Защита информации в сотовых сетях реферат

Обновлено: 02.07.2024

В настоящее время для проникновения в чужие секреты используются такие возможности как : подслушивание разговоров в помещении или автомашине с помощью предварительно установленных "радиожучков" или магнитофонов; контроль телефонов, телексных и телефаксных линий связи, радиотелефонов и радиостанций; дистанционный съем информации с различных технических средств, в первую очередь, с мониторов и печатающих устройств компьютеров и другой электронной техники; лазерное облучение оконных стекол в помещении, где ведутся "интересные разговоры" или, например, направленное радиоизлучение, которое может заставить "откликнуться и заговорить" детали в телевизоре, в радиоприемнике или другой технике. Обилие приемов съема информации противодействует большое количество организационных и технических способов, так называемая специальная защита.

Содержание

1. Пути несанкционированного доступа, классификация способов и средств защиты информации.
2. Анализ методов защиты информации в системах обработки данных.
2.1 Защита информации в ПЭВМ. Каналы утечки информации.
2.2 Организационные и организационно-технические меры защиты информации в системах обработки данных.
2.3 Основные методы защиты ПЭВМ от утечек информации по электромагнитному каналу.
2.4 Управленческие меры обеспечения информационной безопасности
3. Основные направления защиты информации в СОД.
3.1 Идентификация и установление личности.
3.2 Меры защиты против электронного и электромагнитного перехвата.
3.3 Основные понятия безопасности компьютерных систем.
3.4 Изменение требований к безопасности.
3.5 Основные типы угроз вычислительным системам.
3.6 Наиболее распространенные угрозы

Прикрепленные файлы: 1 файл

Защита информации в локальных сетях.=).docx

1. Пути несанкционированного доступа, классификация способов и средств защиты информации.

2. Анализ методов защиты информации в системах обработки данных.

2.1 Защита информации в ПЭВМ. Каналы утечки информации.

2.2 Организационные и организационно-технические меры защиты информации в системах обработки данных.

2.3 Основные методы защиты ПЭВМ от утечек информации по электромагнитному каналу.

2.4 Управленческие меры обеспечения информационной безопасности

3. Основные направления защиты информации в СОД.

3.1 Идентификация и установление личности.

3.2 Меры защиты против электронного и электромагнитного перехвата.

3.3 Основные понятия безопасности компьютерных систем.

3.4 Изменение требований к безопасности.

3.5 Основные типы угроз вычислительным системам.

3.6 Наиболее распространенные угрозы

Задача: рассмотреть существующие каналы утечки информации и способы их закрытия;

В настоящее время для проникновения в чужие секреты используются такие возможности как : подслушивание разговоров в помещении или автомашине с помощью предварительно установленных "радиожучков" или магнитофонов; контроль телефонов, телексных и телефаксных линий связи, радиотелефонов и радиостанций; дистанционный съем информации с различных технических средств, в первую очередь, с мониторов и печатающих устройств компьютеров и другой электронной техники; лазерное облучение оконных стекол в помещении, где ведутся "интересные разговоры" или, например, направленное радиоизлучение, которое может заставить "откликнуться и заговорить" детали в телевизоре, в радиоприемнике или другой технике. Обилие приемов съема информации противодействует большое количество организационных и технических способов, так называемая специальная защита.

Одним из основных направлений специальной защиты является поиск техники подслушивания или поисковые мероприятия. В системе защиты объекта поисковые мероприятия выступают как средства обнаружения и ликвидации угрозы съема информации. Проблемы защиты информации в системах электронной обработки данных (СОД) постоянно находятся в центре внимания не только специалистов по разработке и использованию этих систем, но и широкого круга пользователей.

Под системами электронной обработки данных понимаются системы любой архитектуры и любого функционального назначения, в которых для обработки информации используются средства электронно-вычислительной техники, а под защитой информации - использование специальных средств, методов и мероприятий с целью предотвращения утери информации, находящейся в СОД.

Широкое распространение и повсеместное применение вычислительной техники очень резко повысили уязвимость накапливаемой, хранимой и обрабатываемой с СОД информации.

Четко обозначилось три аспекта уязвимости информации:

1. Подверженность физическому уничтожению или искажению.

2. Возможность несанкционированной (случайной или злоумышленной) модификации.

3. Опасность несанкционированного получения информации лицами, для которых она не предназначена. Рассматривая в целом проблемы ЗИ в ЭВМ можно выделить три основных,

относительно самостоятельных, но не исключающих, а дополняющих друг друга направления:

1. совершенствование организационных и организационно-технических мероприятий технологии обработки информации в ЭВМ;

2. блокирование несанкционированного доступа к обрабатываемой в ЭВМ

3. блокирование несанкционированного получения информации с помощью

Основными факторами затрудняющими решение проблемы защиты информации в

1) массовость применения;

2) постоянно растущая сложность функционирования;

3) разнообразие программного обеспечения персональных компьютеров, архитектурных решений и легкая адаптируемость для решения разнообразных задач пользователей.

Следует отметить, что использование гибких магнитных дисков создает условия для злоумышленных действий (подмена, хищение, внесение в систему “компьютерного вируса”, несанкционированное копирование информации, незаконное использование сети ЭВМ и др.).

Важнейшая мера защиты информации на этом направлении - четкая организация и контроль использования гибких магнитных дисков. Любая ЭВМ при работе создает электромагнитное поле, которое позволяет несанкционированно принимать и получать информацию. В ПК это особенно опасно, так как информации, обрабатываемая в них. Более структурирована. В целях защиты используются самые различные мероприятия от экранирования зданий и помещений до подавления излучений специальными генераторами шумов. Так же одним из основных средств защиты информации в ЭВМ являются криптографические средства. Они имеют своей задачей защиту информации при передаче по линиям связи, хранении на магнитных носителях, а так же препятствуют вводу ложной информации. Практическая реализация криптографических средств защиты может быть программной, т.е. шифрование реализуется специальной программой, и технической, с помощью специальных технических средств, реализующих

Основные трудности в реализации систем защиты состоят в том, что они должны удовлетворять двум группам противоречивых требований:

1. Исключение случайной или преднамеренной выдачи информации посторонним лицам и разграничение доступа к устройствам и ресурсам системы всех пользователей.

2. Система защиты не должна создавать заметных неудобств пользователям в процессе из работы с использованием ресурсов СОД. В частности должны обеспечиваться:

а) полная свобода доступа каждого пользователя и независимость его

работы в пределах предоставленных ему прав и полномочий;

б) удобство работы с информацией для групп взаимосвязанных

в) возможности пользователям допускать своей информации.

Чтобы надежно защитить информацию, система защиты должна регулярно

1. Системы обработки данных от посторонних лиц.

2. Системы обработки данных от пользователей.

3. Пользователей друг от друга.

4. Каждого пользователя от себя самого.

5. Систем обработки от самой себя.

1. Пути несанкционированного доступа, классификация способов и средств

Архитектура СОД и технология ее функционирования позволяет злоумышленнику находить или специально создавать лазейки для скрытого доступа к информации, причем многообразие и разнообразие даже известных фактов злоумышленных действий дает достаточные основания предполагать, что таких лазеек существует или может быть создано много.

Несанкционированный доступ к информации, находящейся в СОД бывает:

1. КОСВЕННЫМ - без физического доступа к элементам СОД.

2. ПРЯМЫМ - с физическим доступом к элементам СОД. ( с изменением их или без изменения).

В настоящее время существуют следующие пути несанкционированного получения информации (каналы утечки информации):

1. применение подслушивающих устройств;

2. дистанционное фотографирование;

3. перехват электромагнитных излучений;

4. хищение носителей информации и производственных отходов;

5. считывание данных в массивах других пользователей;

6. копирование носителей информации;

7. несанкционированное использование терминалов;

9. использование программных ловушек;

10. получение защищаемых данных с помощью серии разрешенных запросов;

11. использование недостатков языков программирования и операционных систем;

12. преднамеренное включение в библиотеки программ специальных блоков типа “троянских коней”;

13. незаконное подключение к аппаратуре или линиям связи вычислительной системы;

14. злоумышленный вывод из строя механизмов защиты.

Для решения проблемы защиты информации основными средствами, используемыми для создания механизмов защиты принято считать:

1. Технические средства - реализуются в виде электрических, электромеханических, электронных устройств. Вся совокупность технических средств принято делить на:

2. аппаратные - устройства, встраиваемые непосредственно в аппаратуру, или устройства, которые сопрягаются с аппаратурой СОД по стандартному интерфейсу (схемы контроля информации по четности, схемы защиты полей памяти по ключу, специальные регистры);

3. физические - реализуются в виде автономных устройств и систем (электронно-механическое оборудование охранной сигнализации и наблюдения. Замки на дверях, решетки на окнах).

4. Программные средства - программы, специально предназначенные для выполнения функций, связанных с защитой информации.

В ходе развития концепции защиты информации специалисты пришли к выводу, что использование какого-либо одного из выше указанных способов защиты, не обеспечивает надежного сохранения информации. Необходим, комплексных подход к использованию и развитию всех средств и способов защиты информации. В результате были созданы следующие способы защиты информации:

1. Препятствие - физически преграждает злоумышленнику путь к защищаемой информации (на территорию и в помещения с аппаратурой, носителям информации).

2. Управление доступом - способ защиты информации регулированием использования всех ресурсов системы (технических, программных средств, элементов данных). Управление доступом включает следующие функции защиты:

а) идентификацию пользователей, персонала и ресурсов системы, причем под идентификацией понимается присвоение каждому названному выше объекту персонального имени, кода , пароля и опознание субъекта или объекта про предъявленному им идентификатору;

б) проверку полномочий, заключающуюся в проверке соответствия дня недели, времени суток, а также запрашиваемых ресурсов и процедур установленному регламенту;

в) разрешение и создание условий работы в пределах установленного регламента;

г) регистрацию обращений к защищаемым ресурсам;

д) реагирование (задержка работ, отказ, отключение, сигнализация) при попытках несанкционированных действий.

3. Маскировка - способ защиты информации с СОД путем ее криптографического. При передаче информации по линиям связи большой протяженности криптографическое закрытие является единственным способом надежной ее защиты.

При защите телефонных линий как каналов утечки информации необходимо учитывать следующее:

1) телефонные аппараты (даже при положенной трубке) могут быть использованы для перехвата акустической речевой информации из помещений, в которых они установлены, то есть для подслушивания разговоров в этих помещениях;

2) телефонные линии, проходящие через помещения, могут использоваться в качестве источников питания акустических закладок, установленных в этих помещениях, а также для передачи перехваченной информации;

3) возможен перехват (подслушивание) телефонных разговоров путем гальванического или через индукционный датчик подключения к телефонной линии закладок (телефонных ретрансляторов), диктофонов и других средств несанкционированного съема информации.

Телефонный аппарат имеет несколько элементов, способных преобразовывать акустические колебания в электрические сигналы (микрофонный эффект). К ним относятся звонковая цепь, телефонный и, конечно, микрофонный капсюли. За счет электроакустических преобразований в этих элементах возникают информационные (опасные) сигналы. При положенной трубке телефонный и микрофонный капсюли гальванически отключены от телефонной линии и при подключении к ней специальных высокочувствительных низкочастотных усилителей возможен перехват опасных сигналов, возникающих в элементах только звонковой цепи. Амплитуда этих опасных сигналов, как правило, не превышает долей мВ.

При использовании для съема информации метода "высокочастотного навязывания", несмотря на гальваническое отключение микрофона от телефонной линии, сигнал навязывания благодаря высокой частоте проходит в микрофонную цепь и модулируется по амплитуде информационным сигналом. Следовательно, в телефонном аппарате необходимо защищать как звонковую цепь, так и цепь микрофона.

Для недопущения несанкционированного использования ТЛ применяются следующие технические способы (ТС):

· применение пассивных ТС защиты: сигнализаторов подключения, обрыва лини, счетчиков времени разговора, в т.ч. по межгороду;

· применение активных ТС защиты: устройства защиты от параллельного подключения, блокираторы выхода на межгород, устройства кодирования доступа к телефонной линии, устройства активного маскирования информации и др.

Пассивные ТС защиты телефонной линии.

К наиболее широко применяемым пассивным методам защиты относятся:

· ограничение опасных сигналов;

· фильтрация опасных сигналов;

· отключение преобразователей (источников) опасных сигналов;

Ограничения опасных сигналов основывается на нелинейных свойствах полупроводниковых элементов, главным образом диодов. В схеме ограничителя малых амплитуд используются два встречновключенных диода. Диоды имеют большое сопротивление для токов малой амплитуды и единицы - для токов большой амплитуды (полезных сигналов), что исключает прохождение опасных сигналов малой амплитуды в телефонную линию и практически не оказывает влияние на прохождение через диоды полезных сигналов.

Диодные ограничители включаются последовательно в линию звонка.

Фильтрация опасных сигналов используется главным образом для защиты телефонных аппаратов от "высокочастотного навязывания".

Простейшим фильтром является конденсатор, устанавливаемый в звонковую цепь телефонных аппаратов с электромеханическим звонком и в микрофонную цепь всех аппаратов. Емкость конденсаторов выбирается такой величины, чтобы зашунтировать зондирующие сигналы высокочастотного навязывания и не оказывать существенного влияния на полезные сигналы. Обычно для установки в звонковую цепь используются конденсаторы емкостью 1 мкФ, а для установки в микрофонную цепь - емкостью 0,01 мкФ. Более сложное фильтрующее устройство представляет собой многозвенный фильтр низкой частоты на LC-элементах.

Для защиты телефонных аппаратов, как правило, используются устройства, сочетающие фильтр и ограничитель.

Отключение телефонных аппаратов от линии при ведении в помещении конфиденциальных разговоров является наиболее эффективным методом защиты информации.

Реализация этого метода защиты заключается в установке в телефонной линии специального устройства защиты, автоматически (без участия оператора) отключающего телефонный аппарат от линии при положенной телефонной трубке.

В дежурном режиме (при положенной телефонной трубке) телефонный аппарат отключен от линии, и устройство находится в режиме анализа поднятия телефонной трубки и наличия сигналов вызова. При этом сопротивление развязки между телефонным аппаратом и линией АТС составляет не менее 20 МОм. Напряжение на выходе устройства в дежурном приеме составляет 5. 7В. При получении сигналов вызова устройство переходит в режим передачи сигналов вызова, при котором через электронный коммутатор телефонный аппарат подключается к линии. Подключение осуществляется только на время действия сигналов вызова. При поднятии телефонной трубки устройство переходит в рабочий режим и телефонный аппарат подключается к линии. Переход устройства из дежурного в рабочий режим осуществляется при токе в телефонной линии не менее 5 мА. Изделие устанавливается в разрыв телефонной линии, как правило, при выходе ее из выделенного (защищаемого) помещения или в распределительном щитке (кроссе), находящемся в пределах контролируемой зоны.

Контроль состояния телефонной линии и обнаружение атак осуществляется посредством применения аппаратуры контроля линий связи:

• анализаторов проводных линий и кабельных локаторов (рефлекторметров и устройств, использующих принципы нелинейной локации);

• универсальных комплексов контроля.

Для проведения углубленных исследований телефонных линий на предмет обнаружения несанкционированных подключений подслушивающих устройств используется более серьезная аппаратура, эффективная работа с которой доступна только специалистам. Это анализаторы телефонных линий и кабельные локаторы.

При использовании стандартных анализаторов телефонных линий можно эффективно обнаруживать наличие радиозакладных устройств с непосредственным подключением телефонной линии. Единственное неудобство - необходимость предварительного обесточивания проверяемой линии.

Телефонный анализатор в простейшем виде представляет собой комбинацию мультиметра и прибора, позволяющего обнаруживать переделки в телефонном аппарате. С помощью мультиметра отмечаются отклонения от нормальных значений ряда параметров (например, напряжения) абонентской линии связи при снятой и положенной телефонной трубке. Повышенное или пониженное по сравнению со стандартным значением напряжение или сопротивление может означать, соответственно, параллельное или последовательное подключение подслушивающих устройств. Существуют анализаторы, способные инициировать работу РЗУ и тем самым выявлять подслушивающие устройства, приводимые в действие от сигнала вызова уже с помощью детекторов поля или устройств радиоконтроля.

Аппаратура активной защиты информации в телефонных линиях.

Активные методы защиты от утечки информации по электроакустическому каналу предусматривают линейное зашумление телефонных линий. Шумовой сигнал подается в линию в режиме, когда телефонный аппарат не используется (трубка положена). При снятии трубки телефонного аппарата подача в линию шумового сигнала прекращается.

К основным методам активной защиты относятся:

· подача во время разговора в телефонную линию синфазного маскирующего низкочастотного сигнала (метод синфазной низкочастотной маскирующей помехи);

· подача во время разговора в телефонную линию маскирующего высокочастотного сигнала звукового диапазона (метод высокочастотной маскирующей помехи);

· подача во время разговора в телефонную линию маскирующего высокочастотного ультразвукового сигнала (метод ультразвуковой маскирующей помехи);

· поднятие напряжения в телефонной линии во время разговора (метод повышения напряжения);

· подача во время разговора в линию напряжения, компенсирующего постоянную составляющую телефонного сигнала (метод "обнуления");

· подача в линию при положенной телефонной трубке маскирующего низкочастотного сигнала (метод низкочастотной маскирующей помехи);

· подача в телефонную линию высоковольтных импульсов (метод "выжигания").

Метод синфазной маскирующей низкочастотной (НЧ) помехи заключается в подаче в каждый провод телефонной линии, с использованием единой системы заземления аппаратуры АТС и нулевого провода электросети 220В, согласованных по амплитуде и фазе маскирующих сигналов речевого диапазона частот (300. 3400Гц). В телефонном аппарате эти помеховые сигналы компенсируют друг друга и не оказывают мешающего воздействия на полезный сигнал (телефонный разговор). Если же информация снимается с одного провода телефонной линии, то помеховый сигнал не компенсируется. А так как его уровень значительно превосходит полезный сигнал, то перехват информации (выделение полезного сигнала) становится невозможным. В качестве маскирующего помехового сигнала, как правило, используются дискретные сигналы (псевдослучайные последовательности импульсов).

Метод синфазного маскирующего НЧ сигнала используется для подавления телефонных радиозакладок с последовательным (в разрыв одного из проводов) включением, а также телефонных радиозакладок и диктофонов с подключением к линии (к одному из проводов) с помощью индукционных датчиков различного типа.

Метод высокочастотной (ВЧ) маскирующей помехи заключается в подаче во время разговора в телефонную линию широкополосного маскирующего сигнала в диапазоне высших частот звукового диапазона. Данный метод используется для подавления практически всех типов подслушивающих устройств как контактного (параллельного и последовательного) подключения к линии, так и подключения с использованием индукционных датчиков. Однако эффективность подавления средств съема информации с подключением к линии при помощи с индукционных датчиков (особенно не имеющих предусилителей) значительно ниже, чем средств с гальваническим подключением к линии.

В качестве маскирующего сигнала используются широкополосные аналоговые сигналы типа "белого шума" или дискретные сигналы типа псевдослучайной последовательности импульсов. Частоты маскирующих сигналов подбираются таким образом, чтобы после прохождения селективных цепей модулятора закладки или микрофонного усилителя диктофона их уровень оказался достаточным для подавления полезного сигнала (речевого сигнала в телефонной линии во время разговоров абонентов), но в то же время эти сигналы не ухудшали качество телефонных разговоров. Чем ниже частота помехового сигнала, тем выше его эффективность и тем большее мешающее воздействие он оказывает на полезный сигнал. Обычно используются частоты в диапазоне от 6. 8 кГц до 16. 20 кГц. Такие маскирующие помехи вызывают значительные уменьшение отношения сигнал/шум и искажения полезных сигналов (ухудшение разборчивости речи) при перехвате их всеми типами подслушивающих устройств. Кроме того, у радиозакладок с параметрической стабилизацией частоты ("мягким" каналом) как последовательного, так и параллельного включения наблюдается "уход" несущей частоты, что может привести к потере канала приема.

Для исключения воздействия маскирующего помехового сигнала на телефонный разговор в устройстве защиты устанавливается специальный низкочастотный фильтр с граничной частотой 3,4 кГц, подавляющий (шунтирующий) помеховые сигналы и не оказывающий существенного влияния на прохождение полезных сигналов. Аналогичную роль выполняют полосовые фильтры, установленные на городских АТС, пропускающие сигналы, частоты которых соответствуют стандартному телефонному каналу (300 Гц. 3,4 кГц), и подавляющие помеховый сигнал.

Метод ультразвуковой маскирующей помехи в основном аналогичен рассмотренному выше. Отличие состоит в том, что используются помеховые сигналы ультразвукового диапазона с частотами от 20. 25 кГц до 50. 100 кГц.

Метод повышения напряжения заключается в поднятии напряжения в телефонной линии во время разговора и используется для ухудшения качества функционирования телефонных радиозакладок. Поднятие напряжения в линии до 18. 24В вызывает у радиозакладок с последовательным подключением и параметрической стабилизацией частоты "уход" несущей частоты и ухудшение разборчивости речи вследствие размытия спектра сигнала. У радиозакладок с последовательным подключением и кварцевой стабилизацией частоты наблюдается уменьшение отношения сигнал/шум на 3. 10 дБ. Телефонные радиозакладки с параллельным подключением при таких напряжениях в ряде случаев просто отключаются.

Метод "обнуления" предусматривает подачу во время разговора в линию постоянного напряжения, соответствующего напряжению в линии при поднятой телефонной трубке, но обратной полярности.

Этот метод используется для нарушения функционирования подслушивающих устройств с контактным параллельным подключением к линии и использующих ее в качестве источника питания. К таким устройствам относятся: параллельные телефонные аппараты, проводные микрофонные системы с электретными микрофонами, использующие телефонную линию для передачи информации, акустические и телефонные закладки с питанием от телефонной линии и т.д.

Метод низкочастотной маскирующей помехи заключается в подаче в линию при положенной телефонной трубке маскирующего сигнала речевого диапазона частот (300. 3400Гц). Применяется для подавления проводных микрофонных систем, использующих телефонную линию для передачи информации на низкой частоте, а также для активизации (включения на запись) диктофонов, подключаемых к телефонной линии с помощью адаптеров или индукционных датчиков, что приводит к сматыванию пленки в режиме записи шума (т.е. при отсутствии полезного сигнала).

Метод "выжигания" реализуется путем подачи в линию высоковольтных (напряжением более 1500 В) импульсов, приводящих к электрическому "выжиганию" входных каскадов электронных устройств перехвата информации и блоков их питания, гальванически подключенных к телефонной линии.

При использовании данного метода телефонный аппарат от линии отключается. Подача импульсов в линию осуществляется два раза. Первый раз - для "выжигания" параллельно подключенных устройств при разомкнутой телефонной линии, второй раз - для "выжигания" последовательно подключенных устройств при закороченной (как правило, в центральном распределительном щитке здания) телефонной линии.

Современные контроллеры телефонных линий, как правило, наряду со средствами обнаружения подключения к линии устройств несанкционированного съема информации, оборудованы и средствами их подавления. Для подавления в основном используется метод высокочастотной маскирующей помехи. Режим подавления включается автоматически или оператором при обнаружении факта несанкционированного подключения к линии.

Защита речевой информации в IP-телефонии .

В IP-телефонии существуют два основных способа передачи пакетов с речевой информацией по сети: через сеть Интернет и через корпоративные сети + выделенные каналы. Между этими способами мало различий, однако во втором случае гарантируется лучшее качество звука и небольшая фиксированная задержка пакетов речевой информации при их передаче по IP-сети.

Для обеспечения приемлемого качества звука на приемной стороне при передаче речевых пакетов в IP-сети задержка в их доставке от приемной стороны не должна превышать 250 мс. Для уменьшения задержки оцифрованный речевой сигнал сжимают, а затем зашифровывают с использованием алгоритмов потокового шифрования и протоколов передачи в IP-сети.

Другой проблемой защищенной IP-телефонии является обмен криптографическими ключами шифрования между абонентами сети. Как правило, используются криптографические протоколы с открытым ключом с применением протокола Диффи-Хеллмана, который не дает тому, кто перехватывает разговор, получить какую-либо полезную информацию о ключах и в то же время позволяет сторонам обменяться информацией для формирования общего сеансового ключа. Этот ключ применяется для зашифровки и расшифровки речевого потока. Для того, чтобы свести к минимуму возможность перехвата ключей шифрования, используются различные технологии аутентификации абонентов и ключей.

Все криптографические протоколы и протокол сжатия речевого потока выбираются программами IP-телефонии динамически и незаметно для пользователя, предоставляя ему естественный интерфейс, подобный обычному телефону.

Реализация эффективных криптографических алгоритмов и обеспечение качества звука требуют значительных вычислительных ресурсов. В большинстве случаев эти требования выполняются при использовании достаточно мощных и производительных компьютеров, которые, как правило, не умещаются в корпусе телефонного аппарата. Но межкомпьютерный обмен речевой информацией не всегда устраивает пользователей IP-телефонии. Гораздо удобнее использовать небольшой, а лучше мобильный аппарат IP-телефонии. Такие аппараты уже появились, хотя они обеспечивают стойкость шифрования речевого потока значительно ниже, чем компьютерные системы IP-телефонии. В таких телефонных аппаратах для сжатия речевого сигнала используется алгоритм GSM, а шифрование осуществляется по протоколу Wireless Transport Layer Security (WTLS), который является частью протокола Wireless Application Protocol (WAP), реализованного в сетях мобильной связи. По прогнозам экспертов, будущее именно за такими телефонными аппаратами: небольшими, мобильными, надежными, имеющими гарантированную стойкость защиты речевой информации и высокое качество звука

1. Барсуков В.С. Безопасность: технологии, средства, услуги / В.С. Барсуков. – М., 2001 – 496 с.

2. Ярочкин В.И. Информационная безопасность. Учебник для студентов вузов / 3-е изд. – М.: Академический проект: Трикста, 2005. – 544 с.

3. Барсуков В.С. Современные технологии безопасности / В.С. Барсуков, В.В. Водолазский. – М.: Нолидж, 2000. – 496 с., ил.

4. Зегжда Д.П. Основы безопасности информационных систем / Д.П. Зегжда, А.М. Ивашко. - М.: Горячая линия – Телеком, 2000. - 452 с., ил.

5. Компьютерная преступность и информационная безопасность / А.П. Леонов [и др.]; под общ. Ред. А.П. Леонова. – Минск: АРИЛ, 2000. – 552 с.

Введение__________________________________________3

Краткое описание стандартов сотовой связи_____________5

GSM: безопастность вашей информации____________________________6

Функции безопасности_________________________9

Шифрование________________________________11

Управление ключами_________________________12

Средства защиты идентичности пользователя_____13

Архитектура и протоколы______________________14

Вывод______________________________________16

Литература_______________________________________17

Приложение______________________________________18

Введение
Нас всегда волнует вопрос, не услышал ли кто-нибудь посторонний то, что предназначалось только конкретному человеку. Проблема защиты от перехвата информации существует даже не с момента появления электрической связи вообще. Эта проблема возникла еще раньше - наверное, с появлением письменности. Но мы не будем заглядывать так далеко назад. История развития средств перехвата информации идет в ногу с прогрессом. Сотовый телефон - это очень удобно и практично. Но мы часто не задумываемся о том, какие возможности есть у телефона, кроме используемых нами. На самом деле, в любой аппаратуре сотовой связи еще на этапе разработки закладываются возможности:

- представления информации о точном местоположении абонента (о плюсах и минусах позиционирования можно прочитать в одной из предыдущих статей);

- записи и прослушивания разговоров с определением номеров;

и многое другое, о чем мы подчас даже не догадываемся.

В настоящее время электронный перехват разговоров, ведущихся по сотовому телефону, стал широко распространенным явлением. Так, например, в Канаде, по статистическим данным, от 20 до 80 процентов радиообмена, ведущегося с помощью сотовых телефонов, случайно или преднамеренно прослушивается посторонними лицами.

Прослушивание разговоров по мобильному телефону не только легко осуществить, он, к тому же, не требует больших затрат на аппаратуру, и его почти невозможно обнаружить. На Западе прослушивание разговоров, ведущихся с помощью беспроводных средств связи, практикуют правоохранительные органы, частные детективы, промышленные шпионы, представители прессы, телефонные компании, компьютерные хакеры и т.п. В этом вопросе мы, конечно, отстаем от Запада, но и у нас прослушивать разговоры по мобильнику вполне возможно.

Существующие стандарты сотовой связи предоставляют различный уровень безопасности. Наименее защищенными являются аналоговые стандарты AMPS, NMT. Сигнал не кодируется и не шифруется, поэтому любой человек, настроив соответствующее радиоприемное устройство на ту же частоту, может услышать каждое ваше слово. Для этого даже не нужно иметь особо сложной аппаратуры. Разговор, ведущийся с сотового телефона, может быть прослушан с помощью сканирующего радиоприемника, теоретически переговоры можно прослушивать даже на обычном приемнике (при наличии некоторого опыта). Далее следует NMT-450i, он тоже обеспечивает слабую защиту. Если мобильный телефон работает в цифровом стандарте GSM-900, D-AMPS или аналогичном - за конфиденциальность разговора можно практически не волноваться. Разумеется, если ваш собеседник также является владельцем мобильного телефона в цифровом стандарте. Если ваш собеседник - абонент телефонной сети общего пользования либо владелец мобильного телефона, который работает в аналоговом стандарте, - утечка информации может произойти не через ваш, а его аппарат или телефонную линию. CDMA же, наименее распространенный в России, обеспечивает пока самый высокий уровень защиты от прослушивания.

Что же делать? Если вам нечего скрывать, то можно спокойно пользоваться всеми видами телекоммуникации. Если вы хотите обезопасить себя, то придется использовать некие приемы противодействия для предотвращения перехвата информации:

- разумеется, самое безопасное, это отказаться от услуг сотовой связи вообще;

- приобретайте телефон анонимно или на вымышленные данные: по крайней мере, труднее определить, кто ведет разговор;

- избегайте или сведите к минимуму передачу конфиденциальной информации, такой как номера кредитных карточек, фио, адреса;

- помните, что труднее перехватить разговор, который ведется с движущегося автомобиля, т.к. расстояние между ним и перехватывающей аппаратурой (если та находится не в автомобиле) увеличивается и сигнал ослабевает;

- используйте, при возможности, цифровые сотовые телефоны;

- отключайте полностью свой сотовый телефон, если он вам в данный момент не нужен, особенно во время важного разговора "тет-а-тет";

- при обмене конфиденциальной информацией по обычным каналам связи желательно использовать собственную аппаратуру электронного шифрования

Краткое описание стандартов сотовой связи

Именно от стандарта, а точнее частоты, на которой работает телефон, зависит качество связи. Также, чем больше частота передачи сигнала, тем меньший вред оказывает излучение телефона на ваш мозг. При аналоговой связи звуковой сигнал передается, как есть, а при цифровой он передается в виде оцифрованного кода. Поэтому цифровая связь несоизмеримо более качественна и значительно сложнее для прослушивания и насаждения двойников. Российские компании-операторы используют следующие стандарты: NMT-450i, GSM-900, GSM-1800, CDMA, DAMPS.

Первое поколение (аналоговые системы):

NMT (Nordic Mobile Telephone) - стандарт сотовой связи, работающей в диапазоне 450 МГц. Первоначально предлагался для использования в скандинавских странах и затем распространился в Европе. Основные достоинства - относительно невысокая стоимость абонентского и сетевого оборудования, быстрота развертывания и взаимодействия с аналоговыми проводными сетям. Недостатки - возможность прослушивания разговоров и несанкционированного проникновения в сеть. Высокие, по сравнению с цифровыми технологиями, энергозатраты.

AMPS (Advanced Mobile phone System) - стандарт США для аналоговых сотовых систем на базе TDMA, работающих в диапазоне 800 МГц. Достоинства и недостатки те же, что и у NMT.

Второе поколение (цифровые системы):

Кроме этих стандартов, существуют и другие, либо являющиеся разновидностями GSM для других частотных диапазонов, такие, как Европейский DCS1800 и американский PCS1900, либо основанные на более поздних технологиях - американский IS95 на базе CDMA.
GSM900/1800 – самый популярный на сегодняшний день стандарт сотовой связи в Российской столице, сети это стандарта наиболее бурно развиваются по всей стране. Поэтому более подробно мы рассмотрим безопастность именно в этом стандарте.
GSM: безопастность вашей информации

Радиосвязь по свой природе является более уязвимой для прослушивания и разного рода мошенничества, чем связь по проводам. Скажем, можно очень легко выдать себя за другое лицо (и тем самым заставить его расплачиваться по счетам!), если не предусмотрены специальные меры защиты.

Поэтому, чтобы гарантировать высокую степень защиты информации, передаваемой по радиотелефону, необходимо решить две основные задачи.

Во-первых, обеспечить защиту радиотелефонной сети от несанкционированного доступа. Это достигается за счет аутентификации абонента (или его мобильной станции).

Поскольку мобильная телефонная сеть имеет ряд неоспоримых преимуществ перед другими средствами связи, то сейчас количество ее абонентов неуклонно растет и по прогнозу к концу века только в Европе ожидается около 100 млн. пользователей,

Первая мобильная телефонная сеть была создана 50 лет назад в Сент-Луисе, США. Сотовый принцип впервые был предложен лабораторией Bell Labs в США, в 70-х годах его опробовали в разных частях света. В 1979 г. в Чикаго начала работу первая сотовая сеть с диапазоном частот 800 МГц.

Благодаря высокой пропускной способности, эффективности и открытым международным стандартам GSM стал известен как Глобальная Система Мобильной связи и был выбран в качестве международного стандарта новой цифровой сети.

В свою очередь, необходимая информация об абонентах хранится в базах данных. Информация, которая относит абонента к его сети (уровни абонирования, дополнительные услуги, текущая или последняя использованная сеть и местоположение), хранится в регистре местоположения собственных абонентов (HLR — Home Location Register).

В тесном контакте с HLR работает центр проверки подлинности (АиС — Authentication Centre), который обеспечивает информацию, необходимую для проверки подлинности абонента, использующего сеть. Это обязательная защита от возможного обмана, использования украденных абонентских карточек или неоплаченных счетов.

Регистр местоположения обслуживаемых абонентов (VLR — Visitor Location Register) хранит информацию о всех абонентах, которые пользуются услугами связи на территории, обслуживаемой регистром VLR. Он отслеживает местоположение всех обслуживаемых абонентов и хранит запись о них, делая возможной правильную маршрутизацию входящих вызовов.

Информацию о типе используемой мобильной станции хранит регистр идентификации оборудования (EIR — Equipment Identity Register). Эти данные могут быть использованы для идентификации и запрета или отслеживания мобильной станции в случае, если она украдена, не одобрена к применению или имеет неисправность, которая может повлиять на сеть.

Все механизмы обеспечения безопасности GSM находятся исключительно под контролем операторов: пользователи не имеют возможности воздействовать на применение или отсутствие аутентификации, шифрования и т. д. Более того, пользователям не всегда известно, какие функции безопасности используются системой. Напротив, как правило, услуги безопасности не афишируются и не входят в число платных. Ниже мы предлагаем подробнее рассмотреть способы защиты информации, применяемые в мобильных сетях стандарта GSM.

Функции безопасности

Здесь мы познакомимся с аутентификацией и шифрованием как средствами защиты идентичности пользователя.


Рис. 1. Вычисление аутентификации
Аутентификация производится путем требования дать правильный ответ на следующую головоломку: какой ответ SRES абонент может вывести из поступившего RAND, применяя алгоритм A3 с личным (секретным) ключом Ki?

Ответ, который называется SRES (Signed RESult — подписанный результат), получают в форме итога вычисления, включающего секретный параметр, принадлежащий данному пользователю, который называется Ki (рис. 1). Секретность Ki является краеугольным камнем, положенным в основу всех механизмов безопасности — свой собственный Ki не может знать даже абонент. Алгоритм, описывающий порядок вычисления, называется алгоритмом A3. Как правило, такой алгоритм хранится в секрете (лишние меры предосторожности никогда не помешают!).

Для того чтобы достигнуть требуемого уровня безопасности, алгоритм A3 должен быть однонаправленной функцией, как ее называют экспертыкриптографы. Это означает, что вычисление SRES при известных Ki и RAND должно быть простым, а обратное действие — вычисление Ki при известных RAND и SRES — должно быть максимально затруднено. Безусловно, именно это и определяет в конечном итоге уровень безопасности. Значение, вычисляемое по алгоритму A3, должно иметь длину 32 бита. Ki может иметь любой формат и длину.


Рис. 2. Шифрование и расшифровка
Алгоритм А5 выводит последовательность шифрования из 1 14 бит для каждого пакета отдельно, с учетом номера кадра и шифровального ключа Кс.

Управление ключами

Ключ Кс до начала шифрования должен быть согласован мобильной станцией и сетью. Особенность стандарта GSM заключается в том, что ключ Кс вычисляется до начала шифрования во время процесса аутентификации. Затем Кс вводится в энергонезависимую память внутри SIM с тем, чтобы он хранился там даже после окончания сеанса связи. Этот ключ также хранится в сети и используется для шифрования.


Рис. 3. Вычисление Кс
Всякий раз, когда какая-либо мобильная станция проходит процесс аутентификации, данная мобильная станция и сеть также вычисляют ключ шифрования Кс, используя алгоритм А8 с теми же самыми вводными данными RAND и Ki, которые используются для вычисления SRES посредством алгоритма A3.

Алгоритм А8 используется для вычисления Кс из RAND и Ki (рис. 3). Фактически, алгоритмы A3 и А8 можно было бы реализовать в форме одного-единственного вычисления. Например, в виде единого алгоритма, выходные данные которого состоят из 96 бит: 32 бита для образования SRES и 64 бита для образования Кс.

Следует также отметить, что длина значимой части ключа Кс, выданная алгоритмом А8, устанавливается группой подписей GSM MoU и может быть меньше 64 битов. В этом случае значимые биты дополняются нулями для того, чтобы в этом формате всегда были использованы все 64 бита.

Средства защиты идентичности пользователя

Защита также обеспечивается путем использования идентификационного псевдонима, или TMSI (Временный идентификатор мобильного абонента), которое используется вместо идентификатора абонента IMSI (Международный идентификатор мобильного абонента) в тех случаях, когда это возможно. Этот псевдоним должен быть согласован заранее между мобильной станцией и сетью.

Архитектура и протоколы

Действующие лица и протоколы, участвующие в организации безопасности, являются практически теми же, что и в случае организации мест нахождения, и это служит оправданием их включения в аналогичную функциональную область. Тем не менее, при организации безопасности ведущие роли меняются и должны быть отнесены к SIM со стороны мобильной станции, а также к Центру аутентификации (АиС), который можно рассматривать как часть HLR со стороны сети.

SIM и АиС являются хранилищами ключа Ki абонента. Они не передают эти ключи, но выполняют вычисления A3 и А8 сами. Если говорить об аутентификации и установке ключа Кс, то все остальные виды оборудования выполняют промежуточную роль.

SIM полностью защищает Ki от чтения. Технология чиповых карт, внедренная за некоторое время до того, как GSM приступила к производству этих миниатюрных электронных сейфов, идеально подходила для этой цели. Единственный доступ к Ki происходит во время первоначальной фазы персонализации SIM.

Используя панорамный приемник (который очень дорого стоит и мало кому доступен) можно поймать рабочую частоту радиотелефона. Однако записать даже короткий разговор конкретного абонента — практически невозможно в тех условиях, в которых действуют сегодня операторы сотовой связи стандарта GSM. Кроме того, в этом случае присутствует фактор экономической целесообразности: куда дешевле напрямую подключиться к незащищенным телефонным проводам и снимать информацию.

Кроме того, эта система предназначена, во-первых, для контроля исходящих и входящих вызовов подвижных абонентов и исходящих вызовов (местных, внутризоновых, междугородных и международных) от всех абонентов к определенным абонентам; во-вторых. Для предоставления данных о местоположении контролируемых абонентов, подвижных станций при их перемещении по системе связи; в-третьих, для сохранения контроля за установленным соединением при процедурах передачи управления вызовом (handover) как между базовыми станциями в пределах одного центра коммутации, так и между разными центрами; в-четвертых, для контроля вызовов при предоставлении абонентам дополнительных услуг связи, в частности, изменяющих направление вызова (Call Forwarding).

Из всего вышеизложенного можно сделать вывод: Клиенты могут быть спокойны — механизмы защиты, принятые в стандарте GSM, обеспечивают конфиденциальность переговоров и аутентификацию абонента и предотвращают возможность несанкционированного доступа к сети.

Мобильные устройства стремительно становятся основным способом нашего взаимодействия с окружающим миром – возможность постоянно оставаться на связи является неотъемлемой частью нашей сегодняшней жизни, наши телефоны и всевозможные носимые устройства расширяют наши возможности при покупке продуктов, получении банковских услуг, развлечениях, видеозаписи и фотографирования важных моментов нашей жизни и, разумеется, возможности общения.

Одновременно, благодаря мобильным устройствам и приложениям бренды получили принципиально новый способ заявить о себе, и это, в свою очередь привело к феноменальным уровням роста мобильных технологий за последнее десятилетие. К сожалению, быстрый рост проникновения мобильных технологий приводит и к расширению возможностей для киберпреступников.




Сегодня через мобильные устройства пользователям доступно все больше весьма ценных сервисов, требующих внимательного отношения к безопасности (в числе которых, например, мобильный банкинг, платежи и мобильные идентификаторы). Соответственно, хакеры прекрасно понимают, что, организовав утечку данных аутентификации через мобильное устройство, они смогут получить неавторизованный доступ к онлайн-ресурсам, представляющим собой высокую ценность. В частности, хакеры будут пытаться получить доступ к финансовой информации, учетным данным для доступа к социальным сетям, к данным контрактов в сетях мобильной связи. Так или иначе, порой, этого может оказаться достаточно для полноценного осуществления кражи личности. Эта угроза становится особенно актуальной в настоящее время, когда мы наблюдаем рост числа новых мобильных приложений – согласно исследованию Application Resource Center (Applause), 90% компаний намерено к концу этого года увеличить объем своих инвестиций в разработку мобильных приложений.

Мы попросили потребителей рассказать о том, каким образом они используют свои мобильные устройства, и поделиться своими ожиданиями в отношении безопасности. Мы хотели выяснить, каким образом потребительские впечатления повлияют на тех, кто занимается разработкой приложений и инфраструктуры для мобильных приложений и сервисов, а именно на банки, государственные органы и на любые крупные предприятия, создающие приложения для пользователей. Результаты этого исследования позволили получить более глубокое понимание того, что именно требуется пользователям, чтобы обеспечить информационную безопасность будущей мобильной революции.


После опроса мы подытожили и проанализировали полученные данные, собрав результаты в отчет. 66% опрошенных утверждают, что совершали бы больше транзакций, если бы знали наверняка, что в их мобильных устройствах уделяется должное внимание вопросам безопасности, до такой степени, что целых 70% конечных пользователей не против иметь цифровые удостоверения личности на своих смартфонах, но только при условии, что все приложения на их телефонах полностью защищены от хакерских атак и уязвимостей.

Другие интересные результаты опроса:




Как защититься от угроз?


Очевидно, что потенциал роста до сих пор не исчерпан. Вопрос заключается лишь в том, чтобы обеспечить безопасность для тех, кто готов расширить сферу применения своих смартфонов. Наше исследование с ответами на вопрос, каким образом можно достичь этого, и рекомендациями по достижению доверия потребителей доступно по ссылке (англ.)

Читайте также: