Звуковые и видеокарты реферат

Обновлено: 05.07.2024

Видеокарта (видеоадаптер, графическая плата) — устройство, преобразующее графический образ. Устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера.

Обычно выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (AGP, PCI Express).

Современная видеокарта состоит из следующих частей:

Графический процессор (Graphics processing unit (GPU) — графическое процессорное устройство) занимается расчётами выводимого изображения.

Видеоконтроллер отвечает за формирование изображения в видеопамяти.

Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны BIOS видеокарты, экранные шрифты, служебные таблицы и т. п.

Видео-ОЗУ - видеопамять выполняет функцию кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора.

RAMDAC и TMDS - цифро-аналоговый преобразователь (ЦАП; RAMDAC — Random Access Memory Digital-to-Analog Converter) служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор.

Коннектор - видеоадаптеры MDA, Hercules, EGA и CGA оснащались 9-контактным разъёмом типа D-Sub.

Разъем серии D–SUB (полное название D–Subminiature) состоит из контактной колодки со штыревыми контактами в два, три или четыре ряда причем количество контактов в первом ряду на один больше ,чем во втором. Контакты защищены металлическим кожухом, напоминающим по форме букву D, благодаря чему исключается возможность неправильного соединения. Разъемы этой серии: и вилка, и гнездо могут иметь разное число контактов: – от 9 до 50 – обычной плотности; – от 15 до 78 – повышенной плотности; – от 3 до 43 – с увеличенными контактами (гибридные).

Разъемы серии D–SUB устанавливаются: на кабель, на плату и на блок.


DVI используется как в LCD мониторах, так и во многих типах телевизоров. как ЖК, так и плазме. Название разъема DVI произошло от английского сокращения Digital Visual Interface (цифровой видеоинтерфейс).. Способ передачи данных, используемый в интерфейсе DVI, основан на формате последовательной передачи данных. Кабель DVI состоит из четырёх витых пар передающих красный, зеленый и синий цвета, а также и clock (сигнал тактовой частоты).


Через разъем DVI можно передавать как аналоговый, так и цифровой сигнал. В связи с этим различают три подвида разъема DVI :

- DVI-A — для передачи только аналогового сигнала




Основным недостатком является ограничение в длине кабеля и сильной зависимости этой длины от передаваемого сигнала. Так, например картинку в разрешении 1920х1200pix с частотой в 60Hz можно передать только по кабелю длинной пять метров, а максимум для пятнадцатиметрового кабеля максимальным качеством картинки будет лишь 1280х1024 при той же частоте. Из-за этого при большой длине кабеля применяют реклокинг, то есть через определенное расстояние ставят репитеры, которые усиливают сигнал в DVI кабеле. С этим недостатком связано появление точек на экране при использовании не очень качественного кабеля (кроме смены DVI кабеля этот дефект можно устранить также понижением качества входного сигнала).

Также DVI интерфейс оснащен системой защиты цифровых данных HDCP (High-bandwidth Digital Content Protection).

Видеоускорение — одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнения математических вычислений в основном процессоре компьютера, а чисто аппаратным путем — преобразованием данных в микросхемах видеоускорителя.

Разрешение экрана. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки


Звуковая карта (sound card, sound blaster) - это устройство для качественного воспроизведения звука через акустические колонки или наушники, поскольку слабый встроенный в компьютер динамик хорошо воспроизводить звук не способен1. Звуковые карты обычно позволяют записать звук с микрофона, с линейного выхода магнитофона или другого источника.

Звуковая карта может быть на собственной печатной плате и вставляться в разъем расширения или сразу присутствовать на системной плате.

Для дополняющей звуковую карту акустической системы основными характеристиками являются полоса пропускания неискаженного звука и выходная мощность.


VGA-выход (D-Sub) Несколько лет назад VGA выход был главным интерфейсом использовавшийся для подключения ЭЛТ-мониторов (мониторы с электро-лучевой трубкой)и ЖК-мониторы (жидко-кристалические мониторы). VGA (Video Graphics Adapter) используется для вывода аналогового сигнала, разъем для которого соответственно называют VGA или D-Sub 15 (15-контактный разъем). Также можно встретить и такую расшифровку аббревиатуры VGA – Video Graphics Array (массив пикселей) Сам разъем имеет 15 ножек и чаще всего синего цвета. Впоследствии для ЖК мониторов стал использовать цифровой интерфейс DVI (Digital Visual Interface). Но этот выход не теряет своей популярности, он все еще используется в цифровых проекторах, в некоторых HDTV-телевизорах и в игровых консолях от Microsoft.

DVI-выход DVI (Digital Visual Interface) – цифровой интерфейс, который применяется для подключения видеокарты к ЖК-мониторов, телевизоров, проекторов, а также плазменных панелей. DVI обеспечивает неискаженный вывод изображения, за счет того, что видеосигнал не проходит двойное анлагово/цифровое преобразование, то есть сигнал передается напрямую. Это заметно на высоких разрешениях. Есть несколько разновидности интерфейса DVI: DVI-D – интерфейс для вывода только цифрового сигнала; DVI-I – комбинированный, который имеет аналоговые линии (VGA). К DVI-I выходу мониторы, которые имеют аналоговый разъем, подключаются через специальный переходник.

Вот такой он на вид: Single-Link DVI и Dual-Link DVI Для передачи сигнала используют одноканальный Single-Link DVI или двухканальный Dual-Link DVI. Dual-Link DVI – интерфейс позволяющий выводить изображение высокого разрешения, более 1920 х 1200 (такие как 2560×1600 и 2048×1536), поэтому для ЖК-мониторов с большим разрешением (к примеру 30”) нужно подбирать видоекарту с поддержкой двухканального выхода DVI Dual-Link.

Композитный выход RCA (“тюльпан”) Композитный выход или разъём RCA (Radio Corporation of America). Обычный выход, который можно встретить на телевизорах и видеооборудовании. Для соединения используется коаксиальный кабель. На выходе образуется сигнал с низким разрешением и качество видео соответственно низкое.

Компонентный выход Из-за большого размера компонентных разъемов, выходы расположены на переходнике. Первые три разъема отвечают за видео, два последних за звук. Он представляет собой три раздельных разъёма “тюльпан”: “Y”, “Pb” и “Pr”. Благодаря этому на выходе получается разделенный цветовой сигнал для HDTV. Используется для вывода изображения на цифровые проекторы.

HDMI HDMI (High Definition Multimedia Interface) – мультимедийный интерфейс, который позволяет передавать по кабелю до 10 м вместе с видеосигналом еще и аудио без потерь качества. Передача по одному кабелю одновременно видео и аудио данных уменьшает количество соединительных проводов. Разработкой и поддержкой этого стандарта занимаются именитые компании электронной индустрии, такие как: Hitachi, Panasonic, Philips, Sony, Thomson и Toshiba. Благодаря этому, стандарт довольно быстро приобрел популярность, и теперь большинство видеоустройств, для вывода изображений высокого разрешения, имеет хотя бы один разъем HDMI. hdmi переходник В первой версии этого стандарта пропускная способность была 5 Гб/с, а в версии 1.3 она была увеличена в два раза и HDMI кабель способен передавать до 10.2 Гб/с. Кроме этого, в версии HDMI 1.3 была увеличена частота синхронизации до 340 Мгц и благодаря этому стало возможным подключать мониторы высокого разрешения, с поддержкой глубины цвета до 48 бит.

Видеокарта (известна также как графическая плата, графическая карта, видеоадаптер, графический адаптер) — устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение, и в первую очередь под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа.

Файлы: 1 файл

Видеокарта.docx

Видеокарта (известна также как графическая плата, графическая карта, видеоадаптер, графический адаптер) — устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение, и в первую очередь под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа.
Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (PCI-Express, PCI, ISA, VLB, EISA, MCA) или специализированный (AGP), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ). В этом случае устройство, строго говоря, не может быть названо видеокартой.
Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.


Устройство:
Современная видеокарта состоит из следующих частей:

  • графический процессор (Graphics processing unit — графическое процессорное устройство) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако, архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.
  • видеоконтроллер — отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.
  • видеопамять — выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, GDDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры Uniform Memory Access в качестве видеопамяти используется часть системной памяти компьютера.
  • цифро-аналоговый преобразователь (ЦАП, RAMDAC — Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока: три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий - RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.
  • видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.
  • система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.
Характеристики:

  • ширина шины памяти, измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.
  • объём видеопамяти, измеряется в мегабайтах — объём собственной оперативной памяти видеокарты. Больший объём далеко не всегда означает большую производительность.

Видеокарты, интегрированные в набор системной логики материнской платы или являющиеся частью ЦПУ, обычно не имеют собственной видеопамяти и используют для своих нужд часть оперативной памяти компьютера (UMA — Unified Memory Access).

  • частоты ядра и памяти — измеряются в мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.
  • текстурная и пиксельная скорость заполнения, измеряется в млн. пикселов в секунду, показывает количество выводимой информации в единицу времени.
  • выводы карты — видеоадаптеры VGA и более поздние обычно имели всего один разъём VGA (15-контактный D-Sub). Изредка ранние версии VGA-адаптеров имели также разъём предыдущего поколения (9-контактный) для совместимости со старыми мониторами. Выбор рабочего выхода задавался переключателями на плате видеоадаптера. В настоящее время платы оснащают разъёмами DVI или HDMI, либо Display Port в количестве от одного до трех. Порты DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников. Порт DVI бывает двух разновидностей. DVI-I также включает аналоговые сигналы, позволяющие подключить монитор через переходник на разъём D-SUB. DVI-D не позволяет этого сделать. Display Port позволяет подключать до четырёх устройств, в том числе акустические системы, USB-концентраторы и иные устройства ввода-вывода. На видеокарте также возможно размещение композитных и S-Video видеовыходов и видеовходов (обозначаются, как ViVo).


9-контактный разъём S-Video TV-Out, DVI и D-Sub.
Поколение 3D ускорителей:
Самые первые ускорители использовали Glide — API для трёхмерной графики, разработанный 3dfx Interactive для видеокарт на основе собственных графических процессоров Voodoo Graphics.
Затем поколения ускорителей в видеокартах можно считать по версии DirectX, которую они поддерживают. Различают следующие поколения:

  • DirectX 7 — карта не поддерживает шейдеры, все картинки рисуются наложением текстур;
  • DirectX 8 — поддержка пиксельных шейдеров версий 1.0, 1.1 и 1.2, в DX 8.1 ещё и версию 1.4, поддержка вершинных шейдеров версии 1.0;
  • DirectX 9 — поддержка пиксельных шейдеров версий 2.0, 2.0a и 2.0b, 3.0;
  • DirectX 10 — поддержка унифицированных шейдеров версии 4.0;
  • DirectX 10.1 — поддержка унифицированных шейдеров версии 4.1;
  • DirectX 11 — поддержка унифицированных шейдеров версии 5.0.


Также поколения ускорителей в видеокартах можно считать по версии OpenGL, которую они поддерживают:

  • OpenGL 1.0
  • OpenGL 1.2
  • OpenGL 1.4
  • OpenGL 2.0
  • OpenGL 2.1
  • OpenGL 3.0
  • OpenGL 3.1
  • OpenGL 3.2
  • OpenGL 4.0
  • OpenGL 4.1
  • OpenGL 4.2

Звуковая карта
Звуковая карта (звуковая плата, аудиокарта; англ. sound card) — дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных компьютерах чаще представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC'97 или Intel HD Audio).


Интегрированная аудиоподсистема:
AC'97 (сокращенно от англ. audio codec '97) — это стандарт для аудиокодеков, разработанный подразделением Intel Architecture Labs компании Intel в 1997 г. Этот стандарт используется в основном в системных платах, модемах, звуковых картах и корпусах с аудиорешением передней панели. AC'97 поддерживает частоту дискретизации 96 кГц при использовании 20-разрядного стерео-разрешения и 48 кГц при использовании 20-разрядного стерео для многоканальной записи и воспроизведения.
AC'97 состоит из встроенного в южный мост чипсета хост-контроллера и расположенного на плате аудиокодека. Хост-контроллер (он же цифровой контроллер, DC'97; англ. digit controller) отвечает за обмен цифровыми данными между системной шиной и аналоговым кодеком. Аналоговый кодек — это небольшой чип (4×4 мм, корпус TSOP, 48 выводов), который осуществляет аналогоцифровое и цифроаналоговое преобразования в режиме программной передачи или по DMA. Состоит из узла, непосредственно выполняющего преобразования — АЦП/ЦАП (аналоговоцифровой преобразователь / цифроаналоговый преобразователь; англ. analog digital converter / digital analog converter, сокр. ADC/DAC). От качества применяемого АЦП/ЦАП во многом зависит качество оцифровки и декодирования цифрового звука.

HD Audio (от англ. high definition audio — звук высокой четкости) является эволюционным продолжением спецификации AC'97, предложенным компанией Intel в 2004 году, обеспечивающим воспроизведение большего количества каналов с более высоким качеством звука, чем при использовании интегрированных аудиокодеков AC'97. Аппаратные средства, основанные на HD Audio, поддерживают 24-разрядное качество звучания (до 192 кГц в стереорежиме, до 96 кГц в многоканальном режимах — до 8 каналов).

Формфактор кодеков и передачи информации между их элементами остался прежним. Изменилось только качество микросхем и подход к обработке звука.
Сравнение спецификаций:

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Содержание

2) История звуковых карт для IBM PC

3) Типы звуковых карт

4) Тип подключения

5) Компоненты звуковой карты

6) Характеристики звуковой карты

7) Внешний вид звуковой карты

8) Список литературы

Введение

Звуковая карта (звуковая плата, аудиокарта; англ. soundcard) — дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных компьютерах чаще представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC'97 или Intel HD Audio). [1]

История звуковых карт для IBM PC

Дополнительные сведения: SoundBlaster

Поскольку IBM PC проектировался не как мультимедийная машина, а инструмент для решения научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер, был звук встроенного динамика, сообщавший о неисправностях. (На компьютерах фирмы Apple звук присутствовал изначально.)

В 1986 году в продажу поступило устройство фирмы CovoxInc. Оно присоединялось к принтерному порту IBM PC и позволяло воспроизводить монофонический цифровой звук. Пожалуй, Covox можно считать первой внешней звуковой платой. Covox был очень прост и дешев по устройству (практически простейший резистивный ЦАП) и оставался популярным в течение 90-х годов. Появилось большое количество модификаций, в том числе — для воспроизведения стереофонического[1] звучания.

В 1988 году фирма CreativeLabs выпустила устройство CreativeMusicSystem (С/MS, позднее также продавалась под названием GameBlaster) на основе двух микросхем звукогенератораPhilips SAA 1099, каждая из которых могла воспроизводить по 6 тонов одновременно. Примерно в это же время компания AdLib выпустила свою карту, одноимённую с названием фирмы, на основе микросхемы YM3812 фирмы Yamaha. Данный синтезатор для генерации звука использовал принцип частотной модуляции (FM, frequencymodulation). Данный принцип позволял получить более естественное звучание инструментов, чем у GameBlaster.

Вскоре Creative выпустили карту на той же микросхеме, полностью совместимую с AdLib, но превосходящую её по качеству звучания. Эта плата стала основой стандарта SoundBlaster, который в 1991 году Microsoft включила в стандарт Multimedia PC (MPC). Однако эти карты имели ряд недостатков: искусственное звучание инструментов и большие объёмы файлов, одна минута качества AUDIO-CD занимала порядка 10 Мегабайт.

С возрастанием мощности процессоров, постепенно стала отмирать шина ISA, на которой работали все предыдущие звуковые карты, и многие производители переключились на выпуск карты для шины PCI. В 1998 году компания Creative вновь делает широкий шаг в развитии звука и выпуском карты SoundBlasterLive! на аудиопроцессоре EMU10K, который поддерживал технологию EAX, устанавливает новый стандарт для IBM PC, который остаётся (в усовершенствованном виде) актуален и по сей день. [1]

Типы звуковых карт

Внутренняя звуковая карта устанавливается в компьютер в свободный слот расширения.

Внешняя звуковая карта подключается интерфейсным кабелем и защищена от электрических помех. На ней может быть установлено не ограниченное количество разъемов и регуляторов.

Внутренняя карта с внешним блоком такой блок защищает аудиовходы от электрических помех компьютера, на нем обычно расположены разъемы и регуляторы. [2]

Тип подключения

PCI - стандартная шина для персональных компьютеров.

USB используется для подключения внешних звуковых карт к ноутбукам и настольным компьютерам.

FireWire (IEEE 1394) - высокоскоростная внешняя последовательная шина для обмена данными между компьютерами и мультимедийными периферийными устройствами.

PCMCIA, или PC Card - интерфейс для подключения компактных периферийных устройств.

ExpressCard - стандарт карт расширения для ноутбуков, который приходит на замену PCMCIA. ExpressCard использует скоростную шину PCI Express. Модули ExpressCard имеют размеры 34x75x5 или 54x75x5 мм.[2]

Компоненты звуковой карты

1. Блок цифpовой записи/воспpоизведения. Осуществляет пpеобpазования аналог->цифpа и цифpа->аналог в pежимепpогpаммнойпеpедачи или по DMA. Цифpовой канал большинства pаспpостpаненныхкаpт (кpоме GUS) совместим с SoundBlasterPro (8 pазpядов, 44 кГц - моно, 22 кГц - стеpео).

2. Блок синтезатоpа. Постpоен либо на базе микpосхем FM-синтеза OPL2 (YM3812) или OPL3 (YM262), либо на базе микpосхем WT-синтеза (GF1, WaveFront, EMU8000 и т.п.), либо того и дpугого вместе. Работает либо под упpавлениемдpайвеpа (FM, большинство WT) - пpогpаммнаяpеализация MIDI, либо под упpавлением собственного пpоцессоpа - аппаpатнаяpеализация. Почти все FM-синтезатоpы совместимы между собой, pазличные WT-синтезатоpы - нет.

3. Блок MPU. Осуществляет пpием/пеpедачу данных по внешнему MIDI-интеpфейсу, выведенному на pазъем MIDI/Joystick и pазъем для дочеpних MIDI-плат. Обычно более или менее совместим с интеpфейсом MPU-401, но чаще всего тpебуетсяпpогpаммнаяподдеpжка.

4. Блок микшеpа. Осуществляет pегулиpованиеуpовней, коммутацию и сведение используемых на каpте аналоговых сигналов. [3]

Характеристики звуковой карты

Основные паpаметpы - pазpядность, максимальная частота дискpетизации, количество каналов (моно или стеpео), паpаметpысинтезатоpа, pасшиpяемость, совместимость.

Максимальная частота дискpетизации (оцифpовки) опpеделяет максимальную частоту записываемого/воспpоизводимого сигнала, котоpаяпpимеpноpавна половине частоты дискpетизации. Для записи/воспpоизведенияpечи может быть достаточно 6-8 кГц, для музыки сpеднего качества - 20-25 кГц, для высококачественного звучания необходимо 44 кГц и больше. В некотоpыхкаpтах можно повысить частоту дискpетизации ценой отказа от стеpеозвука: два канала по 22 кГц, либо один канал на 44 кГц.

Паpаметpысинтезатоpаопpеделяют возможности каpты в синтезе звука и музыки. Тип синтеза - FM или WT - опpеделяет вид звучания музыки: на FM-синтезатоpеинстpументы звучат очень бедно, со "звенящим" оттенком, имитация классических инстpументов весьма условна; на WT-синтезатоpе звучание более "живое", "сочное", классические инстpументы звучат естественно, а синтетические - более пpиятно, на хоpоших WT-синтезатоpах может даже создаться впечатление "живой игpы" или "слушания CD". Число голосов (polyphony) опpеделяетпpедельное количество элементаpныхзвуков, могущих звучать одновpеменно. Объем ПЗУ или ОЗУ WT-синтезатоpаговоpит о количестве pазличныхинстpументов или качестве их звучания (ПЗУ на 4 Мб может содеpжать 500 инстpументовсpеднего качества или обычный, но хоpоший GM), но большой объем ПЗУ не означает автоматически хоpошего качества самплов, и наобоpот. Для собственного музыкального твоpчества большое значение имеют возможности синтезатоpа по обpаботке звука (огибающие, модуляция, фильтpование, наличие эффект-пpоцессоpа), а также возможность загpузки новых инстpументов.

Расшиpяемостьопpеделяет возможности по подключению дополнительных устpойств, установке микpосхем, pасшиpению объема ПЗУ или ОЗУ и т.п. Hа многих каpтах есть 26-pазpядный внутpеннийpазъем для подключения дочеpней платы, пpедставляющей собой дополнительный WT-синтезатоp. Пpактически на каждой каpте есть pазъем для подключения CD-ROM с интеpфейсомSony, Mitsumi, Panasonic или IDE (сейчас популяpны в основном последние два; IDE-интеpфейс многих каpт допускает подключение винчестеpа), бывают pазъемыцифpового выхода (SPDIF) для подключения к студийному обоpудованию, pазъемы для подключения модема и дpугие. Hекотоpыекаpты допускают установку DSP и дополнительной памяти для самплов WT-синтезатоpа. [3]

Внешний вид

Начнем с YMF724, интегрированного в материнскую плату. Сам чип расположен далеко от аудио разъемов, но это не внушает опасения, благодаря внешнему AC'97 кодеку. Кодек TriTech 28023 распаян в непосредственной близости от разъемов и, что явилось немаловажным сюрпризом, аудио сигналы выведены на разъемы напрямую, без каких либо активных буферных или усилительных элементов. Разумеется, присутствуют выходные RC фильтры, но не более того. Забегая вперед, заметим, что именно это способствовало поразительным для 16 бит аудио решения результатам в тестах на соотношение сигнал/шум. Подобный подход имеет свои плюсы и минусы, за более высокое качество передачи сигнала приходится расплачиваться незащищенностью и слабой нагрузочной способностью аудио входов и выходов. Еще одно преимущество интегрированного решения - многослойная материнская плата способная обеспечить гораздо более качественную разводку аудио сигналов, нежели многие двусторонние PCI платы. Присутствуют два разъема для подключения кнопок цифрового регулятора общей громкости, если таковой имеется в корпусе компьютера или сделан самостоятельно. Есть разъем для подключения CD привода или любого другого источника линейного сигнала. Не распаяны два разъема, судя по всему, один из них цифровой выход, назначение второго не ясно. Еще присутствует не упомянутый в документации разъем моно входа для модема, обозначенный на плате как CN19 и находящийся в непосредственной близи от кодека.

SoundBlasterLive! Value порадовал многослойной платой с позолотой, высоким процентом распаянных деталей (не были распаяны лишь несколько маловажных разъемов и один буферный усилитель непонятного назначения). На плате присутствует гребенка цифрового интерфейса (4 SPDIF выхода и один вход, обозначены как SPDIF_EXT), и что крайне приятно, распайка всех разъемов приводится в электронной документации. Цифровые входы и выходы имеют нестандартный для аудио оборудования уровень сигнала (соответствующий цифровой логике), в результате чего не все источники могут быть успешно к ним подключены. А вот на раздельно микшируемом отдельном цифровом входе для CD (обозначен как CD_SPDIF), наоборот присутствует буферный элемент, позволяющий подключать не только CD приводы (с как правило логическим уровнем сигнала), но и другое SPDIF оборудование. Четыре цифровых выхода от этого не страдают, т.к. небольшая перегрузка подключаемого к ним оборудования не существенна, в отличии от недостатка сигнала для нормальной работы входа. Есть не распаянный разъем для кнопок регулировки громкости. Распаяны два различных разъема TAD (моно вход-выход для модемов) и два дополнительных линейных входа - CD_IN и AUX_IN. Еще есть не распаянный разъем I2S - цифровой многоканальный интерфейс для декодеров DVD и прочего пока несколько футуристического оборудования. На аналоговых входах активные буферные элементы отсутствуют (за исключением микрофонного), на выходах дело обстоит несколько странно. Если фронтальные колонки выведены с главного 18 бит AC'97 кодека CT1297, через микросхему буферного усилителя, то тыльный сигнал идет с дополнительной микросхемы 18 бит ЦАП (Phillips 1330A) напрямую, обладая меньшей нагрузочной способностью. Но самое интересное, что в результате, на тыльных выходах присутствует более качественный сигнал, вероятно благодаря более высокому качеству дополнительного ЦАП.

DiamondMonsterSound MX300 поражает своими размерами. Он больше Live! в полтора раза, при этом количество элементов на плате приблизительно во столько же раз меньше. Размеры продиктованы не только соображениями солидности, но и наличием корректно расположенного разъема для дочерней платы волнового синтеза. Присутствует большой разъем для дополнительной карты цифрового ввода вывода, но его распайка не известна и, в отличие от Live!, он не может быть использован без этой самой платы. Цена $30 скорее всего не напугает желающих подключить декодер AC-3 или другое цифровое оборудование, но вот наличие этой платы на нашем рынке, к сожалению, не гарантированно. Позолоченные внешние аудио разъемы вне конкуренции, как и благородный черный цвет планки, на которую они крепятся. Есть два внутренних линейных входа и разъем TAD. Непонятно назначение не распаянного дополнительного стерео выхода, дублирующего фронтальные колонки. Монтаж аккуратен, но не столь качественен, как в случае Live!. Количество не распаянных деталей выше. Один четырехканальный AC'97 18 бит кодек SigmaTel. Буферные усилители присутствуют как на фронтальном, так и на тыльном выходе. [3]

Видеока́рта (известна также как видеоада́птер графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Содержание

1 Введение
2 История развития
3 Устройство
3 Характеристики
4 Поколения 3D-ускорителей
5 Интерфейс
6 Шейдер
7 Заключение
8 Литература

Работа содержит 1 файл

Реферат.doc

2 История развития

4 Поколения 3D-ускорителей

Видеока́рта (известна также как видеоада́птер графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) ( англ. videocard) — устройство, преобразующее изображение , находящееся в памяти компьютера , в видеосигнал для монитора .

Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный ( PCI-Express , PCI , ISA , VLB , EISA , MCA ) или специализированный ( AGP ), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ ).

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор , который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты Nvidia и AMD ( ATi ) поддерживают приложения OpenGL на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные способности графического процессора для решения неграфических задач

История развития

Первая видеокарта для компьютеров архитектуры IBM PC была представлена миру в 1981 году и получила название MDA (Monochrome Display Adapter). Это чудо инженерной мысли вообще не поддерживало графический режим и работало только с текстовыми данными. Видеоадаптер выводил на дисплей до 25 строк, каждая из которых вмещала 80 символов. При этом тексту можно было назначить один из пяти атрибутов: обычный, подчеркнутый, яркий, мигающий или инверсный. Задавать шрифт было нельзя, цвет букв также не поддавался изменению — эти параметры зависели исключительно от модели монитора.

Монохромная палитра, текстовый режим. примитив? Только не для 1981 года.

Следующим этапом в развитии графических плат стало появление IBM CGA (Color Graphics Adapter). Видеоадаптер поддерживал четыре палитры по четыре цвета. Кроме того, он умел работать в графическом режиме, то есть на монитор отныне выводился не только текст, но и пиксельные картинки. При работе с графикой максимальное поддерживаемое разрешение составляло 320х200 точек, а для монохромной палитры это значение возрастало до 640х200. В графическом режиме использовалось не более 4 цветов одновременно. Следом за CGA последовала его усовершенствованная версия — EGA (Enhanced Graphics Adapter). Этот адаптер поддерживал 64-цветную палитру и мог обеспечить одновременно 16 цветов при разрешении 640x350.

Примечательно, что видеокарты, совместимые с описанными выше стандартами, использовали для взаимодействия с монитором цифровой интерфейс. Последующие видеоадаптеры поддерживали более высокие разрешения и большее количество цветов. При этом из-за возросшего количества информации цифровая передача данных уступила место аналоговой.

На смену EGA пришел адаптер VGA (Video Graphics Array), обеспечивающий 16 цветов при разрешении 640х480 или 256 цветов в режиме 320х200. Ну, а в 1987 году настала эпоха SVGA. Примечательно, что термином SVGA обозначались все режимы, превышающие VGA. У производителей попросту не было четкого стандарта, которому бы соответствовала их продукция. Путаница была устранена только через три года, когда организация VESA (Video Enhanced Standards Association) ввела документ, описывающий режимы SVGA. Он несколько раз дополнялся, а в конечной его версии, датированной 1995 годом, описаны основные режимы работы, вплоть до разрешения 1600х1200 пикселей и цветопередачи True Color (16,7

3dfx Voodoo 2 — 3D-ускоритель, ставший в свое время

настоящей иконой для ценителей трехмерных игр.

Важно осознавать то, что все ранние графические карты служили одной лишь цели — они преобразовывали информацию, получаемую от процессора, в доступный для монитора вид. Никаких расчетов эти видеокарты не производили. Цвет пикселей каждого кадра определял центральный процессор — по тем временам это было серьезным испытанием для ЦП. С появлением первых 3D-движков ситуация только ухудшилась — пресловутые игры стали отнимать огромное количество ресурсов. Разумеется, существовали серьезные видеоадаптеры, которые использовались в профессиональном ПО, вроде САПР. Но к компьютерам простых пользователей они имели очень отдаленное отношение.

Все это привело к появлению графических ускорителей — видеокарт, способных обрабатывать некоторые графические функции на аппаратном уровне. К примеру, подобные устройства могли самостоятельно рассчитывать цвета отображаемых пикселей при рисовании линий или курсора, при перетаскивании окон и заливке отдельных участков изображения. Отныне видеокарта занималась не только преобразованием сигнала — она принимала непосредственное участие в процессе построения изображения.

На рубеже 1994-95 годов разработчики стали активно задумываться о том, как ускорить игровые 3D-движки. В результате на сцену вышли так называемые 3D-ускорители. Эти устройства могли работать только в тандеме с видеоадаптером, уже установленным в ПК. При запуске трехмерных приложений 3D-ускорители обрабатывали объемные моделей, преобразуя их в двумерный вид. Результаты отправлялись видеокарте, которая при необходимости дополняла кадр различными объектами (например, интерфейсом) и передавала его на монитор. Со временем видеоадаптеры и 3D-ускорители слились воедино, и вот тогда-то видеокарты наконец обрели свой нынешний вид.

Современная видеокарта состоит из следующих частей:

- графический процессор (Graphics processing unit — графическое процессорное устройство) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор , производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако, архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

- видеоконтроллер — отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

- видеопамять — выполняет роль кадрового буфера , в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR , DDR2 , GDDR3 , GDDR4 и GDDR5 . Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры UMA в качестве видеопамяти используется часть системной памяти компьютера.

- цифро-аналоговый преобразователь ( ЦАП , RAMDAC — Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.

- видео - ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ ( EEPROM , Flash ROM ), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

- система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Характеристики

- ширина шины памяти , измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.

- объём видеопамяти , измеряется в мегабайтах — объём собственной оперативной памяти видеокарты.

Видеокарты, интегрированные в набор системной логики материнской платы или являющиеся частью ЦПУ, обычно не имеют собственной видеопамяти и используют для своих нужд часть оперативной памяти компьютера (UMA — Unified Memory Access).

Читайте также: