Вторичные энергетические ресурсы реферат

Обновлено: 30.06.2024

Прогрессивное направление и развитие
промышленности – создание безотходных производств, по технологии которых используются все элементы производственного процесса, а также энергия реакции технологических процессов для получения полезной продукции. Получаемая из внеэнергия необходима лишь для запуска и резервирования, то есть безаварийной остановки технологического процесса.
Так в настоящее время используются технологические процессы производства аммиака, метанола, высших спиртов и некоторых других химических продуктов, основанные на принципе энерготехнологического комбинирования с максимальным использованием выделяемой энергии при различных реакциях.

Вложенные файлы: 1 файл

Вторичные энергоресурсы и их рациональное использование.docx

Реферат

Подготовила: Дьякова А. А.

Группа: ИТ-11

Проверила: Катин В. Д.

Хабаровск.

2013 г

ВВЕДЕНИЕ

Прогрессивное направление и развитие

промышленности – создание безотходных производств, по технологии которых используются все элементы производственного процесса, а также энергия реакции технологических процессов для получения полезной продукции. Получаемая из внеэнергия необходима лишь для запуска и резервирования, то есть безаварийной остановки технологического процесса.

Так в настоящее время используются технологические процессы производства аммиака, метанола, высших спиртов и некоторых других химических продуктов, основанные на принципе энерготехнологического комбинирования с максимальным использованием выделяемой энергии при различных реакциях.

В настоящее время и в ближайшей перспективе ещё будут существовать технологические процессы с материальными и энергетическими отходами. На технологический процесс расходуется определённое количество топлива, электрической и тепловой энергии. Кроме того, сами технологические процессы протекают с выделением различных энергетических ресурсов – теплоносителей, горючих продуктов, газов и жидкостей с избыточным давлением. Однако не всё количество этой энергии используется в технологическом процессе или агрегате; такие неиспользуемые в процессе (агрегате) энергетические отходы называют вторичными энергетическими ресурсами (ВЭР). Количество образующихся вторичных энергетических ресурсов достаточно велико.

Поэтому полезное их использование - одно из важнейших направлений экономии энергетических ресурсов. Утилизация этих ресурсов связана с определёнными затратами, в том числе и капитальными, поэтому возникает необходимость экономической оценки целесообразности такой утилизации.

Под ВЭР понимают энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся при технологических процессах, в агрегатах и установках, который не используется в самом агрегате, но может быть частично или полностью использоваться для энергосбережения других агрегатов (процессов).

Термин “энергетический потенциал” здесь следует понимать в широком смысле, он означает наличие определённого запаса энергии – химически связанного тепла, физического тепла, потенциальной энергии избыточного давления и напора, кинетической энергии и др. Химически связанное тепло продуктов топливоперерабатывающих установок (нефтеперерабатывающих, газогенераторных, коксовальных, углеобогатительных и др.) к ВЭР не относятся.

Одно из направлений ресурсосберегающих технологий — использование побочных и вторичных энергоресурсов. Под побочными (вторичными) энергетическими ресурсами (ПЭР) понимаются ресурсы, полученные в качестве побочного продукта или отхода основного производства.

С точки зрения экономии затрат необходимо стремиться к максимальному сокращению выхода побочных энергоресурсов за счет лучшего использования первичного энергетического топлива в самом технологическом агрегате, установления рациональных режимов его работы. Для этого разрабатываются методы улучшения организации технологических процессов и режимов работы агрегатов, улучшения теплоизоляции, применения рекуперации, регенерации, промежуточных подогревов, изоляция труб с использованием минераловатных цилиндров и матов и т.п. Если эти мероприятия не обеспечивают полного использования энергетических ресурсов в пределах технологического агрегата, то образуются побочные энергетические ресурсы.

Не менее важно создать условия для эффективной очистки уходящих газов, получения дополнительной продукции. Экономия топлива, извлечение серы и других элементов из уходящих газов обеспечивают заметный экологический эффект, поскольку не требуется дополнительной добычи сырья, топлива и их применения для обеспечения того же объема конечной продукции, что и при использовании ПЭР.

Побочные энергетические ресурсы могут использоваться либо непосредственно для удовлетворения потребности в теплоте, топливе, либо в утилизационных установках для производства теплоты, электроэнергии, холода, механической работы.

КЛАССИФИКАЦИЯ ВТОРИЧНЫХ ЭНЕРГОРЕСУРСОВ.

По виду содержащегося в них энергетического потенциала ВЭР подразделяются на три основных группы: горючие, тепловые и избыточного давления.

Горючие ВЭР – это отходы одного производства, которые могут быть утилизированы непосредственно в виде топлива в других производствах. К ним относятся, например, технологические газы черной и цветной металлургии, жидкие и твердые топливные отходы химической и нефтегазоперерабатывающей промышленности, щепа, опилки, стружка, щелоки деревообрабатывающей и целлюлозно-бумажной отраслей.

Тепловые ВЭР – это физическая теплота отходящих газов, основной и побочной (нецелевой) продукции производства: нагретых металла, шлаков и зол; горячей воды и пара, отработанных в технологических установках, системах охлаж-дения и пр.

Следует отметить, что тепловая энергия отходов, выходящая из технологического агрегата и используемая для подогрева вещественных потоков, поступающих в этот же агрегат (процессы регенерации и рекуперации), ко вторичным энергоресурсам не относятся.

ВЭР избыточного давления – это потенциальная энергия покидающих устновку газов, воды, пара, имеющих повышенное давление, которое может быть еще применено перед выбросом в окружающую среду. Основное направление утилиза-ции таких ВЭР – получение электрической или механической энергии.

Многие горючие ВЭР, например черной металлургии, имеют низкую теплоту сгорания и химически агрессивны. Это создает значительные трудности при их утилизации. Они же имеют место и при сжигании высококалорийных, но одновременно легко воспламеняемых, взрывоопасных и токсичных ВЭР (водород, сухие абгазы и др.).

Для утилизации горючих вторичных энергетических ресурсов часто необходимо специальное оборудование, однако основной путь их использования – применение в агрегатах индустриальных технологий.

Тепловые ВЭР – наиболее распространенный вид энергетических отходов. Их утилизация проводится практически повсеместно. В то же время привлекаются в основном высокопотенциальные (высокотемпературные) тепловые ВЭР (см. далее). Значительно меньше востребованы среднетемпературные энергетические отходы, низкотемпературные применяются еще реже.

Основное оборудование для использования тепловых ВЭР – котлы-утилизаторы (к/у), системы испарительного охлаждения промышленных печей, различного рода теплообменники, в том числе контактные нагреватели.

ВЭР избыточного давления образуются в ряде металлургических, химических, нефтеперерабатывающих производств. Ими могут обладать жидкие и газообразные отходы. Однако их применение пока не носит массового характера (избыточное давление доменного газа используют, например, в газовых бескомпрессорных турбинах).

По температуре, с которой тепловые ВЭР покидают технологические агрегаты, их делят на высоко-, средне- и низкопотенциальные.

Четкой градации ВЭР по этому признаку нет. Можно принять, что к высокопотенциальным относятся ВЭР, температура которых превышает наименьшую температуру газов в автогенном процессе сжигания топлива (не менее 600°С). К низкопотенциальным принадлежат ВЭР, представляющие собой жидкости с темпе-ратурой менее 100°С и газы с температурой ниже 300°С [2]. В этом случае средне-потенциальные ВЭР по температуре будут занимать промежуточное положение между высоко- и низкопотенциальными энергетическими отходами.

В целом основными источниками тепловых ВЭР в различных отраслях про-мышленности выступают технологические агрегаты, как правило, недостаточно совершенные с энергетической стороны. Особенно неблагоприятны с точки зрения использования теплоты сгорания топлива нагревательные и термические печи (их тепловой КПД равен 12-18%), вагранки чугунолитейных цехов (теплопотери с га-5

зами превышают 50-60%), паровые котлы низкого давления (КПД порядка 50%), паровые молоты кузнечных цехов (КПД не более 2-5%) и др.

Использование вторичных энергоресурсов и охлаждение агрегатов

  • Чугунные холодильные плиты, изготовленные с продувкой сжатым воздухом и отжигом в литейной форме
  • Холодильники для охлаждения стальной полосы при термообработке на базе двухфазных термосифонов
  • Энерготехнологический агрегат для нагрева металла и выработки пара энергетических параметров
  • Модульные энерготехнологические котлы-утилизаторы (КУ)
  • Установка испарительного охлаждения мощных нагревательных печей с шагающими балками и новыми конструкциями шарнирных соединений
  • Система охлаждения защитного газа при светлой термообработке металла
  • Устройство для охлаждения труб большого диаметра в процессе закалки
  • Установка и технология тепловой подготовки рабочих валков непрерывных широкополосных станов горячей прокатки
  • Комплексная регулируемая система охлаждения валков и полосы в межклетьевых промежутках чистовой группы клетей
  • Усовершенствованная система и технологические режимы охлаждения стальных валков с направленным слоем из быстрорежущей стали
  • Охлаждение валков вертикальной и горизонтальной клети стана
  • Шарнирное соединение сферического типа с применением антифрикционных материалов
  • Шарнирные соединения цилиндрического типа со сдвоенным подшипниковым узлом
  • Усовершенствованная система охлаждения прокатных валков стана при прокатке цветных металлов
  • Охлаждение машин непрерывного литья заготовок (МНЛЗ) с экранированием заготовки
  • Система вторичного водовоздушного охлаждения машин непрерывного литья заготовок
  • Система испарительного охлаждения шахты доменных печей
  • Двухконтурная система охлаждения доменных печей с утилизацией тепла
  • Автоматизированный контроль герметичности охлаждаемых деталей (холодильники и воздушные фурмы доменных печей)
  • Система испарительного охлаждения футерованных клапанов диаметром 1100мм новой конструкции с использованием пара для подогрева воздуха горения
  • Высокотемпературный шахтный подогреватель кускового сырья с испарительным охлаждением
  • Шахтный холодильник обожженного продукта
  • Испарительное охлаждение мартеновских печей с повышенными параметрами вырабатываемого пара
  • Охладитель конвертерных газов с естественной циркуляцией
  • Установка утилизации тепла сжигания колошниковых газов открытых ферросплавных печей
  • Охлаждение ферросплавного газа перед очисткой в трубчатых газоохладителях с импульсной очисткой
  • Свод коробчатого типа с сетчатым креплением изоляции для электросталеплавильных печей
  • Комплексная теплоутилизационная установка электросталеплавильной печи
  • Теплоутилизационные установки различных высокотемпературных агрегатов
  • Утилизация тепла печей плавки алюминия для нагрева воздуха горения и выработки тепла теплофикационных параметров
  • Новый теплообменник для охлаждения и нагрева жидкостей (масел, воды, эмульсий, электролитов и др.)
  • Контактный испарительный теплообменник
  • Водовоздушная система охлаждения валков
  • Водовоздушная система охлаждения ножниц слябинга
  • Система эмульсионновоздушного охлаждения валков станов холодной прокатки
  • Устройство для закалки крупногабаритных изделий, например, молотковых штампов
  • Кристаллизатор и технология производства непрерывнолитых заготовок с округленными ребрами
  • Установка воздушного охлаждения масла
  • Установки для утилизации ВЭР
  • Установки воздушного охлаждения воды
  • Водяные маслоохладители для электротрансформаторов
  • Установка по использованию пара системы испарительного охлаждения доменной печи

Использование вторичных энергоресурсов: новые разработки

Исследования на предприятиях ТЭК России свидетельствуют: потенциал использования вторичных энергетических ресурсов на предприятиях нашей страны явно недостаточен.

Уникальный котел

В энергомашиностроении особо выделяется сегмент нестандартного котельного оборудования, утилизирующий вторичные энергоресурсы – прямое и остаточное тепло технологических процессов, углеводородсодержащие жидкости и газы, сероводород, производственные отходы и стоки предприятий.

Экологические цели достигнуты, однако уникальность установки еще и в том, что в котле при сжигании содержащихся в стоках органических веществ выделяется тепловая энергия. Эта энергия используется в котле для производства пара. Поэтому котлоагрегат также функционирует как паровой котел. Задача энергосбережения выполнена. Цели предприятия – обеспечить экологические требования, переработать производственные отходы в готовую продукцию и получить пар для собственных нужд (либо для реализации потребителям) достигнуты максимально. Срок окупаемости внедрения энергосберегающих разработок в рамках данной технологии не превышает двух лет. Экономия на платежах за негативное воздействие на окружающую среду может сократить срок окупаемости на порядок. В нынешних условиях посткризисной экономики результат осуществления столь серьезных мероприятий обязательно повысит эффективность предприятия в целом.

Проект агрегата термического обезвреживания стоков не имеет аналогов в России и является уникальным результатом индивидуального подхода к решению многоцелевой задачи инженеров предприятия и компании-разработчика. Инициатива руководителей нефтехимических и нефтеперерабатывающих предприятий по внедрению подобных проектов бесценна. Возможно, подобные проекты будут массово внедряться во многих отраслях промышленности.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1. Классификация вторичных энергоресурсов

2. Виды ВЭР и способы их использования

3.Экономия топлива при использовании теплоты отходящих газов

4. Вторичные энергетические ресурсы топливно-энергетического комплекса

Введение

В настоящее время в использовании вторичных энергетических ресурсов имеются значительные резервы.

Задача максимального использования ВЭР имеет не только экономическое, но и социальное значение, поскольку снижение расходов топлива, обеспечиваемое использованием ВЭР, уменьшает вредные выбросы и снижает загрязнение окружающей среды.

ВЭР нельзя рассматривать как даровые дополнительные источники энергии. Они являются результатом энергетического несовершенства технологических производств, поэтому необходимо стремиться к снижению их выхода за счет более полного использования топлива в самом технологическом агрегате. В этом состоит основная задача повышения эффективности теплотехнических производств, наиболее полного использования ВЭР, как неизбежного спутника этих процессов.

Пределом идеальной организации производств является создание безотходная по материалам и энергии технологии.

1. Классификация вторичных энергоресурсов

Предприятие черной металлургии потребляет большое количество топлива, тепловой и электрической энергии. Наряду с этими технологиями металлургического производства характеризуется значительным выходом вторичных энергетических ресурсов (ВЭР).

По виду энергии ВЭР делятся на горючие (топливные), тепловые и избыточного давления.

Горючие ВЭР - побочные газообразные продукты технологических процессов, которые могут быть использованы в качестве энергетического или технологического топлива.

Тепловые ВЭР - физическая теплота основных и побочных продуктов, отходящих газов технологических агрегатов, а так же систем охлаждения их элементов.

ВЭР избыточного давления - потенциальная энергия газов, выходящих из технологических агрегатов с избыточным давлением, которое может быть использовано других видов энергии.

2. Виды ВЭР и способы их использования

Низкая теплота сгорания

Сжигание в топливо использующих установках

отходящие газы, готовая продукция и отходы производства, теплоносители охлаждения

отработанный и попутный пар

выработка в теплоутилизиционных установках водяного пара, горячей воды

покрытие тепло потребности, выработка электроэнергии в конденсоционном или теплофикационном турбоагрегате

газы с избыточным давлением

работа изоэнтропного расширения

выработка электроэнергии в газовом утилизационном турбоагрегате

Выход ВЭР - количество ВЭР, образующиеся в технологическом агрегате.

Выход ВЭР для горючих: q гор = m Q р ;

для тепловых: q т =mі;

для ВЭР избыточного давления: q и = ml;

где q - выход соответствующих ВЭР, m - удельное или часовое количество энергоносителя, Q р - низшая теплота сгорания, і -

энтальпия энергоносителя, l - работа изоэнтропийного расширения газов.

Характеристика горючих ВЭР черной металлургии:

Доменный газ образуется при выплавке чугуна в доменных печах. Его выход и химический состав зависят от свойств шихты и топлива, режима работы печи, способов интенсификации процесса. Доля негорючих компонентов азота и углекислого газа в доменном газе составляет 70%. При сжигании доменного газа максимальная температура продуктов сгорания равна 1487 С. На выходе из печи газ загрязнен колошниковой пылью. Использовать доменный газ в качестве топлива можно только после его очистки.

Ферросплавный газ - образуется при выплавке ферросплавов в рудовосстановительных печах. Суммарное содержание сероводорода и оксида серы (4) в пересчете на оксид серы (4) не должно превышать 1 г\м 3 .

Конвертерный газ - образуется при выплавке стали в кислородных конвертерах. Газ в основном состоит из оксида углерода. В качестве топливных ВЭР конвертерный газ используется при отводе без дожигания.

Ценное технологическое и энергетическое топливо.

Коксовый газ - образуется при коксовании угольной шихты. В черной металлургии в качестве топлива используется после извлечения химических продуктов. Компоненты коксового газа: водород, кислород, метан, азот, углекислый и угарный газы.

Характеристика тепловых ВЭР.

Физическая теплота готового продукта из шлаков.

Из печей и агрегатов металлургического производства готовый продукт и шлак выходят с высокой температурой. В некоторых случаях эта теплота ВЭР. Теплота жидкого чугуна используется в последующих переделах (мартеновские печи, кислородные конвертеры).

Теплота жидкой стали используется в прокатном производстве за счет горячего посада слитков. Физическая теплота вторичных газов.

Использование физической теплоты коксового газа возможна после сухой очистки. Наибольшую температуру имеют конверторные газы.

Отходящие газы мартеновских печей состоят из продуктов сгорания топлива и газообразных компонентов химических реакций, протекающих в технологическом процессе. К тепловым ВЭР относятся энергоносители в виде водяного пара, горячей воды и вентиляционных выбросов.

3.Экономия топлива при использовании теплоты отходящих газов

Использование физической теплоты отходящих газов осуществляется по трем схемам: технологической (замкнутой и разомкнутой), энергетической и комбинированной.

Технологическая схема предусматривает использование этой теплоты для технологических процессов, как правило, в той же теплотехнологической установке. По такой схеме нагревают воздух, а также в некоторых случаях и газообразные топлива, предварительно подогревают обрабатываемый в печи материал или производят химико-термическую переработку некоторых шихтовых материалов, используемых в данном процессе. При отоплении печей природным газом к технологической схеме относится также термохимическая регенерация теплоты отходящих газов, используемая для конверсии метана. Описанные схемы являются замкнутыми, они обеспечивают экономию топлива в самом технологическом агрегате (рис.1). Теплоту отходящих газов можно использовать и в другой печной установке с меньшим температурным уровнем процесса. Такая схема является разомкнутой (рис.2). В этом случае экономится топливо в установке, использующей теплоту отходящих газов. Возможно также последовательное использование теплоты в основном и в низкотемпературных агрегатах.

Рис.1. Замкнутые технологические схемы использования теплоты отходящих газов: а - для подогрева воздуха; б - для предварительного нагрева материала; 1 - печь; 2 - отвод газов из печи; 3 - рекуператор; 4 - подвод воздуха в рекуператор; 5 - отвод дыма: 6 - подвод воздуха в печь; 7 - подвод топлива в печь; 8 - выдача материала; 9 - подача подогретого материала в печь; 10 - подача холодного материала.

Рис.2. Разомкнутая технологическая схема использования теплоты отходящих газов: 1 - печь; 2 - подвод топлива; 3 - подвод воздуха; 4 - подача материала; 5 - отвод газов из печи: 6 - технологическая установка второй ступени; 7 - отвод газов установки второй ступени; 8 - выдача материала.

Применение замкнутой технологической схемы повышает эффективность использования топлива в технологическом агрегате, т.е. снижает выход ВЭР.

Энергетическая схема предусматривает использование теплоты отходящих газов в энергетических установках для производства каких-либо энергоносителей (теплоты, электроэнергии, холода и др.). Возможно последовательное размещение нескольких теплоиспользующих установок, например, котлов-утилизаторов и экономайзеров для подогрева сетевой воды. Таким образом, энергетическая схема является разомкнутой и позволяет сэкономить топливо, расходуемое на производство соответствующих видов и количеств энергоносителей за счет использования ВЭР технологического агрегата (рис.3).

Комбинированная схема сочетает технологическую и энергетическую схемы и обеспечивает как уменьшение выхода ВЭР, так и более эффективное их использование (рис.4).

Каждая из схем имеет достоинства и недостатки. Основным критерием для их сравнения является достигаемая экономия топлива. Однако этот критерий еще не дает основания для окончательной оценки схем. Здесь необходим технико-экономический расчет, учитывающий капитальные и эксплуатационные затраты, устойчивость потребления энергоносителей, полученных за счет теплоты отходящих газов, и др.

Рис.3. Энергетические схемы использования теплоты отходящих газов: а - для получения пара; б - для получения пара и горячей воды; 1 - печь; 2 - подвод воздуха; 3 - подвод топлива; 4 - отвод газов из печи; 5 – КУ; 6 - отвод пара из КУ; 7 - отвод дыма из КУ; 8 - подвод питательной воды в КУ; 9 - подогреватель сетевой воды; 10 - подвод воды в подогреватель; 11 - отвод горячей воды.

Рис.4. Комбинированная схема использования теплоты отходящих газов: 1 - печь; 2 - отвод газов из печи; 3 - рекуператор; 4 - подвод воздуха в рекуператор; 5 - отвод дыма из рекуператора; 6 - отвод пара из КУ; 7 - КУ; 8 - подвод питательной воды в КУ; S - подвод воздуха в печь; 10 - подвод топлива в печь.

4. Вторичные энергетические ресурсы топливно-энергетического комплекса

Мировая добыча угля составляет 2025 млн. т в год (4033 шахты). При этом образуется около 6 млрд. т твердых, жидких и газообразных отходов, что составляет около 3 т отходов на 1 т угля (из них отвальной породы 2,5 т). При подземной добыче угля удельный выход породы, выдаваемой из шахт на поверхность составляет около 0,3 т на 1т добываемого угля. Собственно горючая масса в угольной промышленности составляет всего 20% горной массы. Доля угля в производстве электроэнергии составляет 37% (1980 г).

Сланец имеет не меньшее значение, чем уголь. Около 40% сланца добывается открытым способом и 60% из шахт.

Отходы добычи и обогащения сланцев состоят из вскрышных пород, отходов обогащения.

Разработан проект переработки сланцев (Швеция), предусматривающий добычу открытым способом и в шахтах 6 млн. т сланца в год и производство 1300 т урана ежегодно. Схема переработки сланца предусматривает первичное дробление, обогащение в тяжелых средах для удаления известняка, обработку сланца серной кислотой в барабанных аппаратах, выдержку обработанного материала в штабелях, противоточное выщелачивание серной кислотой методом просачивания (удаление урана 79%), фильтрирование раствора, экстракцию из него урана органическим растворителем, реэкстрацию раствором карбоната натрия или аммония и осаждение уранового концентрата. Осадок выщелачивания смешивают с известняком и направляют в отвал.

Дальнейшие этапы усовершенствования технологии переработки сланцев:

энергетическое использование органического материала путем сжигания или газификации;

разработка технологии получения алюминия из сланца;

полное комплексное извлечение цветных металлов.

Газовые выбросы промышленных предприятий как ВЭР.

Развитие энергетики, металлургии, транспорта, химии и нефтехимии приводит к быстро возрастающему потреблению воздуха, используемого в качестве сырья в процессе окисления. Предприятия химической, нефтехимической, пищевой, фармацевтической и ряда других отраслей промышленности потребляют большие количества чистого воздуха и выбрасывают огромные объемы отработанных кислородосодержащих газов и загрязненного вентиляционного воздуха.

Перспективным является метод очистки воздуха от микропримесей - объединение энергетических и химических комплексов. Рассмотрим возможности объединения этих процессов путем использования отработанного воздуха промышленных предприятий в качестве окислителя, например дутьевого воздуха в топках котлов. В этом случае обеспечивается дешевая очистка загрязненного воздуха от токсичных примесей и отпадает необходимость в потреблении чистого воздуха для окисления топлива.

Литература

Ласкорин Б.Н. Безотходная технология минерального сырья. - М.: " Недра", 2004г. - 334с.

Розенгарт Ю.И. Вторичные энергетические ресурсы черной металлургии и их использование. - К.: " Высшая школа", 2008г. - 328с.

Рихтер Л.А. Охрана водного и воздушного бассейнов от выбросов ТЭС. Под редакцией Непорожного. - М.: " Энергоиздат", 2001г. - 296с.

Сигал И.Я. Защита воздушного бассейна при сжигании топлива. - Л.: " Недра", 1987г. - 294с.

Толочко А.И. Защита окружающей среды от выбросов предприятий черной металлургии. - М.: " Металлургия" 2001г. - 95с.

Количество образующихся вторичных энергетических ресурсов достаточно велико. Поэтому полезное их использование - одно из важнейших направлений экономии энергетических ресурсов. Утилизация этих ресурсов связана с определёнными затратами, в том числе и капитальными, поэтому возникает необходимость экономической оценки целесообразности такой утилизации.

Содержание

Введение
1. Вторичные энергетические ресурсы
2. Классификация вторичных энергетических ресурсов (ВЭР)
3. Состояние использования ВЭР
4. Оценка энергоэффективности применения ВЭР
Заключение
Список литературы

Прикрепленные файлы: 1 файл

ВЭР.doc

1. Вторичные энергетические ресурсы

2. Классификация вторичных энергетических ресурсов (ВЭР)

3. Состояние использования ВЭР

4. Оценка энергоэффективности применения ВЭР

Прогрессивное направление развития промышленности - создание безотходных производств, по технологии которых используются все элементы производственного процесса, а также энергия реакции технологических процессов для получения полезной продукции. Получаемая извне энергия необходима лишь для запуска и резервирования, то есть безаварийной остановки технологического процесса. Так в настоящее время используются технологические процессы производства аммиака, метанола, высших спиртов и некоторых других химических продуктов, основанные на принципе энерготехнологического комбинирования с максимальным использованием выделяемой энергии при различных реакциях.

В настоящее время и в ближайшей перспективе ещё будут существовать технологические процессы с материальными и энергетическими отходами. На технологический процесс расходуется определённое количество топлива, электрической и тепловой энергии. Кроме того, сами технологические процессы протекают с выделением различных энергетических ресурсов - теплоносителей, горючих продуктов, газов и жидкостей с избыточным давлением. Однако не всё количество этой энергии используется в технологическом процессе или агрегате; такие неиспользуемые в процессе (агрегате) энергетические отходы называют вторичными энергетическими ресурсами.

Количество образующихся вторичных энергетических ресурсов достаточно велико. Поэтому полезное их использование - одно из важнейших направлений экономии энергетических ресурсов. Утилизация этих ресурсов связана с определёнными затратами, в том числе и капитальными, поэтому возникает необходимость экономической оценки целесообразности такой утилизации.

1. Вторичные энергетические ресурсы

Под вторичными экономическими ресурсами понимают энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся при технологических процессах, в агрегатах и установках, который не используется в самом агрегате, но может быть частично или полностью использоваться для энергосбережения других агрегатов (процессов).

Термин “энергетический потенциал” здесь следует понимать в широком смысле, он означает наличие определённого запаса энергии - химически связанного тепла, физического тепла, потенциальной энергии избыточного давления и напора, кинетической энергии и др. Химически связанное тепло продуктов топливоперерабатывающих установок (нефтеперерабатывающих, газогенераторных, коксовальных, углеобогатительных и др.) к вторичным энергетическим ресурсам не относятся.

Общий выход вторичных энергетических ресурсов за рассматриваемый период времени (сутки, месяц, квартал, год) определяют исходя из удельного или часового. Только часть энергии из общего выхода вторичных энергетических ресурсов может быть использована как полезная. Поэтому для оценки реального потенциала вторичного энергетического ресурса, пригодного к использованию, рассчитывают возможную выработку энергии за счет вторичных энергетических ресурсов.

На основе результатов расчета экономии топлива за счет использования вторичных энергетических ресурсов определяется степень утилизации вторичных энергоресурсов на предприятии.

2. Классификация вторичных энергетических ресурсов (ВЭР)

ВЭР – энергетический потенциал продукции, побочных и промежуточных продуктов, образующихся в технологических агрегатах (установках), который теряется в самом агрегате, но может быть частично или полностью использован для энергоснабжения. Рациональное их использование является одним их крупнейших резервов экономии топлива, способствующих снижению топливо- и энергоемкости промышленной продукции. Достаточно сказать, что в рамках стран СНГ потенциальные запасы ВЭР оцениваются более чем в 1000 млн. ГДж.

ВЭР могут быть востребованы непосредственно без изменения вида энергоносителя (для удовлетворения потребности в теплоте и топливе) или с изменением вида энергоносителя путем выработки тепла, электроэнергии, холода или механической работы в утилизационных установках.

Многие отрасли народного хозяйства располагают значительным резервом топливных и тепловых ВЭР, занимающих значительное место в их топливно-энергетическом балансе. Наибольшими тепловыми ВЭР располагают предприятия черной и цветной металлургии, химической, нефтеперерабатывающей и нефтехимической промышленности, промышленности строительных материалов, газовой промышленности, тяжелого машиностроения.

Именно в этих отраслях широко используется теплота высокого, среднего и низкого потенциалов. Из почти 90% теплоты высокого потенциала (> 623 К): около 33% идет на плавку, 40% - на нагрев и около 20% - на обжиг руд и минерального сырья. Большая часть теплоты высокого потенциала обеспечивается за счет сжигания различных видов топлива непосредственно в технологических установках.

Теплота среднего (373 – 622 К) и низкого (323 – 423 К) потенциала применяется для теплоснабжения потребителей, требующих повышенных значений температуры и давления. Свыше 90% его полезного потребления расходуется в промышленности (~45%) и в жилищно-коммунальном секторе (~48,5%). Основными энергоносителями, обеспечивающими энергией средне- и низкотемпературные процессы, являются пар и горячая вода.

Предприятия тяжелого, энергетического и транспортного машиностроения Украины располагают огромным потенциалом ВЭР в виде физической теплоты уходящих газов мартеновских, нагревательных и термических печей, вагранок, теплоты испарительного охлаждения печей, теплоты отработанного пара прессов и молотов. Имеют вторичные возобновляемые энергоресурсы и предприятия других отраслей народного хозяйства.

Поэтому одной из важнейших задач совершенствования любой отрасл и является выявление резервов ВЭР, экономически и экологически обоснованное их использование для целей производства и удовлетворения нужд бытового потребления.

Наряду с повышением эффективности использования топливно- энергетических ресурсов, утилизация ВЭР позволяет снизить воздействие энергоснабжения и энергопотребления на окружающую среду. В частности, уменьшается выброс тепловых отходов (тепловое загрязнение), а также содержание вредных выбросов в продуктах сгорания.

Принципиальная схема использования ВЭР, представленная на рис.2.1, иллюстрирует отдельные потоки и сечения, по которым определяются их количественные показатели.

Таким образом, использование вторичных энергоресурсов, неизбежно возникающих в различных технологических процессах, является одним из существенных резервов энергосбережения. Выход вторичных энергоресурсов зависит от целого ряда факторов: параметров, при которых протекает процесс, его режима, конструктивного исполнения технологического оборудования и др.

Рис.2.1 - Принципиальная схема использования ВЭР

Каждая технологическая установ ка характеризуется определенным энергетическим КПД, показывающим, какая величина подведенной к процессу энергии теряется. На практике происходит постоянная борьба с потерями, используются самые различные способы их сокращения, в том числе организационно-технические, связанные с наладкой технологических процессов и режимов работы агрегатов, улучшением изоляции технологического оборудования, трубопроводов горячей воды, пара и пр.

Один из путей снижения потерь – использование возможности возв ращения части потерь энергии непосредственно в тот процесс, в котором они образуются. Многочисленные исследования подтверждают энергетическую и экономическую эффективность регенерации и рекуперации энергии. После этого остаются только потери, которые по данной технологии при существующем уровне развития техники уменьшить и избежать нельзя. Эту часть энергетических потерь и принято считать вторичными энергоресурсами, которые обычно подразделяют на горючие, тепловые и избыточного давления.

Горючие ВЭР - отходы технологических процессов, содержащие химически связанную энергию, неиспользуемые или непригодные для дальнейшей технологической переработки, которые могут быть применены в качестве котельно-печного топлива.

Тепловые ВЭР –тепловые отходы, представляющие собой энтальпию отходящих газов технологических агрегатов, основной, побочной, промежуточной продукции и отходов производства, теплоту рабочих тел систем охлаждения технологических агрегатов и установок, энтальпию горячей воды и пара, отработанных в технологических установках. К тепловым ВЭР также относятся пар и горячая вода, попутно полученные в технологических установках.

ВЭР избыточного давления – потенциальная энергия газов, выходящих из технологических агрегатов с избыточным давлением, которое необходимо снижать перед следующей ступенью использования или выброса их в атмосферу.

В зависимости от вида и параметров вторичные энергоресурсы исполь зуются в одном из следующих направлений.

Топливное – непосредственное использование горючих ВЭР в качестве котельно-печного топлива.

Тепловое – использование энергоносителей, вырабатываемых за счет ВЭР в утилизационных установках (УУ) или получаемых непосредственно как ВЭР, для обеспечения потребности в тепловой энергии. К этому направлению относится также получение искусственного холода за счет ВЭР в абсорбционных холодильных установках.

Электроэнергетическое – использование ВЭР с преобразованием энергоносителя для получения электроэнергии в газовых или паровых конденсационных турбоагрегатах.

Комбинированное – преобразование потенциала тепловых ВЭР для выработки в утилизационных установках (утилизационных ТЭЦ) по теплофикационному циклу электро- и теплоэнергии.

3. Состояние использования ВЭР

Горючие ВЭР. В суммарном выходе горючих ВЭР основная доля приходится на три отрасли промышленности: черную металлургию, нефтеперерабатывающую и нефтехимическую, химическую. Горючие ВЭР черной металлургии – это коксовый, доменный, конверторный и ферросплавный газы. После отвода из технологического агрегата они очищаются от пыли и направляются в различные технологические установки предприятия, где сжигаются в качестве котельно-печного топлива. Если на предприятии имеются излишки горючих ВЭР, то они направляются на сжигание в энергетических установках (ТЭС, котельных).

Годовой выход горючих ВЭР в целом по данной отрасли оценивается в десятки млн. т.у.т., а степень их использования достигает 93%. При этом использование доменного газа составляет 96,6%, ферросплавного – 38,0%. Дальнейшее повышение степени их использования связано с решением целого ряда научно-технических задач: разработкой и внедрением установок для очистки газов ферросплавных печей, разработкой системы очистки и улавливания конвертерного газа без дожигания и др.

К горючим ВЭР нефтеперерабатывающей и нефтехимической промышленнос ти относятся: отходящие газы сажевого производства, абгазы, жидкие углеводороды и кубовые остатки в производстве дивинила, метановодородная фракция в производстве этилена, горючие отходы нефтепереработки и др. Обычно они используются в качестве топлива в технологических установках, а их излишки сжигаются в факелах. Коэффициент использования горючих ВЭР в нефтеперерабатывающей и нефтехимической промышленности недостаточно высок и по некоторым оценкам, не превышает 60%. Существенное его повышение связано с организацией применения низкокалорийных (400-500 ккал/м 3 ) отходящих газов сажевого производства, коэффициент использования которых в настоящее время составляет лишь около 20%.

Более 98% общего количества горючих ВЭР химической промышленности приходится на азотную, фосфорную и хлорную подотрасли. Горючие отходы имеются в производствах аммиака, метанола, ацетилена, капролактама, каустической соды, желтого фосфора, карбида кальция.

При производстве аммиака образуются ретурные, танковые и продувочные газы, фракция СО, а также жидкие углеводороды, которые могут быть использованы в качестве топлива. При получении метанола выделяются танковые и продувочные газы; ацетилена – сажевый шлам и высшие ацетиленовые гомологи; капролактама – продувочный газ и водород; каустической соды – водород. Горючими также являются отходящие газы электропечей в производствах желтого фосфора и карбида кальция. Суммарный выход горючих ВЭР в отрасли эквивалентен нескольким млн. т.у.т./год, а коэффициент их использования достигает 75%.

Все названные горючие ВЭР используются либо могут быть использованы в качестве топлива, сжигаемого в технологических или энергетических установках. Экономически это, безусловно, целесообразно, так как затраты, связанные с организацией сжигания, например горючих газов, составляют не более 10-20% от затрат на добычу и транспорт первичного топлива. Кроме того, при их сжигании происходит обезвреживание выбрасываемых в атмосферу веществ от содержащихся в них токсичных и канцерогенных компонентов, что улучшает экологическую обстановку в районах расположения рассматриваемых производств.

Основные трудности при использовании горючих ВЭР связаны с их сбором, транспортировкой, а также с необходимостью совершенствования существующих и разработки новых методов и устройств для их сжигания.

ВЭР избыточного давления. Значительная экономия природных энергоресурсов может быть получена за счет утилизации этого вида ВЭР в черной металлургии и в системах газоснабжения.

Любой технологический процесс требует определенного расхода топлива, электрической и тепловой энергии. В результате химических реакций и механических воздействий горючие газы, теплоносители, газы и жидкости с избыточным давлением выделяют тепло. Эти энергетические ресурсы, как правило, используются не в полном объеме или не используются вовсе. Значительные затраты на сооружение и особенно на эксплуатацию современных технологических систем заставляют искать новые пути экономии средств и совершенствования всех видов энергии, в первую очередь, за счет ее повторного использования.

Содержание

Введение…………………………………………………………………………. 3
1. Общая характеристика ВЭР…………………………………………………. 4
2.Виды и источники ВЭР…………………………………………………………6
3.Основные направления использования ВЭР…………………………………..9
4.Использование ВЭР в Республике Беларусь…………………………………..12
Заключение………………………………………………………………………. 15
Список использованной литературы…………………………………………….17

Работа состоит из 1 файл

МОЙ РЕФЕРАТ, ВЭР.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Кафедра технологии важнейших отраслей промышленности

ВТОРИЧНЫЕ ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ И ИХ ИСПОЛЬЗОВАНИЕ

1. Общая характеристика ВЭР…………………………………………………. 4

3.Основные направления использования ВЭР…………………………………..9

4.Использование ВЭР в Республике Беларусь…………………………………..12

Список использованной литературы…………………………………………….17

Любой технологический процесс требует определенного расхода топлива, электрической и тепловой энергии. В результате химических реакций и механических воздействий горючие газы, теплоносители, газы и жидкости с избыточным давлением выделяют тепло. Эти энергетические ресурсы, как правило, используются не в полном объеме или не используются вовсе. Значительные затраты на сооружение и особенно на эксплуатацию современных технологических систем заставляют искать новые пути экономии средств и совершенствования всех видов энергии, в первую очередь, за счет ее повторного использования.
Создание безотходных производств, по технологии которых используются все элементы производственного процесса, а также энергия реакции технологических процессов для получения полезной продукции – прогрессивное направление развития промышленности. Получаемая извне энергия необходима лишь для запуска и резервирования, то есть безаварийной остановки технологического процесса. Так в настоящее время используются технологические процессы производства аммиака, метанола, высших спиртов и некоторых других химических продуктов, основанные на принципе энерготехнологического комбинирования с максимальным использованием выделяемой энергии при различных реакциях.
В настоящее время и в ближайшей перспективе также будут существовать технологические процессы с материальными и энергетическими отходами. На технологический процесс расходуется определённое количество топлива, электрической и тепловой энергии. Кроме того, сами технологические процессы протекают с выделением различных энергетических ресурсов – теплоносителей, горючих продуктов, газов и жидкостей с избыточным давлением. Однако не всё количество этой энергии используется в технологическом процессе; такие неиспользуемые энергетические отходы называют вторичными энергетическими ресурсами.
Количество образующихся вторичных энергетических ресурсов достаточно велико. Поэтому полезное их использование – одно из важнейших направлений экономии энергетических ресурсов. Однако задача максимального использования ВЭР имеет не только экономическое, но и социальное значение, поскольку снижение расходов топлива, обеспечиваемое использованием ВЭР, уменьшает вредные выбросы и снижает загрязнение окружающей среды.
Стоит отметить, что утилизация этих ресурсов связана с определёнными затратами, в том числе и капитальными, поэтому возникает необходимость экономической оценки целесообразности такой утилизации.

1.ОБЩАЯ ХАРАКТЕРИСТИКА ВЭР

Вторичные энергоресурсы — низкопотенциальные источники тепловой энергии, использование которых позволяет снизить сжигание органического топлива и тем самым уменьшить загрязнение окружающей среды. Такими источниками, например, являются различные нагретые технологические газы (отходящие газы котельных установок, сушилок, печей), удаляемый вентиляционный воздух, нагретая вода от систем охлаждения технологического оборудования или продуктов производства, сточных вод.

Другими словами, вторичные энергетические ресурсы – это сырье, материалы, изделия и отходы производства, которые образуются при производстве продукции и могут быть в дальнейшем применены в производственном процессе при изготовлении новой продукции. Использование вторичных ресурсов, как правило, экономически предпочтительнее добычи, обогащения и подготовки первичных ресурсов.

Кроме того, ВЭР в качестве основного сырья дают и значительный экологический эффект. Утилизация отходов позволяет более бережно расходовать природные ресурсы, например: 1 т макулатуры экономит 4 м 3 древесины. Таким образом, масштабы сбора и переработки макулатуры позволяют ежегодно сберегать от вырубки более 75 тыс. га лесных массивов.

Необходимо отметить, что также определяются и разумные границы и объемы использования вторичных ресурсов, не ухудшающие качество продукции. Для этого, во-первых, рассчитывают выход вторичных энергетических ресурсов – количество ВЭР, которые образовались в данной установке за определенную единицу времени и годны к использованию в данный период времени. Общий выход вторичных энергетических ресурсов за рассматриваемый период времени (сутки, месяц, квартал, год) определяют исходя из удельного или часового. Только часть энергии из общего выхода ВЭР может быть использована как полезная. Поэтому для оценки реального потенциала вторичного энергетического ресурса, пригодного к использованию, рассчитывают возможную выработку энергии за счет вторичных энергетических ресурсов. Выработкой за счет ВЭР называется количество тепла, холода, электроэнергии, полученное за счет ВЭР в утилизационной установке. Выработки подразделяются на: возможную – максимальное количество энергии, которое можно получить при работе установки; экономически целесообразную – с учетом ряда экономических факторов (затраты труда, например); планируемую – количество энергии, которую предполагается получить в определенный период времени при вводе вновь или модернизации имеющихся утилизационных установок; фактическую – энергию, реально полученную за отчетный период. На основе результатов расчета экономии топлива за счет использования ВЭР определяется степень утилизации вторичных энергоресурсов на предприятии.

Во-вторых, внедряются ресурсосберегающие и безотходные процессы, мероприятия по снижению материалоемкости, изыскиваются варианты взаимозаменяемости отдельных видов ресурсов. Дополнительными источниками улучшения использования производственных мощностей, материальных и трудовых ресурсов являются использование опыта передовых объединений, проведение аттестации и рационализации рабочих мест, бригад и цехов, широкое внедрение лицевых счетов экономии материалов, переход на многосменную работу. Установленный предприятию плановый резерв производственных мощностей в необходимых случаях также можно использовать для принятия дополнительного плана. Разработана форма об образовании и использовании вторичных энергоресурсов. Более того, создается информационный банк данных об энергоресурсах с целью накопления сведений о наличии этих ресурсов и их потенциальных потребителях.

2. ВИДЫ И ИСТОЧНИКИ ВЭР

Выделяют следующие основные виды вторичных энергетических ресурсов: горючие, избыточного давления, тепловые.

1. Горючие вторичные энергетические ресурсы.
К горючим вторичным энергетическим ресурсам относятся образующиеся в процессе производства основной продукции газообразные, твердые или жидкие отходы, которые обладают химической энергией и могут быть использованы в качестве топлива. Источником горючих вторичных энергетических ресурсов являются лесная и деревообрабатывающая промышленность, химическая промышленность, сельское и коммунальное хозяйство.

К горючим вторичным энергетическим ресурсам относятся:

- отходы гидролизного производства;

- отходы целлюлозно-бумажной промышленности;

- отходы от производства аммиака, капролактама;

- сельскохозяйственные отходы (солома и ботва растений);

В настоящее время большое внимание уделяется утилизации твердых древесных отходов, лигнина, отходов сельскохозяйственного производства. В лесной и деревообрабатывающей промышленности приблизительно половина заготавливаемой древесины идет в отходы. Одной из первостепенных задач является их утилизация путем сжигания с целью получения теплоты.

Древесные отходы делятся на несколько типов:

- лесосечные отходы (неодревесневшие молодые побеги, хвоя, листья);

- стволовая древесина, кора и древесная гниль.

Древесина по своему составу включает такие же компоненты, что и твердое топливо, за исключением серы. Особенностью древесных отходов некоторых производств является повышенная влажность. Отходы лесозаготовительных предприятий имеют влажность 45-55%. При этом влажность коры достигает 80%. Отходы деревообрабатывающего и мебельного производства имеют влажность 10-20%. Однако древесина имеет большой выход летучих веществ, что благоприятствует, несмотря на повышенную влажность, устойчивому процессу горения.

Мелкие древесные отходы различаются также по гранулометрическому составу:

- древесная пыль с частицами менее 0,5 мм;

- опилки - менее 5-6 мм, щепа после рубильных машин - менее 30 мм;

- крупная щепа с размерами частиц более 30 мм.

Гранулометрический состав определяют просеиванием через сито. Способы сжигания древесных отходов зависят от гранулометрического состава и влажности. Древесную пыль без включения абразивных частиц сжигают факельно-вихревым способом, при наличии абразивных частиц - в циклонных топках. Более крупные отходы эффективно сжигать в слоевых топках с "кипящим" или плотным слоем. Первичная переработка местных древесных отходов может включать изготовление брикетов, что позволяет сжигать их в топках с плотным слоем.

Процесс сжигания древесных отходов включает предварительную сортировку и сушку. Сжигание проводится в топке с "кипящим" слоем с частичной рециркуляцией дымовых газов. Это обеспечивает полное сгорание топлива, выносимого с отходящими газами. Сжигание производится с целью получения теплоты и передачи ее энергоносителю - пару или горячей воде, которые могут непосредственно направляться потребителю.

Теплота может также преобразовываться в электричество с помощью паровой или газовой турбины. В настоящее время в Германии, Финляндии, Швеции и других странах на основе отходов лесной и деревообрабатывающей промышленности, включающих остатки лесосечных отходов, стружки и отходов фрезерно-отрезных станков, изготавливаются гранулы (пиллеты).

Древесные гранулы по сравнению с исходным сырьем, которое используется самостоятельно в виде топлива, имеют более низкую влажность (W=8%), высокую плотность (р принимает значения от 1100 до 1300 кг/м3) и теплоту сгорания (Q=19 МДж/кг). Их длина равна 20-50, а диаметр - 4-10 мм. Древесные гранулы в отличие от обычной древесины становятся конкурентоспособными наряду с другими видами твердого, жидкого и газообразного топлива. Их выгодно перевозить на большие расстояния, они занимают меньше места при хранении.

Технология изготовления гранул включает крупное дробление, сушку, мелкое дробление, прессование, охлаждение, сортировку, расфасовку. При изготовлении гранул никакие добавки не используются, так как в качестве связующих выступают естественные смолы, лигнин. Для сушки в качестве источника энергии используются некондиционные отходы после сортировки гранул.

Для производства гранул требуется 3% энергии от их потенциала. Данный вид топлива может сжигаться в котлах с механизированной или ручной подачей. Таким образом, горючие вторичные энергетические ресурсы позволяют замещать первичное топливо, которое закупается за рубежом, и тем самым увеличивают производство энергии за счет собственных энергоресурсов.

2. Вторичные энергетические избыточного давления (напора) – это потенциальная энергия газов, жидкостей и сыпучих тел, покидающих технологические агрегаты с избыточным давлением (напором), которое необходимо снижать перед последующей ступенью использования этих жидкостей, газов, сыпучих тел или при выбросе их в атмосферу, водоёмы, ёмкости и другие приёмники. Сюда же относится избыточная кинетическая энергия.

Вторичные энергетические ресурсы избыточного давления преобразуются в механическую энергию, которая или непосредственно используется для привода механизмов и машин или преобразуется в электрическую энергию.

Примером применения этих ресурсов может служить использование избыточного давления доменного газа в утилизационных бескомпрессорных турбинах для выработки электрической энергии.

3. Тепловые вторичные энергетические ресурсы. К тепловым вторичным энергетическим ресурсам относится физическая теплота отходящих газов котельных установок и промышленных печей, основной или промежуточной продукции, других отходов основного производства, а также теплота рабочих тел, пара и горячей воды, отработавших в технологических и энергетических агрегатах. Для утилизации тепловых вторичных энергетических ресурсов используют теплообменники, котлы-утилизаторы или тепловые агенты. Рекуперация теплоты отработанных технологических потоков в теплообменниках может проходить через разделяющую их поверхность или при непосредственном контакте.

Тепловые вторичные энергетические ресурсы могут поступать в виде концентрированных потоков теплоты или в виде теплоты, рассеиваемой в окружающую среду. В промышленности концентрированные потоки составляют 41%, а рассеиваемая теплота - 59%. Концентрированные потоки включают теплоту уходящих дымовых газов печей и котлов, сточных вод технологических установок и жилищно-коммунального сектора.

Читайте также: