Высказывания и предикаты реферат

Обновлено: 02.07.2024

Аннотация: Рассматриваются основные понятия и сведения алгебры высказываний и предикатов – высказывания, предикаты, аксиомы, логические выражения и функции, эквивалентные выражения и приведение к эквивалентному выражению, другие сопутствующие понятия и факты логики, а также инфологические задачи.

Информатика , как было рассмотрено выше, изучает знаковые (алфавитные) системы. Алгебра – наиболее адекватный математический аппарат описания действий в них, поэтому алгебраический аппарат наилучшим образом подходит для описания информационных систем общей природы, отвлеченно от их предметной направленности. Информационные процессы хорошо формализуются с помощью различных алгебраических структур.

Алгеброй A называется некоторая совокупность определенных элементов X , с заданными над ними определенными операциями f (часто определяемые по сходству с операциями сложения и умножения чисел), которые удовлетворяют определенным свойствам – аксиомам алгебры.

Операция f называется n-местной, если она связывает n операндов (объектов – участников этой операции ).

Совокупность операций алгебры A называется ее сигнатурой, а совокупность элементов алгебры – носителем алгебры .

Утверждение ( высказывательная форма ) – основная единица , неделимая с точки зрения отражения смысла информации (семантики).

Высказывание – некоторое повествовательное утверждение, про которое можно однозначно сказать ("сразу посмотрев на него"), истинно оно или ложно. Эти два значения всевозможных высказываний обозначаются "истина" и "ложь" , " true " и "fаlse" или "1" и "0".

Переменная , значениями которой могут быть лишь значения "1" или "0", называется логической переменной или булевой переменной.

Пример. Рассмотрим словосочетания:

  1. Москва – столица США.
  2. Житель города Москва.
  3. 5 – 7 + 8 .
  4. 5 – 9 + 28 = 4 .
  5. В пятую неделю зимы было очень холодно.
  6. В Антарктиде живут тигры.

Высказывание должно быть однозначно истинным или однозначно ложным, поэтому высказываниями являются только утверждения 1), 4), 6).

Пример. Не является высказыванием и "парадокс лжеца" (Эвбулид, учитель Демосфена, около 350 лет до н.э.): "То, что я сейчас утверждаю, – ложно", ибо если оно истинно – то оно ложно, а если допустить, что оно ложно, то оно истинно. Это неопределенная высказывательная форма . Аналогичный пример принадлежит известному математику, логику Гёделю (1931 г.): "То, что утверждается в этом предложении, не может быть доказано". Если его можно опровергнуть, то его нельзя доказать, а если его нельзя опровергнуть, то его можно доказать. Предложения такого рода не могут быть доказаны или опровергнуты в пределах того языка (той теории, алгебры ), с помощью которой они сформулированы. Известны многие подобные парадоксы.

Рассматривая высказывания , мы не обращаем внимания на их внутреннюю структуру и можем разлагать их на структурные части, равно как и объединять их.

Пример. Построим из ниже заданных простых высказываний составные, сложные высказывания , принимающие значение "истина" , "ложь" :

  1. "Зима – холодное время года".
  2. "Пальто – теплая одежда".
  3. "Камин – источник тепла".

Истинным будет, например, сложное высказывание : "Зима – холодное время года и зимой носят пальто", а ложным будет, например, высказывание : "Некоторые ходят в пальто, поэтому на улице зима". Придумайте другие примеры.

Предикат – высказывательная форма с логическими переменными (множество значений этих переменных вполне определено), имеющая смысл при любых допустимых значениях этих переменных. Количество переменных в записи предиката называется его местностью.

Простые высказывания или предикаты не зависят от других высказываний или предикатов ("не разбиваемы на более простые"), а сложные – зависят хотя бы от двух простых.

Пример. Выражение "х = у" – предикат , "х > 5" – предикат , а "7 > 5" – высказывание . Утверждение "Хорошо" не является высказыванием , утверждение "Оценка студента А по информатике – хорошая" – простое высказывание , утверждение "Вчера была ясная погода, я был вчера на рыбалке" – сложное высказывание , состоящее из двух простых.

Логической (булевой) функцией f(х) называется некоторая функциональная зависимость, в которой аргумент х – логическая переменная с заданным множеством изменений аргумента, а значения функции f(x) берутся из двухэлементного множества R(f) = .

Пример. Заданы предикаты вида р = "число х делится нацело на 3" и q = "у – день недели" . Найдем множество истинности предикатов р и q , если " />
, " />
. Получаем, что " />
, " />
.

Множество логических переменных с определенными над ним операциями: " />
– отрицания или инверсии, – логического сложения или дизъюнкции, – логического умножения или конъюнкции называется алгеброй предикатов (и высказываний ) , если эти операции удовлетворяют следующим аксиомам :

Аксиома двойного отрицания:

\overline<\overline<x></p>
<p>>=x

Аксиомы переместительности операндов (относительно операций дизъюнкции и конъюнкции ):

x \land y = y\land x, x \lor y = y \lor x

Аксиомы переместительности операций дизъюнкции и конъюнкции (относительно операндов):

(x \land y) \land z = x \land (y \land z), (x \lor y) \lor z = x \lor (y \lor z)

Аксиомы одинаковых операндов:

x\land x = x, x \lor x = x

Аксиомы поглощения (множителем — множителя-суммы или слагаемым — слагаемого-произведения):

x \land (x \lor y) = x, x \lor (x \land y) = x

Аксиомы распределения операции ( дизъюнкции относительно конъюнкции и наоборот):

x \land (y \lor z) = (x \land y) \lor (x \land z), x \lor (y \land z) = (x \lor y) \land (x \lor z)

Аксиомы де Моргана (перенесения бинарной операции на операнды):

\overline<x\land y></p>
<p>= \overline\lor\overline, \overline<x\lor y>=\overline\land\overline

Аксиомы нейтральности (взаимноинверсных множителей или слагаемых):

x\land(y\lor\overline</p>
<p>)=x, x\lor(y\land\overline)=x

Аксиома существования единицы ( истина , true, 1) и нуля ( ложь , false, 0), причем,

\overline<0></p>
<p>=1, \overline=0, \overline\lor x=1, \overline\land x = 0

Из этих аксиом следует ряд полезных соотношений, например,

x\land1=x,\\x\lor0=x,\\x\lor1=1,\\x\land0=0,\\ \overline</p>
<p>\lor x=1,\\ \overline\land x=0

Высказывание – это повествовательное предложение, про которое можно однозначно сказать, истинно оно или ложно.

Например:
A: натуральное число a делится на 2;
B: натуральное число a чётное.
Заметим, немного забегая наперёд, что в данном случае из А следует В, и из В следует А. Говорят, что эти высказывания эквивалентны: AB.

п.2. Предикаты

Предикат – это предложение с переменной P(x), которое становится высказыванием при подстановке определённого значения переменной.
Предикат P(x) является функцией, которая определена на некотором множестве значений x>, и ставит ему в соответствие два значения – истина или ложь.

Например:
P(x): x – объект с четырьмя ногами
При x = слон – предикат становится истинным высказыванием, P("слон" )=1
При x = муравей – предикат становится ложным высказыванием, т.к. у муравья 6 ног, P(муравей)=0
При x = стол – предикат становится истинным высказыванием, P("стол" )=1
При x = человек – предикат становится ложным высказыванием, т.к. у человека 2 ноги, P(человек)=0

Множество значений переменной, на котором предикат становится истинным, называют множеством истинности предиката .
Предикат, который при любых значениях переменной, является истинным, называют тождественным предикатом или тождеством .

Например:
P(x):|x| ≥ 0 – выполняется при любом значении x, это тождественный предикат.
\(\mathrm>\)

Предикат может быть функцией нескольких переменных, в этом случае его называют многоместным предикатом .

Например:
P(x, y): x делится на y – двуместный предикат, который становится истинным высказыванием на парах значений переменных (15;5), (14;7), (16;4) и т.д.
P(a, b):(a + b) 2 = a 2 + 2ab + b 2 – является тождественным двуместным предикатом, т.к. выполняется для любых a и b.

п.3. Кванторы

Единственности и существования

Пусть P(x) – одноместный предикат. Чтобы установить истинность высказывания (∃x)P(x), достаточно найти хотя бы один такой x*, что P(x* ) становится истинным высказыванием.

Существуют натуральные числа, которые делятся на 13

Например x = 26

Существуют треугольники, у которых все углы равны

Например, равносторонний треугольник со стороной 1

Пусть P(x) – одноместный предикат. Чтобы установить ложность высказывания (∀x)P(x), достаточно найти хотя бы один такой x*, что P(x* ) становится ложным высказыванием.

Любое натуральное число делится на 5

Например x = 6 на 5 не делится

У любого выпуклого четырехугольника диагонали перпендикулярны

Например, у прямоугольника со сторонами 3 и 4 угол между диагоналями ≈ 74° ≠ 90°

Пусть P(x) – одноместный предикат. Чтобы установить истинность высказывания (∀x)P(x), необходимо доказать, что предикат P(x) является тождеством.

Разность квадратов двух любых выражений равна произведению суммы и разности

Сумма углов любого треугольника равна 180°.

(∀ABC) ∠A + ∠B + ∠C = 180°

Третий класс задач (теорема) – самый сложный, т.к. требует не просто одного примера, а доказательства в общем случае.

п.4. Примеры

Пример 1. Запишите по два высказывания (A – истинное, B – ложное), относящиеся к
а) физике
A: Плотность равна отношению массы тела к его объему.
B: КПД механизма может быть больше 1.
б) химии
A: Гидроксид натрия – сильное основание.
B: Сульфат натрия – нерастворимая соль.
в) географии
A: На Земле шесть материков.
B: На Земле три океана.

Пример 2. Запишите по два предиката, относящиеся к
а) физике
A(h): Потенциальная энергия прямо пропорциональна высоте h.
B(v): Сила лобового сопротивления прямо пропорциональна квадрату скорости v 2 .
б) химии
A(x,y): Между основанием x и кислотой y проходит реакция нейтрализации.
B(x): Металл x вытесняет водород из HCl.
в) географии
A(x,y,z): День x является днём y солнцестояния в z полушарии.
B(x,y): Река x впадает в море y.

Пример 3. С каким из кванторов предикат x 2 + 4 = 12 станет истинным высказыванием?
Если запишем (∀x) x 2 + 4 = 12 – это ложное высказывание, т.к., например, при x=0 оно не выполняется.
Если запишем (∃x) x 2 + 4 = 12 – это истинное высказывание, т.к., например, при \(\mathrm>\), оно выполняется.
Если запишем (∃x!) x 2 + 4 = 12 – это ложное высказывание, т.е. решений у данного уравнения не одно, а два: \(\mathrm=2\sqrt>\)
Ответ: квантор существования ∃.

Пример 4

Пример 4. Найдите область истинности предиката: $$ P(x):\ \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. $$ Решаем систему: $$ \left\< \begin < l >\mathrm <(x-4)(x-7)\geq 0>& \\ \mathrm <(x-2)(x-9)\lt 0>& \end\right. $$
Область истинности предиката: x ∈ (2;4] ∪ [7;9)
P(x) = 1 приx ∈ (2;4] ∪ [7;9)

Гост

ГОСТ

Понятие предиката

Предикат - утверждение, которое содержит переменные, принимающие значение $1$ или $0$ (истинно или ложно) в зависимости от значений переменных.

Например, выражение $x=x^5$ является предикатом, т.к. оно является истинным при $x=0$ или $x=1$ и ложным при всех остальных значениях $x$.

Множество, на котором предикат принимает только истинные значения, называется множеством истинности предиката $I_p$.

Предикатом в программировании является функция, которая принимает один или более аргументов и возвращает значения булева типа.

Предикат называется тождественно-истинным, если на любом наборе аргументов он принимает истинное значение:

$P (x_1, \dots, x_n)=1$

Предикат называется тождественно-ложным, если на любом наборе аргументов он принимает ложное значение:

$P (x_1, \dots, x_0)=0$

Предикат называется выполнимым, если хотя бы на одном наборе аргументов он принимает истинное значение.

Т.к. предикаты могут принимать только два значения (истинно/ложно или $0/1$), то к ним можно применять все операции алгебры логики: отрицание, конъюнкция, дизъюнкция и т.д.

Примеры предикатов

Таким образом, предикатом является все то, что утверждается или отрицается о субъекте суждения.

Готовые работы на аналогичную тему

Операции над предикатами

Рассмотрим применение операций алгебры логики к предикатам.

Логические операции:

Дизъюнкция двух предикатов $A(x)$ и $B(x)$ -- предикат , который принимает ложное значение при тех и только тех значениях $x$ из $T$, при которых каждый из предикатов принимает ложное значение и принимает истинное значение во всех остальных случаях. Множество истинности предиката -- объединение областей истинности предикатов $A(x)$ и $B(x)$.

Отрицание предиката $A(x)$ -- предикат, который принимает истинное значение при всех значениях $x$ из $T$, при которых предикат $A(x)$ принимает ложное значение и наоборот. Множество истинности предиката $A(x)$ -- дополнение $T'$ к множеству $T$ в множестве $x$.

Множество истинности предиката -- объединение множества истинности предиката $B(x)$ и дополнения к множеству истинности предиката $A(x)$.

Над предикатами помимо логических операций можно выполнять квантовые операции: применение квантора всеобщности, квантора существования и т.д.

Кванторы

Кванторы -- логические операторы, применение которых к предикатам превращает их в ложные или истинные высказывания.

Квантор -- логические операции, которые ограничивают область истинности предиката и создают высказывание.

Чаще всего используют кванторы:

В математической логике существует понятие связывание или квантификация, которые обозначают приписывание квантора к формуле.

Примеры применения кванторов

С помощью квантора всеобщности можно записать следующие ложные высказывания:

любое натуральное число делится на $7$;

каждое натуральное число делится на $7$;

все натуральные числа делятся на $7$;

который будет иметь вид:


Для записи истинных высказываний используем квантор существования:

существуют натуральные числа, которые делятся на $7$;

найдётся натуральное число, которое делится на $7$;

хотя бы одно натуральное число делится на $7$.

Запись будет иметь вид:


Таким образом, предикат можно превратить в высказывание, если поставить перед предикатом квантор.

Операции над кванторами

Для построения отрицания высказываний, которые содержат кванторы, применяется правило отрицания кванторов:


Рассмотрим предложения и выделим среди них предикаты, указав область истинности каждого из них:

Вы можете изучить и скачать доклад-презентацию на тему Предикаты. Презентация на заданную тему содержит 18 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Логика высказываний оперирует простейшими высказываниями, которые могут быть или истинными, или ложными. Логика высказываний оперирует простейшими высказываниями, которые могут быть или истинными, или ложными. В разговорном языке встречаются более сложные повествовательные предложения, истинность которых может меняться при изменении объектов, о которых идет речь.

Одноместный предикат P(x) -произвольная функция переменного х, определенного на множестве М и принимающая значения из множества <1,0>. Одноместный предикат P(x) -произвольная функция переменного х, определенного на множестве М и принимающая значения из множества <1,0>. Двухместный предикат Р(х;у) - функция двух переменных х и у, определенная на множестве М=М1хМ2 и принимающая значения из множества <1,0>.

Тождественно-истинным называется предикат, истинный всюду на области определения Т(Р)=D(Р). Тождественно-истинным называется предикат, истинный всюду на области определения Т(Р)=D(Р). Тождественно-ложным называется предикат, множество истинности которого пусто Т(Р)=Ø.

Присоединение квантора с переменной к предикатной формуле называется навешивание квантора на переменную х. Переменная при этом называется связной и вместо нее подставлять константы уже нельзя. Присоединение квантора с переменной к предикатной формуле называется навешивание квантора на переменную х. Переменная при этом называется связной и вместо нее подставлять константы уже нельзя. Если квантор навешивается на формулу с несколькими переменными, то он уменьшает число несвязных переменных в этой формуле.

Переменную х в предикате Р(х) называют свободной (ей можно придавать различные значения из М), Переменную х в предикате Р(х) называют свободной (ей можно придавать различные значения из М), В высказывании же х называют связанной квантором всеобщности. Переменная, на которую навешивается квантор называется связанной. Выражение, на которое навешиваете квантор, называется областью действия квантора. Кванторы общности и существования называют двойственными относительно друг друга.

Равносильные формулы логики предикатов Две формулы логики предикатов А и В называются равносильными на области М, если они принимают одинаковые логические значения при всех значениях входящих в них переменных, отнесенные к области М.

Нормальные формы формул логики предикатов В логике предикатов формулы могут иметь нормальную формулу. При этом, используя равносильности логики предикатов, каждую формулу логики предикатов можно привести к нормальной форме. В логике предикатов различают два вида нормальных форм: приведенную и предваренную.

Среди нормальных форм формул логики предикатов выделяют так называемую предваренную (префиксную) нормальную форму ПНФ. Среди нормальных форм формул логики предикатов выделяют так называемую предваренную (префиксную) нормальную форму ПНФ. В ней кванторные операции, либо полностью отсутствуют , либо они используются после всех операций алгебры.

Читайте также: