Черные дыры и темная материя сообщение

Обновлено: 02.07.2024

Темная материя, ускользающая в течение последних тридцати лет от детекторов физиков-экспериментаторов, может представлять собой первичные черные дыры — объекты, появившиеся на самой заре существования Вселенной, когда привычной для нас материи еще не было. Впервые гипотеза о существовании таких черных дыр была высказана советскими учеными Яковым Зельдовичем и Игорем Новиковым в 1967 году. Один из тех, кто развивает эту теорию, — Бернард Карр (Bernard Carr), профессор математики и астрономии Лондонского университета королевы Марии и ученик Стивена Хокинга. Предлагаем читателям N + 1 узнать о первичных черных дырах из первых рук.

Хотелось бы задать немного тривиальный вопрос: гипотеза о том, что первичные черные дыры могут составлять темную материю, все еще актуальна или уже была отвергнута?

Проблема темной материи сегодня все еще существует: большая часть материи — темная, есть серьезные доказательства этого, и сегодня предлагается множество кандидатов на роль составляющих ее частиц. Некоторые из них — элементарные частицы, так называемые вимпы . Однако исследователям интересны и другие кандидаты, в число которых входят первичные черные дыры. Наверное, большинству исследователей хотелось бы, чтобы темная материя оказалась одной из форм элементарных частиц — просто в мире гораздо больше специалистов по физике элементарных частиц, чем по астрофизике. Но проблема в том, что вимпы ищут уже около 30 лет, и до сих пор ничего не обнаружили. Их искали с помощью ускорителей, пытаясь отследить аннигиляцию частиц, а также методом прямого наблюдения взаимодействия частиц. Никаких признаков найти не удалось.

Это не значит, что темная материя не может состоять из частиц, однако никаких доказательств этого на сегодня нет. Конечно, спустя столько времени отрицательный результат немного разочаровывает.

Черные дыры интересны тем, что мы знаем, что они существуют и что они темные. Так что в некотором смысле черные дыры всегда были хорошими кандидатами на роль составляющих темной материи. Но известные нам объекты, продукты коллапса звезд и большие черные дыры в центре галактик, обладают гораздо меньшей плотностью, чем мы ожидаем от темной материи — лишь малой долей.

Вклад темной материи в критическую плотность Вселенной составляет 0,25. Однако плотность барионной материи должна быть меньше чем 0,05 от критической плотности. Таким образом, обычная барионная материя не может быть и темной материей, поэтому обычные черные дыры, которые рождаются при смерти звезд, не подходят на роль кандидатов. Однако первичные черные дыры сформировались очень рано, до первичного нуклеосинтеза и, возможно, они могут составлять темную материю.

Обычные черные дыры взаимодействуют с барионной материей: они поглощают ее, они гравитационно влияют на нее, и мы можем находить их с помощью косвенных методов. Кроме того, у них есть излучение Хокинга. Как первичные черные дыры могут быть темной материей, если получается, что они на самом деле не такие темные?

Первичные черные дыры охватывают огромный диапазон масс — начиная с планковской (2,18*10-5 грамма) до средней солнечной массы. Масса тех дыр, которые испаряются благодаря процессам, открытым Хокингом , составляет 1015 грамм, они очень маленькие. К настоящему времени они уже испарились и темную материю составлять не могут. Однако они все еще очень интересны из-за квантовых эффектов. И Стивен Хокинг стал думать о возможности испарения черных дыр именно в тот момент, когда размышлял о первичных черных дырах. Только они достаточно малы, чтобы уже испариться.

Даже если черных дыр не существуют, предполагать их наличие было крайне полезно, иначе бы Хокинг не открыл испарение Хокинга, а это — один из наиболее захватывающих результатов физики ХХ века. Звучит забавно, но этот случай показывает, что иногда бывает полезно думать о чем-то несуществующем, потому что даже если первичные черные дыры не сформировались, размышления об их возможных свойствах привели к важному открытию.

Тем не менее, первичные черные дыры с массой 1015 грамм не могут составлять темную материю, потому что они уже должны были бы испариться. Конечно, у них может быть масса других интересных эффектов — например, они могут взрываться и создавать гамма-всплески. Однако для темной материи нужны объекты покрупнее — и они вполне могут существовать.

Если эти первичные черные дыры массивнее, чем наше Солнце, тогда они будут похожи на черные дыры, рожденные в результате коллапса звезд. Мы будем наблюдать их как источники мощного рентгеновского излучения и гравитационные линзы, они будут поглощать материю и так далее. То есть их можно зарегистрировать и даже наложить на них ограничения.

Однако первичные черные дыры могут существовать и в другом промежутке масс — менее одной солнечной, но более 1015 грамм. Они меньше обычных, а значит, их труднее обнаружить. Тем не менее, способы все-таки существуют — например, через гравитационное линзирование.

Это надежная гипотеза или пока что все находится только на стадии дискуссии?

Это ничего не говорит нам об истине, я лишь обращаю внимание на то, что на астрономов до некоторой степени влияет область их работы. Я работал над первичными черными дырами почти 50 лет, поэтому надеюсь, что они реальны. Однако я принадлежу к меньшинству. Ученые, которые работают над другими типами темной материи, предпочли бы, чтобы правы оказались именно они. Но в действительности мы пока не знаем, кто прав, так как у нас нет доказательств.

Могли бы небольшие первичные черные дыры быть источником быстрых радиовспышек, которые зарегистрировала обсерватория Паркса и другие крупные радиотелескопы?

Не обязательно, но некоторые считают, что они могут быть связаны с источниками быстрых радиовсплесков. Все, что тут можно сделать — наложить ограничения на число и параметры черных дыр, которые не противоречат наблюдениям: если бы первичных черных дыр с определенной массой и плотностью было бы больше, мы бы видели радиовсплески чаще. Однако полностью исключить небольшие первичные черные дыры нельзя. Взрывы таких дыр могут ионизировать Вселенную, излучать электрон-позитронные потоки, так что, в принципе, они могут также отвечать за многие другие процессы.

Существует ли список критериев, по которому можно узнать, что мы видим первичную черную дыру при радиовспышке или другом электромагнитном событии?

Я не могу точно ответить на этот вопрос в контексте быстрых радиовсплесков, потому что здесь очень много моделей — как и с гамма-всплесками. На протяжении двадцати лет мы знали об их существовании, но не могли указать на их источник. И только благодаря LIGO мы узнали, что гамма-всплески могут происходить при слиянии нейтронных звезд. Однако предполагалось также, что небольшая часть коротких гамма-всплесков могла быть вызвана взрывами черных дыр. Довольно волнительно думать, удастся ли тебе найти взрывающиеся черные дыры, о которых говорил Хокинг. Это не самая популярная гипотеза, но это возможно.

Каждый раз, когда у нас появляется объяснение некоего явления, требующее наличия первичных черных дыр, необходимо спросить себя: возможно ли другое объяснение? И всегда другое объяснение есть. Поэтому не так-то просто получить однозначные доказательства, что наблюдаемое событие было вызвано первичной черной дырой. То же самое относится и к гравитационным волнам — доказать, что их источником были первичные черные дыры, будет нелегко.

Numerical simulation of two merging black holes performed by the Albert Einstein Institute in Germany: what this rendition shows through colors is the degree of perturbation of the spacetime fabric, the so-called gravitational waves. Werner Benger / NASA

Numerical simulation of two merging black holes performed by the Albert Einstein Institute in Germany: what this rendition shows through colors is the degree of perturbation of the spacetime fabric, the so-called gravitational waves. Werner Benger / NASA

Давайте вернемся назад: как могли сформироваться первичные черные дыры? И как они влияли на процессы в ранней Вселенной?

Первичные черные дыры могут формироваться самыми разными способами. Первая версия предполагала, что Вселенная с самого начала была не гомогенной, в ней возникали колебания плотности, благодаря которым, в конечном итоге, возникли галактики. Есть теория, что эти же колебания плотности могли привести к рождению черных дыр в ранней Вселенной, однако у них должна была быть намного большая амплитуда. В принципе, это возможно: первые модели, над которыми я работал, строились на колебаниях плотности.

Однако есть и другие способы. Например, может быть такая ситуация, что Вселенная в какой-то момент проходит через мягкое уравнение состояния, потому что сокращается давление. И если имеет место именно это, то черные дыры могут коллапсировать намного легче. Мои русские коллеги, Хлопов и Полнарев, много работали над этим сценарием. И если был такой переход, когда давление сильно упало, то первичные черные дыры могли сформироваться именно тогда.

Кроме того, рождение первичных черных дыр могло происходить с участием космических струн, которые формировали петли и коллапсировали. Еще есть доменные стенки .

Теория Виленкина?

Да, хотя он и не был первым, кто думал над этим сценарием.

Способ, который привлекает больше всего внимания, — инфляционный сценарий. Инфляция , в первую очередь, стремится избавиться от черных дыр, рожденных до того момента, как Вселенная начала раздуваться. Однако инфляция в то же самое время порождает черные дыры. При определенных условиях она может генерировать колебания плотности, а они, в свою очередь, дают начало черным дырам. На эту тему написано сотни научных статей. На самом деле, если у вас есть модель инфляции, то первое, о чем вы думаете, — могла ли она породить первичные черные дыры? На модель инфляции можно наложить ограничения, согласно которой в ней не может родиться слишком много черных дыр. И это, пожалуй, наиболее предпочтительная модель.

Если черные дыры появились еще до первых звезд и галактик, то как они вели себя в ранней Вселенной?

Формирование черных дыр происходило много миллиардов лет назад, поэтому на наше понимание их природы будет влиять модель ранней Вселенной. Первичные черные дыры важны для понимания того, что происходило после Большого взрыва, и, в частности, для понимания проблемы инфляции. Однако вопрос в том, какие космологические эффекты они должны были вызвать? Это во многом зависит от их массы. Если они очень маленькие и уже испарились, то они могут участвовать во многих процессах — разогревать Вселенную, реионизировать ее, быть источником космического излучения. Если они больше, то могут делать другие интересные вещи — и даже быть темной материей. Если же они еще больше, то они могут влиять на крупномасштабные структуры. Например, нам известно, что в центре каждой галактики есть сверхмассивная черная дыра. В нашей галактике это объект массой четыре миллиона солнечных. Квазары должны содержать черные дыры с массой порядка 100 миллионов солнечных. Есть даже черные дыры с массой от двух до двадцати миллиардов солнечных, нам известны такие галактики.

В принципе, даже черные дыры, которые мы находим в центральных областях галактик, могут быть первичными. В этом случае они не будут темной материей, но зато они могли дать начало галактикам, так как их гравитация влияет на огромную область пространства — в 1-10 тысяч раз больше солнечной массы. Недавно я работал над теорией, которая предполагает, что первичные черные дыры могли быть очень большими, в миллион солнечных масс. В этом случае они оказали бы огромное влияние на раннюю Вселенную — могли бы сформировать не только галактики, но и первые облака. Эта гипотеза получила развитие лишь недавно, и она очень волнует меня.

Сегодня есть три наиболее обсуждаемые темы: первичные черные дыры и темная материя, первичные черные дыры и источники гравитационных волн и первичные черные дыры и космические структуры. Любая из них звучит захватывающе. Если нам очень повезет, то первичные черные дыры будут объяснять все наблюдаемые феномены, но для этого нужна расширенная функция масс — от менее одной солнечной до миллиона солнечных. Однако даже если они окажутся связаны хоть с одним процессом, это уже будет чудо.

Ни один из предложенных сценариев нельзя назвать самым популярным, но мы не должны опускать руки. Мне нравится думать о потенциально возможных вещах. Я работал над первичным черными дырами почти 50 лет и до сих пор не знаю, существуют ли они. Конечно, это очень расстраивает, потому что я скоро выхожу на пенсию. Однако в последние несколько лет люди начинают все больше интересоваться этой темой из-за темной материи, LIGO и крупномасштабных космических структур. Если вы посмотрите на число статей, посвященных этой теме, то увидите, что множество ученых пишет о первичных черных дырах — что для меня теперь создает некоторые трудности, потому что я не успеваю их все читать. Долгие годы первичные черные дыры были непопулярной областью, не так много космологов исследовало их. Сейчас ситуация изменила.

Ожидаете ли вы, что открытие таких объектов поможет теоретикам решить проблему теории струн? В последние годы некоторые исследователи пришли к выводу, что теория суперсимметрии ошибочна, потому что Большой адронный коллайдер не находит доказательств ее существования, и такие ученые, как Питер Войт и Ли Смолин, постоянно критикуют теорию струн и общую теорию относительности.

Доказательств суперсимметрии на сегодня нет, это кризис для теории струн . БАК нашел бозон Хиггса, но мы не нашли свидетельств суперсимметрии, и это одна из причин, по которой исследователи беспокоятся, существуют ли вообще вимпы.

С другой стороны, если вы говорите о первичных черных дырах, вы всегда находитесь в области домыслов. Теория струн — это математика, и никакие наблюдения не подтверждают ее существования, и более того, мы не смогли бы получить никаких доказательств, потому что диапазон энергий, в котором мы должны были бы работать, крайне велик по сравнению с тем, что мы можем получить в Большом адронном коллайдере.

Смолин не считает , что теория струн — это физика, по его мнению, это скорее математика, и по этой же причине — ее нельзя наблюдать непосредственно — он отвергает мультивселенную. Я не согласен с ним. Да, трудно представить себе, как можно доказать существование мультивселенной через наблюдения, но еще слишком рано говорить, что это не физика. Кто может с уверенностью сказать, что мы не получим подтверждения теории струн, только потому, что за прошедшие двадцать лет мы не смогли решить уравнения? Это не значит, что мы не решим их через сто лет.

Физики очень нетерпеливы, они хотят решать проблемы сразу же, но некоторые проблемы бывают действительно сложными. На поиск гравитационных волн ушло сто лет. Только потому, что нам пришлось ждать больше 20 лет, чтобы связать теорию струн с наблюдениями, нельзя сказать, что это не наука. То же касается и мультивселенной — только потому, что кто-то говорит, что мы не можем ее увидеть. Но кто сказал, что мы не можем? Признаки ее существования будут заметны: столкновения, другие эффекты. Первичные черные дыры также дают возможность проверить чьи-то теории — например, модели инфляции или теорию суперструн . Если существование первичных черных дыр будет доказано, то они дадут нам информацию об очень ранней Вселенной, а это позволит проверить модели высокоэнергетической физики.

И не только это — вы упоминали Виленкина. У него есть собственная модель мультивселенной, и одно из ее предсказаний говорит о том, что она может порождать первичные черные дыры. В этом случае, мог бы заявить Виленкин, первичные черные дыры служат доказательством мультивселенной.

image

Чёрные дыры – одни из самых экстремальных объектов Вселенной: концентрация массы настолько огромной, что та коллапсирует в сингулярность в её центре, в полном согласии с общей теорией относительности. Атомы, ядра и даже фундаментальные частицы сминаются до произвольно малой толщины в нашем трёхмерном пространстве. В то же время всё, что падает в неё, обречено никогда не появляться обратно, а просто дополнять её гравитационное притяжение. Что это означает для тёмной материи? Наш читатель спрашивает:

Как тёмная материя взаимодействует с чёрными дырами? Засасывает ли её в сингулярность, как обычную материю, и дополняет ли это массу чёрной дыры? Если так, что случается с ней после того, как чёрная дыра испаряется посредством излучения Хокинга?

image

Отличный вопрос, и начать следует с того, что же такое чёрные дыры.

image

Сириус А и Б, нормальная звезда типа Солнца и белый карлик. Хотя белый карлик по массе гораздо меньше, его маленький, земной размер делает вторую космическую скорость намного большей.

image

Это важно, поскольку, чем больше массы вы собираете в одном участке пространства, тем ближе к световой скорость, необходимая для того, чтобы убежать от этого объекта. И когда эта скорость на поверхности объекта достигает или превышает скорость света, то тут уже не просто свет не может вырваться наружу, тут уже обязательно – на основании нашего понимания материи, энергии, пространства и времени – всё, находящееся внутри объекта, коллапсирует в сингулярность. Причина проста: все фундаментальные взаимодействия, включая силы, держащие атомы, протоны и даже кварки, не могут перемещаться быстрее света. Так что если вы находитесь где-то вне точки сингулярности и пытаетесь удержать находящийся чуть дальше объект против гравитационного коллапса, у вас ничего не выйдет; коллапс неизбежен. А для преодоления этого ограничения для начала вам потребуется звезда более массивная, чем 20-40 масс Солнца.

image


Массивная звезда в конце своей жизни, с её железным ядром, проваливающимся внутрь и формирующим чёрную дыру

image


Чёрная дыра поглощает аккреционный диск

Находясь снаружи нельзя сказать, была ли эта ЧД изначально сделана из протонов и электронов, нейтронов, тёмной материи или даже антиматерии. У ЧД можно измерить, насколько мы знаем, только три свойства: массу, электрический заряд и угловой момент, то есть, скорость её вращения. У тёмной материи, насколько мы знаем, нет ни электрического заряда, ни квантовых чисел (цветного заряда, барионного числа, лептонного числа, и т.п.), которые могли бы сохраниться или уничтожиться согласно парадоксу исчезновения информации в ЧД.

image

Из-за принципа формирования ЧД (из-за взрывов сверхмассивных звёзд), в первое время после их возникновения они практически на 100% состоят из нормальной (барионной) материи, и на 0% из тёмной материи. Вспомните, что тёмная материя взаимодействует только через гравитацию, в отличие от нормальной материи, взаимодействующей через гравитационное, слабое, электромагнитное и сильное взаимодействия. Да, конечно, тёмной материи в крупных галактиках и скоплениях примерно в пять раз больше, чем нормальной, но это если суммировать вместе с гигантским галактическим гало. В обычной галактике это гало простирается на несколько миллионов световых лет, сферически, во всех направлениях, а нормальная материя концентрируется в диске, объёмом в 0,01% от тёмной материи.

image


Нормальная материя в центральном диске и тёмная материя в голубом гало типичной галактики

ЧД обычно формируются внутри галактики, где нормальная материя доминирует над тёмной. Рассмотрим участок космоса, где расположены мы и наше Солнце. Если обвести его сферой радиусом в 100 а.е. вокруг Солнечной системы, мы включим все планеты, луны, астероиды и почти весь пояс Койпера, но барионная масса – нормальная материя – того, что будет внутри, будет в основном представлена массой Солнца и составит порядка 2 * 10 30 кг. С другой стороны, общее количество тёмной материи в этой сфере составит 1 * 10 19 кг, то есть около 0,0000000005% массы нормальной материи того же участка, что примерно равно массе скромного астероида типа малой планеты Юнона, около 200 км в поперечнике.


Со временем тёмная материя и нормальная материя столкнутся с этой чёрной дырой, и она поглотит их, добавив к своей массе. Большая часть роста массы ЧД будет идти благодаря нормальной материи, а не тёмной материи, хотя, в какой-то момент, квадриллионы лет спустя, скорость распада ЧД всё же превысит скорость её роста. Излучение Хокинга приведёт к испусканию частиц и фотонов снаружи горизонта событий чёрной дыры, сохраняя всю энергию, заряд и угловой момент внутренностей ЧД. Этот процесс может занять от 10 67 лет (для ЧД массой с Солнце) до 10 100 лет (для самых массивных ЧД, массы которых в миллиарды раз больше солнечной), но в результате получится смесь всего, чего только возможно.


Это значит, что ЧД будут испускать и тёмную материю, но это совершенно не зависит от того, поглотила ли конкретная ЧД когда-то тёмную материю. ЧД помнит об упавшем в неё веществе только небольшой набор квантовых чисел, и количество тёмной материи, упавшей в неё, в этот набор не входит. Выходит из неё совсем не то, что входило!



Пример излучения Хокинга, покидающего ЧД из участков вблизи горизонта событий (только качественная иллюстрация!)

Так что, в итоге, тёмная материя – это всего лишь ещё один источник пищи для ЧД, и не очень-то хороший. Это даже не особенно интересный источник пищи. Результаты попадания в ЧД тёмной материи не отличались бы от результатов эксперимента, в котором вы бы светили в ЧД фонариком, а она поглощала бы ваши фотоны. Достаточно влить в неё, согласно уравнению E = mc 2 , столько же энергии, сколько в неё упало тёмной материи в пересчёте на массу. В тёмной материи нет других зарядов, и поэтому, кроме углового момента, приобретаемого из-за падения не по центру ЧД (что и к фотонам тоже относится), никакого эффекта на ЧД она не окажет.


По мнению группы исследователей, первозданные черные дыры, образовавшиеся в первые мгновения после Большого взрыва, могут объяснить всю темную материю во Вселенной. Это была также одна из самых противоречивых теорий Стивена Хокинга. Телескоп "Джеймс Уэбб", возможно, скоро сможет это проверить.

Черные дыры и темная материя

Согласно общей теории относительности, пространство-время искривляется под действием массы. И чем массивнее объект, тем более искривленным будет пространство-время. Таким образом, черная дыра имеет настолько высокую плотность, что создает чрезвычайно глубокий гравитационный колодец, способный разорвать это пространство-время. Генерируемая кривизна настолько сильна, что ничто не может ее избежать, даже фотоны.

Темная материя — это форма материи, которая пока еще является гипотетической и используется для объяснения некоторых астрофизических наблюдений, в частности, оценок массы галактик. Эта материя, которая не взаимодействует с "обычной" материей и поэтому не может быть непосредственно наблюдаема телескопами, действует как "невидимые строительные леса", на которых формируются и растут галактики.

До сих пор эти два понятия всегда разделялись, но могут ли черные дыры и темная материя быть одним и тем же?

Спорная, но привлекательная теория

Именно это следует из новой модели ранней Вселенной, созданной астрофизиками из Йельского университета, Университета Майами и Европейского космического агентства (ЕКА). Эта модель перекликается с теорией, впервые предложенной в 1970-х годах физиками Стивеном Хокингом и Бернардом Карром.

В то время два исследователя утверждали, что в течение первых долей секунды после Большого взрыва крошечные колебания плотности Вселенной могли создать холмистый ландшафт с "бугристыми" областями, предлагающими дополнительную массу. Затем эти бугристые области должны были коллапсировать в черные дыры. Затем они предположили, что темная материя может состоять из черных дыр, образовавшихся в первые моменты Большого взрыва.

Семена сверхмассивных черных дыр


Существование такой большой популяции первобытных черных дыр также может легко объяснить существование огромных сверхмассивных черных дыр, в сотни миллионов раз массивнее Солнца, наблюдаемых в ранней Вселенной.

Прежде чем получить черную дыру, обычно необходимо пройти через стадию "массивной звезды". В конце своей жизни эти объекты взрываются в виде сверхновых, а затем заканчивают свой жизненный путь в виде черных дыр. Однако некоторые из этих космических людоедов были замечены лишь через несколько сотен миллионов лет после создания Вселенной. Астрономы считают, что "семена", оставленные первыми звездами, недостаточно велики, чтобы породить такие объекты. Вопрос в том, как они появились.

Новая теория говорит нам о том, что первозданные черные дыры, если они существуют, вполне могут быть теми семенами, из которых в первую очередь образовались все эти знаменитые сверхмассивные черные дыры. "Лично я нахожу эту идею очень интересной, так как она элегантно объединяет две действительно сложные проблемы, над которыми я работал: исследование природы темной материи, а также формирование и рост сверхмассивных черных дыр", — говорит Приямвада Натараян из Йельского университета.

Наконец, наличие первичных черных дыр может также решить еще одну космологическую головоломку: избыток инфракрасного излучения, синхронизированного с рентгеновским излучением, обнаруженным от далеких и темных источников, разбросанных по всей Вселенной. Согласно исследованию, эти возможные растущие первобытные черные дыры будут иметь точно такую же радиационную подпись.

Уже есть ответы?

Придумать интересную идею очень важно, но еще лучше иметь возможность ее протестировать. Возможно, здесь так и будет. Действительно, существование этих первобытных черных дыр может быть доказано или опровергнуто в ближайшем будущем благодаря телескопу Джеймса Уэбба, задача которого заключается в исследовании наличия развитых галактик в ранней Вселенной. Если темная материя состоит из первобытных черных дыр, то вокруг них в то время должно было образоваться больше звезд и галактик. Космическая лазерная интерферометрическая антенна ЕКА (LISA), анонсированная на 2030-е годы, также сможет уловить сигналы гравитационных волн от первых слияний первозданных черных дыр, если они вообще существуют.

Черные дыры — это, пожалуй, самые неописуемые объекты во Вселенной: концентрация такой массы, что она коллапсирует, как следует из общей теории относительности, до сингулярности в центре. Атомы, ядра и даже фундаментальные частицы сжимаются в бесконечно малую точку нашего трехмерного пространства. Все, что попадает в черную дыру, обречено оставаться в ней до скончания времен, захваченное ее гравитацией, которую не может покинуть даже свет. Какая судьба ждет темную материю при встрече с черной дырой?

Темная материя

Будет ли она засосана в сингулярность, как обычная материя, и внесет свой вклад в массу черной дыры? Если да, то когда черная дыра испарится вследствие излучения Хокинга, что будет с темной материей?

Начать стоит с того, что такое черные дыры.

Темная материя

Темная материя


Это важно, потому что вы концентрируете все больше и больше массы в конкретной области пространства, а скорость убегания для этого объекта все больше приближается к скорости света. И как только ваша скорость убегания на поверхности объекта достигнет или превысит скорость света, не только свет уже не сможет его покинуть — насколько мы понимаем материю, энергию, пространство и время сегодня — весь этот объект сожмется в сингулярность. Причина проста: все фундаментальные силы, включая силы, удерживающие атомы, протоны или даже кварки вместе, не могут двигаться быстрее скорости света. Поэтому если вы находитесь в определенной точке от центральной сингулярности и пытаетесь удержать удаленный объект от гравитационного коллапса, вы не сможете; коллапс неизбежен. И все, что вам нужно для преодоления этого барьера, это звезда в 20-40 массивнее Солнца.

Темная материя


Когда в ее ядре закончится топливо, центр взорвется под действием собственной гравитации, создав катастрофическую сверхновую, раздув и уничтожив внешние слои, но оставив черную дыру в центре. Такие черные дыры растут со временем, поглощая любую материю и энергию, которая подойдет слишком близко. Даже двигаясь со скоростью света вы можете попасть в нее и никогда уже не покинете горизонт событий. Из-за кривизны самого пространства внутри черной дыры вы также неизбежно попадете в сингулярность в центре. Когда это произойдет, вы просто прибавите черной дыре энергии.

Черная дыра


Снаружи мы не можем сказать, из чего изначально состояла черная дыра — из протонов, электронов, нейтронов, темной материи или вообще антиматерии. Есть только три свойства (пока что), которые мы можем наблюдать о черной дыре снаружи: ее масса, ее электрический заряд и ее угловой момент, мера вращательного движения. Темная материя, насколько нам известно, не имеет электрического заряда, а также других квантовых характеристик (цветного заряда, барионное число, лептонное число и пр.), которые могут или не могут сохраниться, либо уничтожиться, исходя из информационного парадокса черной дыры.

Черная дыра


Из-за того, как образуются черные дыры (вследствие взрывов сверхмассивных звезд), когда они впервые образуются, черные дыры на 100% состоят из обычной (барионной) материи и на 0% из темной материи. Не забывайте, что темная материя взаимодействует только гравитационно, в отличие от обычной материи, которая взаимодействует посредством гравитационных сил, слабых, электромагнитных и сильных взаимодействий. Да, в крупных галактиках и их скоплениях в пять раз больше темной материи, чем обычной материи, но она собирается в одно большое гало. В типичной галактике это гало темной материи простирается на несколько миллионов световых лет, сферически, во всех направлениях, тогда как обычная материя сконцентрирована в диске, который занимает 0,01% от объема темной материи.

Черная дыра


Черные дыры, как правило, образуются внутри галактики, где обычная материя полностью преобладает над темной материей. Представьте себе область пространства, в которой мы находимся: вокруг нашего Солнца. Если мы нарисуем сферу в 100 а. е. (а. е. — это дистанция от Земли до Солнца) вокруг нашей Солнечной системы, мы заключим все планеты, луны, астероиды и весь пояс Койпера, но барионная масса — обычная материя — заключенная в нашей сфере, будет по большей части представлена Солнцем и весить около 2 х 10 30 кг. С другой стороны, общее количество темной материи в этой же сфере будет всего 1 х 10 19 кг, или 0,0000000005% массы обычной материи в этом же самом регионе, равное массе скромного астероида размером с Юнону, приблизительно в 200 километров в поперечнике.

Со временем темная материя и обычная материя будут сталкиваться с этой черной дырой, абсорбироваться и прибавляться к ее массе. Больше всего рост массы будет поступать из обычной материи, а не темной, но в определенный момент, спустя много квадриллионов лет в будущем, скорость распада черной дыры наконец превзойдет скорость роста черной дыры. Процесс излучения Хокинга приведет к тому, что частицы и фотоны будут выходить из горизонта событий черной дыры, сохраняя всю энергию, заряд и угловой момент недр черной дыры. Этот процесс займет от 10 67 лет (для черной дыры солнечной массы) до 10 100 лет (для самых массивных черных дыр).

Черная дыра


Это означает, что некоторая темная материя выйдет из черных дыр, но будет полностью отличаться от того объема темной материи, которая попала в черную дыру изначально. У всех черных дыр есть память о вещах, которые в нее попали, в виде небольшого набора квантовых чисел, а это количество темной материи в них не входит (помните, она не обладает всеми квантовыми характеристиками?). На выходе будет совсем не то, что было на входе.

Таким образом, темная материя является еще одним источником пищи для черных дыр, и далеко не самым лучшим. Более того, это совсем неинтересный источник пищи. Он не оказывает практически никакого влияния на черные дыры.

что такое тёмная материя, куда ведут черные дыры, и зачем нужна квантовая механика

Физика, как ни парадоксально звучит, — наука наиболее разношёрстная, неизученная и неполноценная. И это мнение не только научных журналистов, но и самих учёных, понимающих как много ещё им предстоит открыть. Взять ту же Теорию относительности Эйнштейна: она идеально работает для планет и галактик, но для микромира субатомных частиц она совершенно непригодна. В микроскопических масштабах правит квантовая физика.

Если даже теоретические модели физики не могут объединиться, то что уж говорить об экспериментальных наблюдениях. Здесь как в притче об истине и слоне: один слепой мудрец сказал, что истина — это огромное и необъятное, потрогав слона за брюхо, другой — что она длинная и гибкая, коснувшись хобота животного, а третий — что у истины кисточка на тонком стебельке — как у хвоста.

И всё же, существуют в мире науки неоспоримые результаты наблюдений и идеальные с математической точки зрения гипотезы, в которых действительно интересно разобраться. Ведь они могут открыть такие просторы для размышлений, что попытка осмыслить бесконечность Вселенной покажется детской загадкой о качелях.

Тёмная материя

темная материя планк planck disgusting men тайн космоса тайны вселенной

что такое тёмная материя, куда ведут черные дыры, и зачем нужна квантовая механика

Выяснилось: на долю обычной материи, из которой состоим мы с вами, звёзды, планеты и все остальное, приходится всего 4,9% от общего состава. 26,8% приходится на долю тёмной материи; больше всего во Вселенной тёмной энергии — 68,3%. Осознав ничтожность наших галактик, кластеров и туманностей, учёные заволновались: что это такое, и почему мы до сих пор ничего об этом не знаем?

Теоретики решили, что если есть материя, значит, она из чего-то состоит. В смысле, из каких-то частиц, похожих на наши атомы, или по крайней мере, протоны и электроны. Как только ни пытались назвать эти частицы физики — тёмными атомами, аксионами, космионами, тяжёлыми нейтрино. Наконец, сравнительно недавно с названием для частиц тёмной материи определились. Их назвали вимпами.

спутник планк обсерватория планк planck что такое тёмная материя, куда ведут черные дыры, и зачем нужна квантовая механика

На этом познания физиков о тёмной материи заканчиваются, если, конечно, не учитывать массу громоздких расчётов. Совершенно неясно, какой массой обладают эти частицы: одни расчёты указывают на 6-8 гигаэлектронвольт, другие — на 33 гигаэлектронвольта, а третьи дают вообще несопоставимые с реальностью данные.

Пока весь мир ждет, когда будут выделены средства на постройку более чувствительных и крупных детекторов, остается только фантазировать, что же такое тёмная материя и тёмная энергия, и что они скрывают под своей темнотой.

Чёрные дыры

черная дыра черные дыры тайны вселенной темная материя темная энергия disgusting men

Чёрные дыры — фактически мёртвые звёзды. Они не имеют ничего общего с тёмной материей и являются вполне обычными с определённой точки зрения объектами. После того, как массивное светило напрочь исчерпает свой запас топлива и взорвётся сверхновой, образуется собственно чёрная дыра.

Это тело представляет собой сверхплотную точку — так называемую сингулярность — аналогичную тому, что представляла собой Вселенная в момент Большого взрыва. Сингулярность окружена горизонтом событий — гипотетической границей, за которую не может выйти ни материя, ни свет, ни даже информация. К слову, знаменитый Стивен Хокинг немного несогласен с последним утверждением: его именем названо так называемое излучение Хокинга, представляющее собой частицы, которым всё же удалось выпрыгнуть за пределы горизонта событий.

После осознания того факта, что чёрные дыры удерживают своей гравитацией целые галактики и обладают массами, равными миллионам солнечных, но крайне малыми размерами, начинается самое интересное.

Вполне доказанным является тот факт, что в чёрных дырах нет времени . Совсем нет. Оно вообще не идёт. Как не шло до Большого Взрыва. При приближении к чёрной дыре время замедляется, а потом останавливается вовсе. Одни и те же часы в космосе, где гравитация Земли не действует, идут быстрее, пусть и на такие доли секунды, которые для нас совершенно незаметны. Но одно дело Земля, а совершенно другое — чёрная дыра с исполинской массой. Полная остановка времени удивительна сама по себе, но теоретикам и этого мало. Они придумали массу интересных гипотез, абсолютно идеальных с математической точки зрения и поражающих воображение.

Например, американский физик польского происхождения Никодем Поплавский (Nikodem Poplawski) из университета Нью-Хейвена рассказал , что чёрные дыры могут быть фабричными печами для создания мельчайших семян материи. Теоретик уверен, что каждая чёрная дыра содержит в себе свою Вселенную, похожую на нашу. Согласно гипотезе Поплавского, все мы тоже живём внутри чёрной дыры и если прыгнем в чёрную дыру в центре Млечного Пути, то окажемся в параллельной Вселенной. Правда, скорее всего, в виде мельчайших частиц.

Он предположил, что в параллельном измерении существует другая Вселенная, но не трёхмерная, как наша, а четырёхмерная. Поэтому наша трёхмерность — всего лишь горизонт событий четырёхмерной чёрной дыры, и образовалась наша Вселенная в момент взрыва сверхновой, выброса вещества и рождения чёрной дыры в четырёх измерениях. Эта версия идеально подходит для объяснения странной равномерности температурного фона, которого вряд ли могла достичь Вселенная за 13,8 миллиардов лет своего существования.

Квантовая механика

atomy-i-molekuly-chasticy-veshhestva

Квантовая механика скрывает за собой самые интересные тайны Вселенной. Выше уже было сказано: законы квантовой механики идеально функционируют для описания взаимодействий субатомных частиц, однако для описания природы массивных тел, будь то стул и стол или звезда и галактика, квантмех непригоден.

Но что будет, если включить фантазию? В этом разделе физики есть, как минимум, два явления, достойных внимания и ближайшего рассмотрения. Первое из них называется суперпозиция. Некая частица обладает сразу несколькими состояниями до тех пор, пока её не измерят — всё зависит от нас, наблюдателей. Здесь же уместно вспомнить замученного интернет-пользователями кота Шрёдингера : теоретик придумал этот мысленный эксперимент именно для иллюстрации понятия суперпозиции — кот жив и мёртв одновременно, пока коробку не откроют и наблюдатель не сыграет свою роль.

Фантазии на тему квантовой запутанности приводят учёных к разным выводам. Например, крупная команда исследователей из Принстона, Стэнфорда и Вашингтонского университета рассмотрела это явление с точки зрения макромира, то есть Общей теории относительности. Как показали расчёты, с математической точки зрения связь запутанности между двумя частицами полностью идентична червоточине — гипотетическому туннелю между двумя чёрными дырами, сквозь который можно путешествовать по пространству и времени.

И если представить, что наша Вселенная — всего лишь голограмма, проекция от другой или других миров, это математически означает, что то, что мы видим как квантовую запутанность, есть червоточина, только в четырёхмерном мире.

Исследованием голографического принципа занимается и всю жизнь занимался аргентинец Хуан Малдасена (Juan Maldacena). Изучая квантовую механику, учёный пришёл к выводу, что с ОТО её может примирить лишь теория струн, пока что полностью математическая. В рамках этой теории действует принцип, согласно которому наша Вселенная — результат проекций нескольких других измерений, от каждой из последних взявший по одному измерению.

На одной идее о квантовой запутанности можно зайти очень далеко. В конце концов, мгновенная передача какой-либо информации есть прямо нарушение принципа непреодолимости скорости света. Если когда-нибудь кто-нибудь придумает, как заставить запутанные частицы передавать нужную нам информацию — а пока что к этому не подобрались даже теоретики — то у нас появится шанс, к примеру, связаться с обитателями далёких планет. Если на них, конечно, вообще кто-то живет.

А если придумают как по запутанности передавать материю, то мечты фантастов о телепортации станут реальностью.

Кстати, за чудесами физики не надо лезть ни в чёрную дыру, ни нырять внутрь атома, достаточно выйти завтра утром на пробежку. Знайте, чем быстрее вы бежите сквозь пространство, тем медленнее движетесь сквозь время. Так что душ будете принимать не только постройневшим, но и помолодевшим.

Читайте также: