нат, но обыч­но вме­сто рас­стоя­ния ука­зы­ва­ет­ся па­рал­лакс не­бес­но­го све­ти­ла. При вы­со­ко­точ­ных из­ме­ре­ни­ях тре­бу­ет­ся учи­ты­вать эф­фек­ты об­щей тео­рии от­но­си­тель­но­сти. В этом слу­чае по­ло­же­ние све­ти­ла опи­сы­ва­ет­ся от­но­си­тель­но сис­тем от­счёта, яв­ляю­щих­ся со­во­куп­но­стью ко­ор­ди­нат­ных осей и шка­лы вре­ме­ни (вре­мя рас­смат­ри­ва­ет­ся как чет­вёр­тая ко­ор­ди­на­та не­бес­но­го те­ла).

Системы небесных координат используются в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Небесные координаты вводятся на геометрически правильной поверхности небесной сферы координатной сеткой, подобной сетке меридианов и параллелей на Земле. Координатная сетка определяется двумя плоскостями: плоскостью экватора системы и связанными с ним двумя полюсами, а также плоскостью начального меридиана.

В астрономии применяют несколько систем небесных координат, удобных для решения различных научных и практических задач. При этом используются известные плоскости, круги и точки небесной сферы.

В зависимости от стоящей задачи, может быть более удобным использовать ту или иную систему. Наиболее часто используются горизонтальная и экваториальные системы координат . Реже — эклиптическая , галактическая и другие.

1. Горизонтальная система небесных координат


Аналогом географической долготы в горизонтальной системе координат служит азимут , представляющий собой двугранный угол между плоскостью вертикала, проходящего через зенит и рассматриваемую точку, и плоскостью небесного меридиана.

Поскольку обе указанные плоскости перпендикулярны плоскости математического горизонта, мерой двугранного угла может служить соответствующий угол между их следами в горизонтальной плоскости (альфа). В геодезии принято отсчитывать азимуты от направления на точку севера по часовой стрелке (через точки востока, юга и запада) от 0 до 360°. В астрономии азимуты отсчитываются в том же направлении, однако часто начиная от точки юга. Тем самым астрономические и геодезические азимуты отличаются друг от друга на 180°, поэтому важно при решении той или иной задачи на небесной сфере выявить, с каким именно азимутом приходится иметь дело.

2. Экваториальная система небесных координат


Другая координата в экваториальной системе вводится двумя способами .

В первом случае начальной плоскостью служит плоскость небесного меридиана места наблюдений; координата, аналогичная земной долготе, в этом случае называется часовым углом и измеряется в часовой мере — часах, минутах и секундах. Часовой угол отсчитывается от южной части небесного меридиана в направлении суточного вращения неба до часового круга светила. Вследствие вращения небосвода часовой угол одного и того же светила в течение суток меняется в пределах от 0 до 24 ч. Такая система небесных координат носит название первой экваториальной . Часовой угол зависит не только от времени наблюдений, но и от места наблюдений на земной поверхности.

Во втором случае начальной плоскостью служит плоскость, проходящая через ось мира и точку весеннего равноденствия, которая вращается вместе со всей небесной сферой. Координата, аналогичная земной долготе, в этом случае называется прямым восxождением (альфа) и отсчитывается в часовой мере в направлении, обратном направлению вращения звездного неба. Для разных светил она имеет значения от 0 до 24 ч. Однако, в отличие от часовых углов, величина прямого восхождения одного и того же светила не меняется вследствие суточного вращения небосвода и не зависит от места наблюдений на поверхности Земли. Склонения и прямые восхождения называются второй экваториальной системой небесных координат. Эта система используется в звездных каталогах и на звездных картах.

3. Эклиптическая система небесных координат


Эклиптическая система исторически появилась раньше второй экваториальной. Она была удобной потому, что древние угломерные инструменты, такие, например, как армиллярная сфера, были приспособлены для измерения непосредственно эклиптических координат Солнца, планет и звезд. В связи с этим эклиптическая система является основой всех старинных звездных каталогов и атласов звездного неба.

4. Галактическая система небесных координат

Системы небесных координат подразделены также в зависимости от положения их центра в пространстве. Так, топоцентрической называют систему небесных координат, центр которой находится в какой-либо точке на поверхности Земли. Если для решения поставленной задачи используется система координат с центром в центре Земли, то ее называют геоцентрической системой небесных координат . Аналогичным образом систему с центром в центре Луны называют селеноцентрической , с центром в одной из планет — планетоцентрической (или более детально: для Марса — а р е о-центрической , для Венеры — афро-центрической и т. п.). Система небесных координат с центром в центре Солнца называется гелиоцентрической .

5. Изменения координат при вращении небесной сферы

Высота h , зенитное расстояние z , азимут A и часовой угол t светил постоянно изменяются вследствие вращения небесной сферы, так как отсчитываются от точек, не связанных с этим вращением.

Склонение δ , полярное расстояние p и прямое восхождение α светил при вращении небесной сферы не изменяются, но они могут меняться из-за движений светил, не связанных с суточным вращением.

6. Использование различных систем координат

Горизонтальная система координат используется для определения направления на светило с помощью угломерных инструментов и при наблюдениях в телескоп, смонтированный на азимутальной установке.

Первая экваториальная система координат используется для определения точного времени и при наблюдениях в телескоп, смонтированный на экваториальной установке.

Вторая экваториальная система координат является общепринятой в астрометрии. В этой системе составляются звёздные карты и описываются положения светил в каталогах.

Эклиптическая система координат используется в теоретической астрономии при определении орбит небесных тел.

Список используемой литературы

Учебная литература:

1. Подобед В.В.Фундаментальная астрометрия. Установление фундаментальной системы небесных координат. – М.: Наука, 1968 г.

Еще одной, часто используемой, особенно в звездной динамике, системой координат является галактическая система.

Наша Галактика, или Млечный Путь, классифицируется как спиральная галактика. Основными составляющими Галактики являются плоский диск диаметром более 100000 световых лет, ядро и гало. Большая часть звезд и газопылевых облаков сосредоточены в галактическом диске. Структура диска неоднородна; известны несколько спиральных рукавов, в которых плотность звезд и газа значительно выше средней. Значительная часть звезд концентрируется к центральной части, или к галактическому ядру, и образует в центре Галактики утолщение. И, наконец, третьей составляющей Галактики является гало, которое состоит из старых звезд и шаровых скоплений. Гало имеет практически сферическую форму.

Солнце находится на периферии Галактики (на расстоянии примерно 28000 световых лет от ее центра) и является одной из звезд, составляющих ее диск. Так как мы смотрим на Галактику изнутри, находясь в ее диске, то последний проецируется на небесную сферу как полоса звезд, или Млечный Путь. Вместе с ближайшими к нему звездами Солнце движется со скоростью примерно 250 км/с в направлении созвездия Лебедя. Это движение объясняется вращением галактического диска. Солнце делает полный оборот вокруг центра Галактики за период млн. лет.

Для изучения движения звезд в Галактике за основную плоскость галактической системы координат естественно принять плоскость диска. Положение основной плоскости в экваториальной системе задается координатами одного из полюсов галактической системы.

При обработке результатов проекта HIPPARCOS галактическая система координат была определена следующим образом 3.5 . Обозначим точку, экваториальные координаты которой на эпоху J2000.0 равны

как и назовем ее северным галактическим полюсом, а диаметрально противоположную точку -- южным. Большой круг, перпендикулярный линии, соединяющей полюсы, назовем галактическим экватором (рис. 3.5).

Рис. 3.5. Галактическая система координат

Определение 3.4.1 Большой круг, проходящий через звезду и полюсы Галактики, называется кругом галактической широты.

Если точка является точкой пересечения круга широты и галактического экватора, то дуга называется галактической широтой звезды: . Галактические широты положительны в северном и отрицательны в южном полушарии: . Раньше галактические долготы отсчитывались от восходящего узла , то есть точки пересечения галактического и небесного экваторов , прямое восхождение которой равнялось . Сейчас начало отсчета долгот (точка на рис. 3.5 -- направление на центр Галактики) определяется галактической долготой восходящего узла , которая равна . Галактические долготы отсчитываются от до против часовой стрелки, если смотреть с северного полюса Галактики.

Единичный вектор в направлении северного полюса Галактики обозначим как , а вектор, направленный в центр Галактики -- как . Ось галактической системы направим вдоль вектора , ось -- вдоль . Ось определяется единичным вектором , который равен .

Аналогичным образом (заданием тройки базисных векторов) могут быть определены любые другие системы координат.

После определения основных сферических систем координат рассмотрим методы, используемые для преобразования координат из одной системы в другую .

Читайте также: