Мой космический корабль подлетает к черной дыре сочинение

Обновлено: 03.07.2024

Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.

1. История идеи о черных дырах.

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж.Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г.Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А.Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

В 1905 году А.Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике.

Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световыми скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО).

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

2. Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

3. Свойства черных дыр

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.

Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

4. Поиски черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела.

Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 – в близкой к нам галактике Большое Магелланово Облако.

Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн масс Солнца.

Вполне вероятно, что самые мощные процессы энерговыделения во Вселенной происходят с участием черных дыр. Именно их считают источником активности в ядрах квазаров – молодых массивных галактик. Именно их рождение, как полагают астрофизики, знаменуется самыми мощными взрывами во Вселенной, проявляющимися как гамма-всплески.

5. Термодинамика и испарение чёрных дыр

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна

Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру

где — редуцированная постоянная Планка, c — скорость света, k — постоянная Больцмана, G — гравитационная постоянная, M — масса чёрной дыры.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:

где A — площадь горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной.

6. Падение в чёрную дыру

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих — в тангенциальном. Величина этих сил растёт и стремится к бесконечности при . В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть ), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

7. Виды черных дыр

А) Сверхмассивные чёрные дыры

Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики — Стрелец A*.

В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями.

Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс.

Б) Первичные чёрные дыры

Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

В)Квантовые чёрные дыры

Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображенийвесьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса порядка 10−5 г, радиус — 10−35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Заключение

Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

Список литературы

1. Карпенков С.Х. Концепции современного естествознания, М, Высш. школа 2003г.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

hello_html_m36c7c49e.jpg

Когда распаковал свои вещи , уже привык к своему новому местонахождению на корабле . Сначала решил полететь на таинственную Венеру . Она больше похожа на Землю и ближе к ней расположена . Когда подлетел к этой планете , к сожалению , ничего не увидел . Все было скрыто под густыми толщами огромных облаков . Но я решил повторить попытку. Подлетел поближе . Но из - за углекислых воздушных образований ничего не увидел на поверхности. Тогда мне пришлось влететь в атмосферу Венеры . Через некоторое время корабль перегрелся : высокая температура на планете . Неосмотрительное желание прогуляться по поверхности планеты увенчалось бы тем, что меня просто бы раздавило из - за высокого давления . Венера была усеяна тысячами огненных вулканов , которые ярким заревом извергали смертельную лаву . Все вокруг бурлило , кипело , рвало . Ужасный гул и грохот оглушал , невыносимый страх оказаться в адском плену сковывал движения Мне пришлось вернуться в космос . На первый взгляд , далекая Венера очень похожа на нашу Землю , но когда я побывал на этой планете , не стану утверждать , что эти планеты Солнечной системы похожи . Это , действительно , смертельная петля для космонавтов . Никогда не захочу сюда вернуться . Следующей планетой на моем пути был величественный Меркурий . И я с удовольствием высадился на ней , желая провести исследования грунта , климатических условий . На момент моего первого знакомства с планетой здесь было - 95 0 C , но холода не почувствовал , так как был в скафандре . Находясь на планете , я обнаружил огромный кратер , на дне которого был толстый слой вечного льда . Это планета пустынная , скудная растительность не вызвала у меня особого восторга . Из - за высокой температуры и засушливой местности здесь не было живых организмов . На Меркурии достаточно суровый климат , отсутствие водоемов . Чтобы планета мне запомнилась , решил взять небольшой камешек .

Но песчаный буран все - таки успел повредить правый ускоритель корабля . Но об этом я узнал позже , когда преодолел пояс астероидов и приближался к Юпитеру . Корабль стало немного отклонять вправо . Мне пришлось выйти в открытый космос и приступить к ремонту ускорителя . Я быстро починил его и отправился ближе к Юпитеру .

На этой планете я не смог побывать из - за большой дозы радиации , даже скафандр не защитил бы .

Следующей остановкой в моём космическом путешествии должен быть Сатурн . Но и здесь меня поджидала неудача , потому что эта планета не имела твердой поверхности , а состояла из газа .

Я твердо решил, не поддавался нахлынувшим отрицательным эмоциям и , несмотря на неудачи , продолжил свой полет к планете Уран . Так долго , как бы хотелось , я не смог находится здесь , так как планета состоит из горячей и плотной жидкости ледяных материалов . У Урана нет своего расплавленного ядра . В будущем , когда изобретут более утеплённые скафандры , планирую вернуться и закончить исследование этой планеты .

Восьмой и последней планетой моего путешествия был далекий Нептун . Тщательно и кропотливо исследовать эту планету мне помешал сильный ветер , скорость которого достигала 2000 км / ч и особую сложность в работе вызывала ледяная поверхность земли . Нептун - самая отдаленная от Солнца планета , поэтому самая холодная . Я хотел найти причину его голубого цвета и понял , что это еще не изученный нами элемент . И мне пришлось покинуть атмосферу этой планеты .

С того дня , как я отправился в путешествие , прошло уже пять лет . К сожалению , мой первый в жизни полет подходил к концу , и я с легкой грустью возвращался домой - на Землю . Приземление прошло благополучно . Я был очень рад вернуться к своей семье . Это путешествие оставило неизгладимый след в моей памяти . Были неудачи , но я не останавливался , шёл вперед , покоряя космос . Путешествие открыло мне много нового и неизведанного в солнечной системе .

Загадка Чёрной дыры

Кораблик расстроился от того, что не сможет двигаться дальше. И в то же время обрадовался, что может поговорить хоть с кем-то. Но эта задавака его немного пугала – уж очень была большой по сравнению с ним.
А Тира продолжала расспрашивать:
- Откуда ты? И как тут оказался?
- Я с планеты Земля. Прилетел на разведку.
- И много уже разведал? – засмеялась планета.
- Много! Но теперь вот тут застрял – это раз. Не могу поговорить с домом, потому что никто не выходит на связь – это два. И вернуться не могу! Это три, - вздохнул кораблик.
- Ты ещё слишком мал и не знаешь, что в мире нет ничего невозможного, - успокоила его Тира. – Для начала давай подумаем, чем тебе заняться в ожидании сеанса связи.
- Думаешь, он всё-таки состоится? – от радости кораблик закружился вокруг планеты.
- Всё может быть, - убедительно проговорила она. - Так что ты умеешь делать?
- Умею смотреть по сторонам и снимать всё на камеры, - похвастался Тони.
- Ну-у-у… это не работа, – протянула его неожиданная спутница.
- А что бы ты могла предложить? Ты же тут живёшь и лучше знаешь, что нужно.

Планета задумчиво оглядела кораблик со всех сторон и спросила:
- Твои щупальца… ну, вот эти – манипуляторы – они умеют захватывать предметы?
- Смотря какие.
- Оглянись вокруг. Видишь, сколько здесь космического мусора? Наша Зета – такая беспокойная звезда! Мечется, спешит куда-то. Когда я лечу далеко от неё, то всё нормально. Но стоит только приблизиться, и весь космический мусор начинает царапать меня и ужасно раздражает!
Кораблик удивился:
- Чем же я смогу помочь тебе?
- Нужно убрать весь этот мусор. Далеко улететь ты пока не сможешь, поскольку Зета притягивает тебя. А вот когда удалимся от неё, тогда и подумаем, как тебе вернуться домой. Так что займись лучше делом!
Теперь всё свободное время Тони летал вокруг планеты, захватывал своими щупальцами-манипуляторами обломки астероидов и выбрасывал их в ближайшую Чёрную дыру.
- Она всё в себя засасывает, и от мусора ей никакого вреда не будет! – со знанием дела сказала ему Тира.
- Это что-то вроде пылесоса? – шутил Тони, а сам с опаской поглядывал на чёрную воронку Мрак внутри неё был зловещим.
Иногда кораблик делал перерыв и болтал со своей новой подружкой обо всём на свете. Он рассказывал ей о родной планете – Земле, о том, что видел по дороге на окраину Вселенной. А Тира сплетничала о соседках, которые так же, как и она, вращались вокруг Зеты. И о Туманности, что маячила неподалёку, заслоняя время от времени обзор. И о созвездиях, которые находились в этой части Галактики.

Как-то раз планета пожаловалась на скуку:
- Ты не представляешь, как надоело однообразие! Всё те же звёзды, те же кометы – ничего новенького!
- А почему ты не хочешь завести себе обитателей?
- Каких это обитателей? – подозрительно спросила Тира.
- Я брал пробы. У тебя есть воздух, которым можно дышать. Вот тут – Тони указал на экватор – у тебя есть океан, а вот тут – манипулятор двинулся в сторону Полюса - есть суша. И на ней, если не ошибаюсь, деревья. Заведи в лесу животных и птиц, а в морях и океанах – рыб, дельфинов и китов. Они все такие забавные! Наблюдать за ними – одно удовольствие! А ещё тебе нужны люди. Тогда точно скучать не будешь!
- Что такое – люди?
- Не что, а кто. Люди живут на моей планете – Земле. Они волшебники!
- Придумаешь тоже! Волшебников на свете не бывает, – хмыкнула Тира.
- А вот и бывают! Это же люди сделали меня. И видишь, как далеко я смог залететь. И с тобой могу разговаривать.
Но планету это не убедило.
- Я тоже говорю с тобой. И летаю, где хочу. Но мне для этого никакие люди не нужны.

Тут стенки туннеля, по которому стремительно летел наш кораблик, расширились, светлая точка впереди превратилась в пятно, потом пятно засияло и заполнило всё вокруг.
- Не может быть! Это же Солнце! – воскликнул Тони, вылетев из тоннеля и оглядевшись вокруг.
Неподалёку виднелся красный Марс. А чуть дальше голубела его родная планета – Земля!
- Это просто чудо! Спасибо Чёрной дыре, это она привела меня сюда! – воскликнул Тони. Но раздумывать, почему так случилось, было некогда. Нужно было рассказать астрономам о том, что далеко-далеко, вокруг Зеты Змееносца, на самом краю Галактики, летает планета Тира, очень похожая на Землю. И грустит без обитателей.
- Домой! – устремился сквозь пространство радостный кораблик.

В Центре Управления Полётом царил переполох. На экранах всех компьютеров появился НЛО. Он стремительно приближался к планете со стороны Марса. По тревоге были подняты все космические перехватчики. Но странное дело, неопознанный летающий объект стал посылать вполне понятные сигналы.
- Да это же наш Тони! – закричал кто-то, расшифровав их.
И всем стало очень стыдно от того, что они забыли о кораблике-разведчике…
А сам Тони был очень счастлив, что вернулся домой, на Землю, и может рассказать всё-всё о Тире, Зете и загадочной Чёрной дыре.


Ну, а если более обстоятельнее, то.

Что такое черная дыра?

Чтобы полностью понять, почему вы не можете просто нырнуть лебедем или пилотировать свой космический корабль в черную дыру, вы должны сначала понять основные свойства этих гравитационных Голиафов. Проще говоря, черная дыра — это место, где гравитация настолько сильна, что никакой свет — или что-либо еще, если уж на то пошло-не может убежать.

Черные дыры называются так потому, что они обычно не отражают и не излучают свет. Они видны только тогда, когда питаются звездами или газовыми облаками, которые слишком близко подходят к их границе, называемой горизонтом событий. За горизонтом событий находится поистине крошечная точка, называемая сингулярностью, где гравитация настолько сильна, что бесконечно искривляет само пространство-время. Именно здесь законы физики, как мы их знаем, ломаются, а это значит, что все теории о том, что лежит за их пределами, являются просто спекуляциями.

Черные дыры кажутся экзотикой большинству из нас, но для ученых они обычное явление. Физики десятилетиями играли с теориями подобных объектов, прежде чем общая теория относительности Альберта Эйнштейна предсказала их существование. Однако эта концепция не принималась всерьез до 1960-х годов, когда были открыты чрезвычайно компактные звезды. Сегодня черные дыры считаются обычной частью звездной эволюции, и астрономы подозревают, что только в нашей галактике Млечный Путь их миллионы.


Выбери свое собственное приключение в черной дыре

Черные дыры бывают разных видов и могут быть смоделированы с различными уровнями сложности, например, независимо от того, вращаются ли они или имеют электрический заряд. Поэтому, если вы прыгнете в одну из них, ваша точная судьба может зависеть от того, какую черную дыру вы выберете.

На самом простом уровне существуют три вида черных дыр: черные дыры звездной массы, сверхмассивные черные дыры и черные дыры средней массы.

Черные дыры звездной массы образуются, когда очень большие звезды заканчивают сжигать свое топливо и коллапсируют внутрь самих себя. Сверхмассивные черные дыры живут в центрах большинства галактик и, вероятно, вырастают до своих экстремальных размеров — до десятков миллиардов раз массивнее нашего Солнца — поглощая звезды и сливаясь с другими черными дырами. Черные дыры средней массы все еще загадочны, и только несколько предполагаемых примеров были обнаружены, но астрономы полагают, что они могут образоваться в результате аналогичного процесса аккреции, только в меньшем масштабе.

Черные дыры звездной массы могут быть ничтожными по сравнению с их более крупными собратьями, но на самом деле они могут похвастаться более экстремальными приливными силами прямо за горизонтом событий. Это различие возникает благодаря свойству черных дыр, которое, вероятно, удивило бы некоторых случайных наблюдателей. Меньшие черные дыры на самом деле имеют более резкий гравитационный градиент, чем сверхмассивные. Другими словами, вам нужно только упасть на очень короткое расстояние, чтобы испытать чрезвычайно заметную разницу в силе тяжести.


Спагетти из черной дыры

Если бы вы свободно плавали в космосе рядом с черной дырой звездной массы, которая ничем не питалась, то единственным намеком на ее существование могло бы быть гравитационное увеличение, или “линзирование”, которое она могла бы оказывать на фоновые звезды.

Но когда вы подлетали ближе к этому странному месту, вас растягивало в одних направлениях и давило в других-процесс, который ученые называют спагеттификацией. Это происходит потому, что гравитация черной дыры сжимает ваше тело горизонтально, одновременно вытягивая его, как ириску, в вертикальном направлении. Если бы вы прыгнули в черную дыру ногами вперед, гравитационная сила на ваших пальцах ног была бы намного сильнее, чем та, что тянет вас за голову. Каждый кусочек вашего тела также будет вытянут в несколько ином направлении. Вы бы в буквальном смысле выглядели как кусок спагетти.


Осторожно ступай в эту черную дыру

В отличие от падения в черную дыру звездной массы, ваш опыт погружения в сверхмассивную или промежуточную черную дыру будет немного менее кошмарным. Хотя конечный результат, ужасная смерть, все равно будет вашей судьбой, вы можете на самом деле пройти весь путь до горизонта событий и начать падать в сингулярность, пока еще живы.

В этом случае, по крайней мере теоретически, вы могли видеть окружающее пространство. Но никто не сможет увидеть тебя, как только ты выйдешь за горизонт событий. Даже если бы вы держали в руке фонарик и пытались посветить им, свет падал бы обратно в сингулярность вместе с вами.

Между тем, вы увидите, что все в пределах горизонта событий было искажено экстремальными гравитационными силами, благодаря эффекту, который астрономы называют гравитационным линзированием. (Не говоря уже о диких эффектах замедления времени.)

Конечно, независимо от того, в какую черную дыру вы попадете, вы в конечном счете будете разорваны на части экстремальной гравитацией. Ни один материал, особенно мясистые человеческие тела, не мог выжить в целости и сохранности. Поэтому, как только вы пройдете за край горизонта событий, вы закончите. Отсюда не выбраться. Даже если бы ты был еще жив, тебе пришлось бы двигаться быстрее скорости света, чтобы спастись. Но, как мы знаем, ничто в известной вселенной не может этого сделать.

Но пока не волнуйтесь: ближайшая известная черная дыра к Земле все еще находится на расстоянии пугающей тысячи световых лет. Однако астрономы подозревают, что есть еще много других, скрывающихся гораздо ближе, возможно, всего в нескольких десятках световых лет от Земли. На самом деле, некоторые исследователи считают, что гипотетическая Девятая планета далекой солнечной системы на самом деле является первичной черной дырой размером примерно с бейсбольный мяч.

Имея это в виду, вполне возможно (хотя и маловероятно), что если люди выживут достаточно долго, чтобы стать пионерами передовых технологий космических путешествий, мы сможем посетить черную дыру вблизи. И если мы это сделаем, то, возможно, даже запустим несколько зондов в черную дыру, чтобы проверить, что происходит на горизонте событий.

К сожалению, поскольку ничто не может ускользнуть от горизонта событий, даже информация, мы никогда не сможем знать наверняка, что происходит, когда материя достигает точки невозврата. Так что, даже если у вас есть возможность совершить космическое погружение в черную дыру, из соображений безопасности вам, вероятно, следует сопротивляться этому желанию.

Читайте также: